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Abstract

The Deeplet Framework is used for applying cutting-edge practices in deep learning
to supervised learning problems in high-energy physics. Originally envisaged to
support jet-flavour tagging and classification, it has grown to encompass a range of
use-cases as it underwent a transformation into a multi-purpose tool for physics
analysis at the Compact Muon Solenoid (CMS) Experiment. This paper illustrates
the motivation behind the development of Deeplet, its features, architecture, and
workflow.

1 Introduction

Jets are collimated streams of radiation that often contribute significantly to the data captured in a
high-energy collision. Jet tagging has been studied and has resulted in the development of numerous
algorithms with resulting efficiency as shown above. The central idea in the DeepCSV (Combined
Secondary Vertex) (2) jet tagger that we have released is the incorporation of flavour information
in addition to kinematic information that gives it equal or improved performance over the other jet
taggers (b and c) making it an efficient multi-jet classifier. The development of the DeepFlavour
(3) tagger in part initiated the project of extending the script(s) into a full-fledged tool for physics
analysis.

2 Motivation and Challenges

As is often the case with most software development projects, moving from a development environ-
ment to a production-ready setup especially for large-scale machine learning models is a non-trivial
task. It involves constraints with the compute requirement, memory, threads, and processes apart
from compatibility and dependency-management (4)(5). A few breakpoints include:

o Attempting to run DeepJet on the CMS Software Environment (6) involves interaction with
custom C++ interfaces, Python code for TensorFlow (7)) with a backend in C++ creating
huge memory overheads.

e Training time is seldom outlived by the lifetime of Kerberos tokens which requires repetitive,
automated renewal to avoid failed jobs.

Human elements often impact the performance of code in production especially when attempting to
involve third-parties for deployment of code without a software development workflow in place:

e Code often underutilises parallelization and low-memory features available as part of recent
updates to popular frameworks.
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Figure 1: The performance of DeepCSV was comparable to other algorithms for jet classification.

e It is unnecessary to reinvent the wheel as opposed to using a combination of existing relevant
software to provide the necessary functionality.

3 Features

At its core, DeepJet is built to include a set of wrappers for TensorFlow and Keras (8) that is integrated
with a set of custom extensions to satisfy the constraints and computing caveats associated with the
execution of physics analysis within the CMS Software Environment

It sports a range of features aimed at ease-of-use and reproducible machine learning research:

1. Simple out-of-memory training with a multi-threaded approach to maximally exploit the
hardware acceleration.

2. Streamlined I/O to help with bookkeeping of the development.
3. Complete set of ready-to-use templates for a simplified learning curve.

4. Component-based architecture that allows users to add custom code or build their own
models from scratch.

The DeepJletCore package includes custom extensions written in C++ for multi-threaded I/O and
functionality associated with handling data conversion and storage of ROOT Ntuples (9) that are
commonly used for storing event data in high-energy physics experiments performed within the Large
Hadron Collider. It has undergone a prolonged series of revisions in order to function within the
CMS Software Repository (CMSSW) [Pull Request #19893], is now available as a Python package,
and within a Docker image to simplify the deployment across multiple systems.

https://www.github.com/DL4Jets/DeepJetCore

4 Architecture

The Deeplet architecture segregates the DeepJetCore (core scripts) package from the user-defined
modules and data structures contained in the Deeplet package as illustrated in the diagram below.

The availability of Deeplet as a separate ‘example’ package makes the definition of models and
training parameters lucid and flexible for customisation, should the user(s) feel the need to do so.


https://www.github.com/DL4Jets/DeepJetCore
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Figure 2: The definitions within the DeeplJet package for custom, user-defined models

For this purpose, there are pre-defined templates and data structures available to run the training for
the DeepCSV classifier bundled together in the initial install. Custom user-modules are located and
loaded using the system path when executing the DeepJetCore training.

5 Conclusion

The Deeplet framework was designed primarily as an internal tool to streamline the process conven-
tionally employed by physicists to employ machine learning for multi-jet classification. As features
were added to deal with the increasing computational complexity espoused by distributed systems
and large-scale datasets, it gravitated towards a broader set of use-cases. Currently we are not only
catering to the needs of existing teams of researchers within CERN but also working on a publicly
accessible demonstration of using DeeplJet to train classifiers for *non-physics’ data such as the
popularly used Iris dataset [Fisher, 1936].

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement number 772369).

References

[1] M. Stoye, et. al., “Deeplet: Generic physics object based jet multiclass classification for LHC experiments”,
NIPS Workshop on Deep Learning for Physical Sciences (2017).

[2] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”,
JINST 13 (2018), arXiv:1712.07158v2 [physics.ins-det].

[3] CMS Collaboration, “CMS Phase 1 heavy flavour identification performance and developments,” Detector
Performance Figures: CMS-DP-17-013, http://cds.cern.ch/record/2263802 (2017).

[4] M. Verzetti, et. al., “Deeplet: a deep-learned multiclass jet-tagger for slim and fat jets”, 2nd CMS IML
Workshop (2018).

[5] M. Rieger, et. al., “Tensorflow in CMSSW”, CERN IML Working Group Meeting (2018).


http://cds.cern.ch/record/2263802

[6] Innocente, Vincenzo, L. Silvestris, and D. Stickland. "CMS Software Architecture: Software framework,

services and persistency in high level trigger, reconstruction and analysis." Computer Physics Communications
140.1-2 (2001): 31-44.

[7] Abadi, Martin, et al. "Tensorflow: a system for large-scale machine learning." OSDI. Vol. 16. 2016.
[8] Chollet, Frangois. "Keras." (2015).
[9] Brun, Rene, and Fons Rademakers. "ROOT—an object oriented data analysis framework." Nuclear Instru-

ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 389.1-2 (1997): 81-86.



	Introduction
	Motivation and Challenges
	Features
	Architecture
	Conclusion

