
Under review as a conference paper at ICLR 2019

FROM AMORTISED TO MEMOISED INFERENCE:
COMBINING WAKE-SLEEP AND VARIATIONAL-BAYES
FOR UNSUPERVISED FEW-SHOT PROGRAM LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Given a large database of concepts but only one or a few examples of each, can we
learn models for each concept that are not only generalisable, but interpretable? In
this work, we aim to tackle this problem through hierarchical Bayesian program
induction. We present a novel learning algorithm which can infer concepts as
short, generative, stochastic programs, while learning a global prior over programs
to improve generalisation and a recognition network for efficient inference. Our
algorithm, Wake-Sleep-Remember (WSR), combines gradient learning for con-
tinuous parameters with neurally-guided search over programs. We show that
WSR learns compelling latent programs in two tough symbolic domains: cellular
automata and Gaussian process kernels. We also collect and evaluate on a new
dataset, Text-Concepts, for discovering structured patterns in natural text data.

1 INTRODUCTION

A grand challenge for building more flexible AI is developing learning algorithms which quickly
pick up a concept from just one or a few examples, yet still generalise well to new instances of that
concept. In order to instill algorithms with the correct inductive biases, research in few-shot learning
usually falls on a continuum between model-driven and data-driven approaches.

Model-driven approaches place explicit domain-knowledge directly into the learner, often as a
stochastic program describing how concepts and their instances are produced. For example, we can
model handwritten characters with a motor program that composes distinct pen strokes (Lake et al.,
2015), or spoken words as sequences of phonemes which obey particular phonotactic constraints.
Such representationally explicit models are highly interpretable and natural to compose together into
larger systems, although it may be difficult to completely pre-specify the required inductive biases.

By contrast, data-driven approaches start with only minimal assumptions about a domain, and in-
stead acquire the inductive biases themselves from a large background dataset. This is typified by
recent work in deep meta-learning, such as the Neural Statistian (Edwards & Storkey (2016); see
also Hewitt et al. (2018)), MAML (Finn et al. (2017); see also Reed et al. (2017)) and Prototypical
Networks (Snell et al., 2017). Crucially, these models rely on stochastic gradient descent (SGD)
for the meta-learning phase, as it is a highly scalable algorithm that applies easily to datasets with
thousands of classes.

Ideally these approaches would not be exclusive – for many domains of AI we have access to large
volumes of data and also rich domain knowledge, so we would like to utilise both. In practice,
however, different algorithms are suited to each end of the continuum: SGD requires objectives
to be differentiable, but explicit domain knowledge often introduces discrete latent variables, or
programs. Thus, meta-learning from large datasets is often challenging in more explicit models.

In this work, we aim to bridge these two extremes: we learn concepts represented explicitly as
stochastic programs, while meta-learning generative parameters and an inductive bias over programs
from a large unlabelled dataset. We introduce a simple learning algorithm, Wake-Sleep-Remember
(WSR), which combines SGD over continuous parameters with neurally-guided search over latent
programs to maximize a variational objective, the evidence lower bound (ELBo).

In evaluating our algorithm, we also release a new dataset for few-shot concept learning in a highly-
structured natural domain of short text patterns (see Table 1). This dataset contains 1500 concepts

1

Under review as a conference paper at ICLR 2019

such as phone numbers, dates, email addresses and serial numbers, crawled from public GitHub
repositories. Such concepts are easy for humans to learn using only a few examples, and are well
described as short programs which compose discrete, interpretable parts. Thus, we see this as an
excellent challenge domain for structured meta-learning and explainable AI.

TN [4, 4] Der. 21.8% B,J,U img25.png $4,050 Day 6 pH 7.9 (715) 292-6400 Jul 10, 2012
NV [1, 2] Yoo. 7.5% B,D,E img19.png $4,000 Day 2 pH 7.9 (262) 949-7411 Nov 16, 2004
AZ [3, 4] Ade. -10.1% A img42.jpg $340 Day 10 pH 7.0 (715) 416-2942 Nov 1, 2000
ID [2, 3] Mik. 22.4% A,B,J,U img18.png $102 Day 4 pH 7.4 (715) 983-2293 Jun 9, 2016

WY [1, 1] Won. -4.0% B,E img43.jpg $1,200 Day 10 pH 7.4 (920) 848-8885 Nov 1, 1999
. .

