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ABSTRACT

Lack of performance when it comes to continual learning over non-stationary dis-
tributions of data remains a major challenge in scaling neural network learning to
more human realistic settings. In this work we propose a new conceptualization of
the continual learning problem in terms of a temporally symmetric trade-off be-
tween transfer and interference that can be optimized by enforcing gradient align-
ment across examples. We then propose a new algorithm, Meta-Experience Re-
play (MER), that directly exploits this view by combining experience replay with
optimization based meta-learning. This method learns parameters that make inter-
ference based on future gradients less likely and transfer based on future gradients
more likely.1 We conduct experiments across continual lifelong supervised learn-
ing benchmarks and non-stationary reinforcement learning environments demon-
strating that our approach consistently outperforms recently proposed baselines
for continual learning. Our experiments show that the gap between the perfor-
mance of MER and baseline algorithms grows both as the environment gets more
non-stationary and as the fraction of the total experiences stored gets smaller.

1 SOLVING THE CONTINUAL LEARNING PROBLEM

A long-held goal of AI is to build agents capable of operating autonomously for long periods. Such
agents must incrementally learn and adapt to a changing environment while maintaining memories
of what they have learned before, a setting known as lifelong learning (Thrun, 1994; 1996). In this
paper we explore a variant called continual learning (Ring, 1994). In continual learning we assume
that the learner is exposed to a sequence of tasks, where each task is a sequence of experiences
from the same distribution (see Appendix A for details). We would like to develop a solution in
this setting by discovering notions of tasks without supervision while learning incrementally after
every experience. This is challenging because in standard offline single task and multi-task learning
(Caruana, 1997) it is implicitly assumed that the data is drawn from an i.i.d. stationary distribution.
Unfortunately, neural networks tend to struggle whenever this is not the case (Goodrich, 2015).

Over the years, solutions to the continual learning problem have been largely driven by prominent
conceptualizations of the issues faced by neural networks. One popular view is catastrophic forget-
ting (interference) (McCloskey & Cohen, 1989), in which the primary concern is the lack of stability
in neural networks, and the main solution is to limit the extent of weight sharing across experiences
by focusing on preserving past knowledge (Kirkpatrick et al., 2017; Zenke et al., 2017; Lee et al.,
2017). Another popular and more complex conceptualization is the stability-plasticity dilemma
(Carpenter & Grossberg, 1987). In this view, the primary concern is the balance between network

1We consider task agnostic future gradients, referring to gradients of the model parameters with respect to
unseen data points. These can be drawn from tasks that have already been partially learned or unseen tasks.
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Figure 1: A) The stability-plasticity dilemma considers plasticity with respect to the current learning and how
it degrades old learning. The transfer-interference trade-off considers the stability-plasticity dilemma and its
dependence on weight sharing in both forward and backward directions. This symmetric view is crucial as
solutions that purely focus on reducing the degree of weight-sharing are unlikely to produce transfer in the
future. B) A depiction of transfer in weight space. C) A depiction of interference in weight space.

stability (to preserve past knowledge) and plasticity (to rapidly learn the current experience). For ex-
ample, these techniques focus on balancing limited weight sharing with some mechanism to ensure
fast learning (Li & Hoiem, 2016; Riemer et al., 2016a; Lopez-Paz & Ranzato, 2017; Rosenbaum
et al., 2018; Lee et al., 2018; Serrà et al., 2018). In this paper, we extend this view by noting that for
continual learning over an unbounded number of distributions, we need to consider weight sharing
and the stability-plasticity trade-off in both the forward and backward directions in time (Figure 1A).