Table 1: Examples from 10 of the 1500 classes contained in the Text-Concepts dataset. The full
dataset can be found at [redacted for anonymous review]

2 BACKGROUND: HELMHOLTZ MACHINES AND VARIATIONAL BAYES

Suppose we wish to learn generative models of spoken words unsupervised, using a large set of
audio recordings. We may aim to include domain knowledge that words are built up from different
short phonemes, without defining in advance exactly what the kinds of phoneme are, or exactly
which phonemes occur in each recording. This means that, in order to learn a good model of words
in general, we must also infer the particular latent phoneme sequence that generated each recording.

This latent sequence must be re-estimated whenever the global model is updated, which itself can be
a hard computational problem. To avoid a costly learning ‘inner-loop’, a longstanding idea in ma-
chine learning is to train two distinct models simultaneously: a generative model which describes the
joint distribution of latent phonemes and sounds, and a recognition model which allows phonemes
to be inferred quickly from data. These two models together are often called a Helmholtz Machine
(Dayan et al., 1995).

Formally, algorithms for training a Helmholtz Machine are typically motivated by Variational Bayes.
Suppose we wish to learn a generative model p(z, x), which is a joint distribution over latent vari-
ables z and observations x, alongside a recognition model q(z;x), which is a distribution over latent
variables conditional on observations. It can be shown that the marginal likelihood of each observa-
tion is bounded below by

log p(x) ≥ log p(x)− DKL[q(z;x)||p(z|x)] (1)
= E
z∼q(z;x)

log p(x|z)− DKL[q(z;x)||p(z)] (2)

where DKL[q(z;x)||p(z|x)] is the KL divergence from the true posterior p(z|x) to the recognition
model’s approximate posterior q(z;x). Learning a Helmholtz machine is then framed as maximi-
sation of this evidence lower bound (or ELBo), which provides the shared basis for two historically
distinct approaches to learning.

2.1 THE WAKE-SLEEP ALGORITHM

The first method, proposed by Hinton et al., is an alternating optimisation algorithm: alternate
between updates to the generative model p and recognition model q. The update for p(x|z), called
the ‘wake’ phase, can be derived simply from Eq. 2 as:

Wake phase: Maximise E[log p(x|z)] of observed data x using inferred latent variables z ∼ q(z;x)
Unfortunately, the exact update for q(z;x), which is minimisation of DKL[q(z;x)||p(z|x)], cannot
be computed since it requires knowledge of the true posterior p(z|x) on observed data. Instead the
update for q is approximated using the ‘other’ KL divergence, DKL[p(z|x)||q(z;x)], by ‘dreaming’
training data from the generative model:

Sleep phase: Maximise E[log q(z;x)] using latents z ∼ p(z) and hallucinations x ∼ p(x|z)
This approximation will be accurate if the recognition model is able to very well match the true
posterior (and so both KL divergences approach 0). However, in practice the difference between

2

Under review as a conference paper at ICLR 2019

DKL[q||p] and DKL[p||q] can be very large. Thus, other than in special cases, the Wake-Sleep algo-
rithm cannot be well-understood as as optimisation of a single training objective, but rather alterna-
tion between two training objectives. Thus, for most models of interest it is difficult to know if the
algorithm will converge on a good model of the data (or whether it converges at all).

2.2 VARIATIONAL AUTOENCODERS

More recently Kingma & Welling (2013) proposed the Variational Autoencoder (VAE). This offers
an alternative solution to the problem of training q without relying on the above KL-divergence
approximation. Instead, the authors note that it is possible to construct an unbiased approximation
to the ELBo (Eq. 2) using only a single sample from q.

Under specific assumptions about the form of q – specifically, that it is a continuous distribution
which can be reparametrised by transforming a fixed auxiliary distribution – they use this to construct
a low variance estimate for the gradient of the ELBo. As it is unbiased, this gradient estimate can
used in SGD to train both q and p, typically neural networks, simultaneously towards the ELBo

VAE Update: Sample z ∼ q(z;x) and take a gradient step on log p(x|z)− DKL[q(z;x)||p(z)].
When z are discrete, VAEs cannot be trained through the use of reparameterisation but instead rely
on the policy gradient (otherwise called REINFORCE, Williams (1992)) estimator from reinforce-
ment learning. This estimator is notoriously high variance, in many cases rendering SGD ineffectual.
This difficulty has motivated a wide literature on variance reduction techniques, (Greensmith et al.,
2004; Jang et al., 2016; Tucker et al., 2017; Grathwohl et al., 2017), yet training VAEs with discrete
latent variables remains a challenging open research problem.

2.3 COMPARISON

The above description highlights a bias-variance tension between these two approaches (Table 2).
The wake-sleep algorithm applies well to a wide variety of models, including structured models with
discrete latent variables, but relies on an approximate update for q which may be heavily biased. By
contrast, VAEs are proven to converge to a local optimum of the evidence lower bound (and so are
often seen as more ‘principled’) but require much stronger assumptions on the form of the model in
order for learning to be practical.

Additionally, both VAEs and Wake-sleep rely on the ability of the recognition model, q(z;x), to
learn to carry out posterior inference accurately; any departure from this changes the optimal p.
This strong constraint is often unrealistic and unnecessary: on hard problems, a recognition model
may still be useful if only one in a hundred samples are of high quality. Recent work aims to
address this in both VAEs (Burda et al., 2015) and Wake-sleep (Bornschein & Bengio, 2014) by
using importance weighting over many samples from q. This solution is well suited when fully
amortised inference is just out of reach of the recognition model, but is bottlenecked by how many
samples it is practical to evaluate per gradient step.

The next section describes our alternative approach, motivated by the idea that good explanations
needn’t be forgotten. Simply put, we mitigate the difficulties of discrete inference by introducing
a separate ‘memory’ into the Helmholtz Machine, explicitly keeping track of the best discovered
latent explanations, or programs zi, for each observation xi.

Inference loss q Unbiased ELBo estimate Discrete z Memory
Wake-Sleep DKL[p(z|x)||q(z;x)] X (unconvergent) X X

VAEs DKL[q(z;x)||p(z|x)] X X (REINFORCE) X
WSR DKL[q(z)||p(z|x)] X X X

+DKL[p(z|x)||r(z;x)]

Table 2: Comparison of VAE and Wake-Sleep algorithms for training Helmholtz machines. Wake-
sleep uses an approximation to the correct update for q, which may be heavily biased. VAE updates
are unbiased, but for discrete variables they are often too high variance for learning to succeed.

3

Under review as a conference paper at ICLR 2019

Figure 1: For VAEs and Wake-sleep, the recognition model q also serves as the variational dis-
tribution that trains p. WSR distinguishes these, learning a recognition model r and a categorical
variational posterior q which is separate from r. This means that like VAEs, WSR jointly trains p
and q using an unbiased estimate of the variational objective (blue). Like wake-sleep, the recogni-
tion model can train self-supervised (green), allowing WSR to handle discrete latent variables. To
optimise the finite support of q, WSR incorporates a memory module M that remembers the best
values of zi found by r(zi;xi) across iterations.

3 THIS WORK

In this work we start from a different set of modelling assumptions to those typical of VAE-family
models. Rather than describe each observation with a latent vector z which lacks explicit structure,
we assume each observation is generated by an explicit latent program, and wish to learn:

1. A posterior distribution over the latent program qi(zi) for each instance xi
2. A prior p(z) that captures a global inductive bias over programs.
3. Any continuous parameters of the decoder p(x|z)
4. An approximate recognition network r(z;x) which helps infer programs for novel data.

Using programs as a latent representation makes this setup challenging for two reasons. First, as
seen in Table 2, training discrete Helmholtz machines usually requires accepting either high bias
or high variance in the learning objective. Second, by assumption, inferring programs from data is
a hard problem, so performing highly accurate amortised inference may be overly ambitious. We
therefore desire a learning algorithm for which weaker recognition models may reduce the speed of
learning but will not change the set of stable solutions to the learning problem.

To achieve this, we depart from the usual Helmholtz machines formulation by separating the recog-
nition model from the variational distribution (Figure 1). As in Wake-sleep, we train the recognition
model r(z;x) self supervised using samples from the prior - an effective strategy when z is discrete.

Figure 2: What trains what? r is a recogni-
tion network trained self-supervised on samples
from the p. The memory Mi for each task i is a
set of the ‘best’ z values ever sampled by r, se-
lected according their joint probability p(z, xi).
p is then trained using samples from M .

However, unlike Wake-sleep we do not use sam-
ples from r directly to train the generative model
p. Instead, they are routed through a separate
Memory module, M , which maintains a set of the
best values of z found for each x, across train-
ing iterations, weighted by their joint probability
p(z, x). Then, we simply resample from M in
order to train p.

By weighting each z proportional to its join prob-
ability, we guarantee that every update to M de-
creases the KL divergence between Mi and the
true posterior p(zi|xi). Thus, we may view each
Mi as a truncated variational posterior over zi,
which is optimised towards the ELBo using sam-
ples from r as proposals. Our full training proce-
dure is detailed in Algorithm 1.

4

Under review as a conference paper at ICLR 2019

Algorithm 1: Basic WSR training procedure (batching omitted for notational simplicity). In prac-
tice, we avoid evaluation of pθ in the each wake phase by maintainging a cache of pθ(zM , x) in the
sleep phase. We re-calculate each pθ(z, x) only as a final correctness check before modifying Mi.

initialize θ Parameters for prior pθ(z), ‘decoder’ pθ(x|z), recognition network rθ(z;x)
initialize Mi for i = 1, . . . , |X| For each instance i, Mi is a size-k set of programs
repeat

draw instance (i, xi) from dataset X

Wake


zr ∼ rθ(z;xi)
if log pθ(zr, x) > argminz∈Mi

log pθ(z, x) :

add zr to Mi (replacing min element)

1. Update memory with sample
from recognition network

Remember
{
zM ∼Mi, with probabilies πz ∝ log pθ(z, x)

swake = log pθ(zM , x)

2. Train generative model with
sample from memory

Sleep


zp ∼ pθ(z)
xp ∼ pθ(x|z)
ssleep = log rθ(ẑp; x̂p)

3. Train recognition network with
sample from generative model

Hyperprior
(optional)

{
zp′ ∼ p′(z)
shyper = α log pθ(zp′)/|X|

4. Train prior with sample from
reference distribution

g = ∇θ
[
ssleep + swake (+shyper)

]
θ = θ + λg Gradient step (e.g. SGD, Adam)

until convergence

3.1 EXTENSION TO HIERARCHICAL BAYES

In the above problem setup, we assumed that the prior p(z) either was fixed, or was learned to
maximise the ELBo training objective. However, for many modelling problems neither is adequate:
we often have some idea about the global distribution over of latent programs, but deciding on the
exact p(z) in advance would be too strong a commitment. In these cases we would rather provide
a reference distribution p′(z) as a first approximation to the global distribution, while but still allow
the model to update its prior p(z) to move away from p′ as it learns from data. In this situation we
may place a hyperprior over p(z), defined with respect to the reference distribution as:

P(p) ∝ exp
(
− αDKL[p

′||p]
)

where α is a concentration parameter controlling the level of confidence in the reference distribution
p′. This form of hyperprior can be integrated into the training objective simply by addition of
an extra term: Ez∼p′ α log p(z), estimated by sampling from p′. Algorithm 1 includes this as an
optional variant, which corresponds to maximum a posteriori estimation over p.

4 EXPERIMENTS

4.1 LEARNING CELLULAR AUTOMATA

We first test our algorithm at learning the rules for noisy 1-dimensional cellular automata, from the
images they generate. We create 64× 64 binary images generated row by row, sampling each pixel
using a rule that depends only on its ‘neighbours’ in the row above. Specifically, given a ‘neigh-
bourhood size’ D and ‘corruption probability’ ε, we generate images by the following procedure:

• Choose a binary vector z ∈ {0, 1}2D to represent the update rule for the cellular automaton.
• Sample the first generation uniformly at random, as g1 ∈ {0, 1}64

• For each subsequent row i = 2, . . . , 64 and each cell (i, j):
1. read the neighbouring D cells from the previous row: sij = gi−1,j−D2 :j+D

2

2. sample gij according to: p(gij = zsij) = 1− ε

5

Under review as a conference paper at ICLR 2019

Figure 3: One-shot generalisations produced by each algorithm on each the cellular automata
datasets. For each input image we sample a program z from the variational distribution q, then
synthesize a new image in the same style from pε(z|x) using the learned ε.

We create easy, medium and hard datasets corresponding to increasingly complex cellular automaton
rules, with neighbourhood sizes of D = 3, 4, 5 respectively (easy corresponds to the full set of 256
elementary automata studied by Wolfram in Wolfram (2002). For medium and hard, we sample
10,000 of the 65,000 and 4 billion available rules). All datasets share a noise parameter ε = 0.01.

Our goal is discover a latent rule, or program, zi corresponding to each image in the dataset, while
also learning the global noise ε. Thus, we learn a pε(z, x) with same structure as the true generative
process, and use a CNN with independent Bernoulli outputs as the recognition network r(z;x).
Fixing this architecture, we train WSR using k = 5 as the memory size, and compare performance
of for the against three baseline algorithms:

• VAE. We use policy-gradient (REINFORCE) for discete choices, and additionally reduce
variance by subtracting a learned baseline for each task.

• Wake-Sleep. We perform gradient descent on the recognition model q and generative
model p together, using samples from the p to train q, and samples from q to train p.

• No Recognition. We evaluate a lesioned Algorithm 1 in which no recognition model is
learned. We instead propose updates to Mi using samples from the prior zp ∼ p(z).

Our results highlight clear differences between these approaches. Despite our efforts at variance
reduction, a VAE reliably struggles to get off the ground on any dataset, and instead learns quickly
to model all instances as noise (Figure 3 and 4 bottom). Wake-sleep is able to learn accurate rules
for images from the easiest datasets, but on the most challenging dataset but its performance appears
to asymptote prematurely. By contrast, WSR reliably learns accurate programs that can be used to
classify unseen images 100-way with > 99% accuracy, even on the hard dataset.

Figure 4: Quantitative results on all variants of the cellular automata dataset. In all cases WSR learns
programs which generalise to unseen images of the same concepts, achieving > 99% accuracy on a
100-way classification task (second row). WSR also best recovers the true noise parameter ε = 0.01
(third row). Note: x-axis is wallclock time on a single Titan-X GPU to allow a fair comparison, as
WSR requires several times more computation per iteration.

6

Under review as a conference paper at ICLR 2019

4.2 COMPOSING GAUSSIAN PROCESS KERNELS

Next, we evaluate our algorithm on the the task of finding explainable models for time-series data.
We draw inspiration from Duvenaud et al. (2013), who frame this problem as Gaussian process
(GP) kernel learning. They describe a grammar for building kernels compositionally, and demon-
strate that inference in this grammar can produce highly interpretable and generalisable descriptions
of the structure in a time series. Inference is achieved on a single time-series through a custom
greedy search algorithm, requiring a costly inner loop that approximately marginalises over kernel
parameters.

Here, we follow a similar approach embedded within a larger goal: we use a dataset of many dif-
ferent time-series, and learn a hierarchical model over time-series. That is, we learn a separate GP
kernel for each series in the dataset while also learning an inductive bias over kernels themselves.

We start with time series data provided by the UCR Time Series Classification Archive. This dataset
contains 1-dimensional times series data from a variety of sources (such as household electricity
usage, apparent brightness of stars, and seismometer readings). In this work, we use 1000 time
series randomly drawn from this archive, and normalise each to zero mean and unit variance.

For our model, we define the following simple grammar over kernels:

K → K +K | K ∗K |WN | SE | Per | C, where (3)

• WN is the White Noise kernel, K(x1, x2) = σ2Ix1=x2

• SE is the Squared Exponential kernel, K(x1, x2) = exp(−(x1 − x2)2/2l2)
• Per is a Periodic kernel, K(x1, x2) = exp(−2 sin2(π|x1 − x2|/p)/l2)
• C is a Constant, c

We wish to learn a prior distribution over both the symbolic structure of a kernel and its continuous
variables (σ, l, etc.). Rather than describe a prior over kernel structures directly, we define the latent
program to z to be a symbolic kernel ‘expression’: a string over the characters

{(,),+, ∗,WN,SE,Per,C}

We define an LSTM prior pθ(z) over these kernel expressions, alongside parametric prior distribu-
tions over continuous latent variables (pθσ (σ), pθl(l), . . .). As in previous work, exact evaluation of
the marginal likelihood p(x|z) of a kernel expression z is intractable and so requires an approxima-
tion. For this we use a simple variational inference scheme which cycles through coordinate updates
to each continuous latent variable (up to 100 steps), and estimates a lowerbound on p(x|z) using 10
samples from the variational distribution. Finally, following section 3.1, we place a hyperprior on
the distribution over kernel expressions, using the grammar above (Eq. 3) as a reference distribution.

Examples of latent programs discovered by our model are displayed in Figure 5. These programs
describe meaningful compositional structure in the time series data, and can also be used to make
highly plausible extrapolations.

Figure 5: Kernels inferred by the WSR for various real time series in the UCR dataset. Blue (left) is
a 256-timepoint observation, and orange (right) is a sampled extrapolation using the inferred kernel
(top, simplified where possible). The explicit compositional structure of this latent representation
allows each discovered concept to be easily translated into natural language.

7

Under review as a conference paper at ICLR 2019

4.3 DISCOVERING STRUCTURED TEXT CONCEPTS

Finally, we test our model on the task of learning short text concepts, such as ‘phone number’
or ‘email address’, from a few examples. For this task we created a new dataset, Text-Concepts
comprising 1500 of such concepts with 10 examples of each (Figure 1).

To collect the data, we first crawled several thousand randomly chosen spreadsheets from online
public repositories on GitHub. We then automatically selected a subset of 1500 the columns from
this set, filtered to remove columns that contain only numbers, English words longer than 5 charac-
ters, or common first names and surnames. To promote diversity in the dataset, we also filtered so
that no two columns originated from the same spreadsheet, and no more than 3 columns share the
same column header. This us to capture a wide variety of concept types (e.g. ‘date’, ‘time’) while
maintaining variation that exists within each type.

Common to most patterns in the Text-Concepts dataset is that they can be well described by con-
catenative structure, as they usually involve the composition of discrete parts. With this in mind, we
aim to model of this dataset using the language of Regular Expressions (regex).

We first define a grammar over regular expressions as follows, borrowing the standard syntax that is
common to many programming languages:

E → ε | EE | E∗ | E+ | (E|E) | (R?) | Character | CharacterClass
Character→ a | b | . . .

CharacterClass→ . | w | d | u | l | s (4)

where Character can produce any printable ASCII character, and ε is the empty string.

We assume that each class xi in the Text-Conceptsdataset can be described by a latent regular expres-
sion zi from this grammar. However, for our purposes, we endow each regex z with probabilistic,
generative semantics. We define a likelihood (decoder) pθ(x|z) by placing probability distributions
over every random choice involved in generating a string from regex, as given in Table 3.

To evaluate the probability of a regex z generating a set of strings i, we use dynamic programming
to efficiently calculate the exact probability of the most probable parse for each string in the set, and
multiply these to serve as our likelihood pθ(x|z). As in the Gaussian Process example, our pθ(z) is
parametrised as a simple LSTM, and we define a hyperprior over this by using the above grammar
(Eq. 4) the reference grammar distribution.

For the recognition model we require a network which is able to generate a sequence of tokens
(the regex) taking a set of strings as an input. We achieve this using a variant of the RobustFill
architecture, introduced in Devlin et al. (2017). We pass each string in the set individually through
an LSTM, and then attend to these while decoding a regular expression character by character.

Given this problem setup, our goal is to learn a regex z corresponding to each set of strings, x in
the dataset, while also learning a global distribution p(z) and a recognition model r(z;x) to guide
inference on novel sets.

For any regex expression e:
e* evaluates to e+ with probability θ+, and ε with otherwise.
e+ evaluates to ee*.
e|e2 evaluates to e with probability θ|, and e2 otherwise.
e? evaluates to e with probability θ?, and ε otherwise.
. evaluates to any character, with probabilities θ.
w evaluates to any alphanumeric character, with probabilities θw
d evaluates to any digit, with probabilities θd
u evaluates to any uppercase character, with probabilities θu
l evaluates to any lowercase character, with probabilities θl
s evaluates to any whitespace character, with probabilities θs

where θ are parameters to be learned

Table 3: The probabilistic regular expression ‘decoder’ pθ(x|z), used in our model of text concepts

8

Under review as a conference paper at ICLR 2019

Figure 6: Quantitative comparison of models trained on the Text-Concepts dataset.

Quantitative results from training the above model using the WSR algorithm (with k = 5), are shown
in Figure 6. From five examples of each concept, WSR learns a regular expression that generalises
well to new examples, achieving over 75% accuracy in a challenging 100-way classification task.
Comparing to Wake-Sleep and No-Recognition baselines, we find that WSR crucially utilises on
both its recognition model and its memory in order to achieve this result - neither are sufficient
alone.

The VAE algorithm was unable to learn effectively in our regex model, even when using control
variates to reduce variance. For a more fair comparison, we also provide results from training
a VAE using a different model architecture to which is better suited: for VAE-LSTM we use a
32-dimensional vector for the latent representation, with a fixed Gaussian prior p(z), and LSTM
networks for both p(x|z) and q(z|x). While this model is able to optimise its training objective
effectively, it instead suffers from the lack of domain knowledge built into its structure. The latent
representations it infers for concepts are not only less explicit but also generalise less effectively
to new examples of a given concept. Table 4.3 provides examples of concepts learned from our
Text-Concepts dataset by each of the best three models.

Posterior sample z ∼ qi Conditional generation x ∼ pθ(x|z)
Input: {$2.80, $3.40, $3.70, $5.40, $5.70}

WSR: $d.d0 $9.80, $6.60, $9.30, . . .
Wake-Sleep: $d.dd $6.03, $1.00, $6.15, . . .
VAE-LSTM: [-1.01, 0.78, ..., -1.09] $66.89, $40,722, $4,072,08, . . .

Input: {SRX894622, SRX897016, SRX897025, SRX897027, SRX897032}
WSR: SRX89dddd SRX890154, SRX891233, SRX892503, . . .

Wake-Sleep: uuudddddd SDE677741, IFR104042, ASO235252, . . .
VAE-LSTM: [0.99, 1.35, ..., -0.10] S19E7U0003, CPF009999, S19000143, . . .

Input: {ecous, indus, midwous, midwus, totus}
WSR: ll+us bpgbeus, hcus, beus, . . .

Wake-Sleep: l+ fl, s, ab, . . .
VAE-LSTM: [1.44, 1.16, ..., -0.36] sdajm, -0.79489, al scip-inf-1, . . .

Input: {bp 60 6, dt 62 1, gk 55 4, kt 14 5, tp 8 8}
WSR: ll dd? d ra 8 2, lc 32 4, su 6 0, . . .

Wake-Sleep: kl dd dd? km 13 95, kb 50 26, kb 83 95, . . .
VAE-LSTM: [-0.28, -0.16, ..., -1.54] h052346, ipr pr160, v24260, . . .

Input: {(650) 323-4532, (650) 573-2385, (650) 599-1423, (650) 599-7479, (650) 877-5773}
WSR: (650)sddd-dddd (650) 430-0484, (650) 890-2662, (650) 060-8473, . . .

Wake-Sleep: (ddd)sddd-dddd (965) 179-5812, (921) 992-1623, (135) 584-3078, . . .
VAE-LSTM: [0.34, 0.01, ..., -0.13] (429) 893-1700, (425) 859-23830, (715) 236-1297, . . .

Input: {Feb 07, 2014, Jul 07, 2014, Mar 11, 2005, Nov 21, 2007, Oct 04, 2010}
WSR: ullsdd,s20dd Bvk 33, 2097, Ylb 67, 2016, Teb 59, 2069, . . .

Wake-Sleep: u?ol dd|d|d, dddd oo 25, 8421, Sor 13, 1017, oa 89, 1130, . . .
VAE-LSTM: [1.26, 1.22, ..., -1.17] M 6235451-9029, Nov 11, 2003, Dec 55,24D, . . .

Input: {L - 10.0 lbs., L - 25.2 lbs., L - 31.0 lbs., L - ??, S - 8.6 lbs.}
WSR: us-sdd?.dslbs. A - 75.0 lbs., M - 99.6 lbs., S - 50.4 lbs., . . .

Wake-Sleep: o*|s|(L -) (- .sl)+* oo - 0 s- 0 t- 1 f- 3 d, o , - 6 j- X o, . . .
VAE-LSTM: [1.72, -0.03, ..., 0.21] C214, 2-942q18, YE-2M2, . . .

Table 4: Learned latent representations and posterior predictive samples from models trained on the
Text-Concepts dataset (from five examples per class).

9

Under review as a conference paper at ICLR 2019

Prior z ∼ pθ Conditional generation x ∼ pθ(x|z)
csd.d+ c 0.6, c 4.4, c 6.0, . . .
wdddd-dd 56144-73, 60140-63, 21646-60, . . .
lld hc8, ft5, vs9, . . .
u0dddddd B0522234, M0142810, A0994226, . . .
uuud.sd0% TAP0. 70%, THR6. 50%, FPS9. 20%, . . .
u+. EA., SD., CSB., . . .

Table 5: Novel concepts hallucinated by the WSR model.
For each row we first sample a from the learned prior, and
then generate examples of the concept by sampling from
this program.

Figure 7: Comparison of ELBo between WSR
and Wake-Sleep models for every example in the
dataset. Examples in red are shown in Table 4.3
ordered by WSR ELBo (descending).

Finally, investigate whether WSR learns a realistic inductive bias over concepts, by sampling new
concepts from the learned prior pθ(z) and then for each of these sampling a set of instances from
pθ(x|z). In Table 4.3, we see that our model generalises meaningfully from the training data, learn-
ing higher level part structure that is common in the dataset (e.g. strings of uppercase characters)
and then composing these parts in new ways.

5 DISCUSSION

In this paper, we consider learning interpretable concepts from one or a few examples: a difficult
task which gives rise to both inductive and computational challenges. Inductively, we aim to achieve
strong generalisation by starting with rich domain knowledge and then ‘filling in the gaps’, using
a large amount of background data. Computationally, we aim to tackle the challenge of finding
high-probability programs by using a neural recognition model to guide search.

Putting these pieces together we propose the Wake-Sleep-Remember algorithm, in which a
Helmholtz machine is augmented with an persistent memory of discovered latent programs - op-
timised as a finite variational posterior. We demonstrate on several domains that our algorithm can
learn generalisable concepts, and comparison with baseline models shows that WSR (a) utilises both
its recognition model and its memory in order to search for programs effectively, and (b) utilises both
domain knowledge and extensive background data in order to make strong generalisations.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. arXiv preprint arXiv:1406.2751,
2014.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz machine.
Neural computation, 7(5):889–904, 1995.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. arXiv preprint
arXiv:1703.07469, 2017.

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B Tenenbaum, and Zoubin Ghahra-
mani. Structure discovery in nonparametric regression through compositional kernel search. arXiv
preprint arXiv:1302.4922, 2013.

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint
arXiv:1606.02185, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. arXiv preprint
arXiv:1711.00123, 2017.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–1530,
2004.

Luke B Hewitt, Maxwell I Nye, Andreea Gane, Tommi Jaakkola, and Joshua B Tenenbaum. The
variational homoencoder: Learning to learn high capacity generative models from few examples.
UAI, 2018.

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The” wake-sleep” algorithm
for unsupervised neural networks. Science.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, SM Eslami, Danilo Rezende, Oriol
Vinyals, and Nando de Freitas. Few-shot autoregressive density estimation: Towards learning to
learn distributions. arXiv preprint arXiv:1710.10304, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems, pp. 2627–2636, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Stephen Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.

11

	Introduction
	Background: Helmholtz Machines and Variational Bayes
	The Wake-Sleep Algorithm
	Variational Autoencoders
	Comparison

	This Work
	Extension to hierarchical Bayes

	Experiments
	Learning cellular automata
	Composing Gaussian process kernels
	Discovering structured text concepts

	Discussion