The transfer-interference trade-off proposed in this paper (section 2) presents a novel perspective
on the goal of gradient alignment for the continual learning problem. This is right at the heart
of the problem as these gradients are the update steps for SGD based optimizers during learning
and there is a clear connection between gradients angles and managing the extent of weight shar-
ing. The key difference in perspective with past conceptualizations of continual learning is that
we are not just concerned with current transfer and interference with respect to past examples, but
also with the dynamics of transfer and interference moving forward as we learn. Other approaches
have certainly explored operational notions of transfer and interference in forward and backward
directions (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018), the link to weight sharing (French,
1991; Ajemian et al., 2013), and the idea of influencing gradient alignment for continual learning
before (Lopez-Paz & Ranzato, 2017). However, in past work, ad hoc changes have been made to
the dynamics of weight sharing based on current learning and past learning without formulating a
consistent theory about the optimal weight sharing dynamics. This new view of the problem leads
to a natural meta-learning (Schmidhuber, 1987) perspective on continual learning: we would like to
learn to modify our learning to affect the dynamics of transfer and interference in a general sense.
To the extent that our meta-learning into the future generalizes, this should make it easier for our
model to perform continual learning in non-stationary settings. We achieve this by building off past
work on experience replay (Murre, 1992; Lin, 1992; Robins, 1995) that has been a mainstay for
solving non-stationary problems with neural networks. We propose a novel meta-experience replay
(MER) algorithm that combines experience replay with optimization based meta-learning (section
3) as a first step towards modeling this perspective. Moreover, our experiments (sections 4, 5, and
6), confirm our theory. MER shows great promise across a variety of supervised continual learning
and continual reinforcement learning settings. Critically, our approach is not reliant on any provided
notion of tasks and in most of the settings we explore we must detect the concept of tasks without
supervision. See Appendix B for a more detailed positioning with respect to related research.

2 THE TRANSFER-INTERFERENCE TRADE-OFF FOR CONTINUAL LEARNING

At an instant in time with parameters θ and loss L, we can define2 operational measures of transfer
and interference between two arbitrary distinct examples (xi, yi) and (xj , yj) while training with

2Throughout the paper we discuss ideas in terms of the supervised learning problem formulation. Extensions
to the reinforcement learning formulation are straightforward. We provide more details in Appendix N.
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SGD. Transfer occurs when:
∂L(xi, yi)

∂θ
· ∂L(xj , yj)

∂θ
> 0, (1)

where · is the dot product operator. This implies that learning example i will without repetition
improve performance on example j and vice versa (Figure 1B). Interference occurs when:

∂L(xi, yi)

∂θ
· ∂L(xj , yj)

∂θ
< 0. (2)

Here, in contrast, learning example i will lead to unlearning (i.e. forgetting) of example j and vice
versa (Figure 1C). 3 There is weight sharing between i and j when they are learned using an over-
lapping set of parameters. So, potential for transfer is maximized when weight sharing is maximized
while potential for interference is minimized when weight sharing is minimized (Appendix C).

Past solutions for the stability-plasticity dilemma in continual learning operate in a simplified tem-
poral context where learning is divided into two phases: all past experiences are lumped together as
old memories and the data currently being learned qualifies as new learning. In this setting, the goal
is to simply minimize the interference projecting backward in time, which is generally achieved by
reducing the degree of weight sharing explicitly or implicitly. In Appendix D we explain how our
baseline approaches (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017) fit within this paradigm.

The important issue with this perspective, however, is that the system still has learning to do and
what the future may bring is largely unknown. This makes it incumbent upon us to do nothing to
potentially undermine the networks ability to effectively learn in an uncertain future. This consid-
eration makes us extend the temporal horizon of the stability-plasticity problem forward, turning it,
more generally, into a continual learning problem that we label as solving the Transfer-Interference
Trade-off (Figure 1A). Specifically, it is important not only to reduce backward interference from
our current point in time, but we must do so in a manner that does not limit our ability to learn in
the future. This more general perspective acknowledges a subtlety in the problem: the issue of gra-
dient alignment and thus weight sharing across examples arises both backward and forward in time.
With this temporally symmetric perspective, the transfer-interference trade-off becomes clear. Here
we propose a potential solution where we learn to learn in a way that promotes gradient alignment
at each point in time. The weight sharing across examples that enables transfer to improve future
performance must not disrupt performance on what has come previously. As such, our work adopts
a meta-learning perspective on the continual learning problem. We would like to learn to learn each
example in a way that generalizes to other examples from the overall distribution.

3 A SYSTEM FOR LEARNING TO LEARN WITHOUT FORGETTING

In typical offline supervised learning, we can express our optimization objective over the stationary
distribution of x, y pairs within the dataset D:

θ = argmin
θ

E(x,y)∼D[L(x, y)], (3)

where L is the loss function, which can be selected to fit the problem. If we would like to maximize
transfer and minimize interference, we can imagine it would be useful to add an auxiliary loss to the
objective to bias the learning process in that direction. Considering equations 1 and 2, one obviously
beneficial choice would be to also directly consider the gradients with respect to the loss function
evaluated at randomly chosen datapoints. If we could maximize the dot products between gradients
at these different points, it would directly encourage the network to share parameters where gradient
directions align and keep parameters separate where interference is caused by gradients in opposite
directions. So, ideally we would like to optimize for the following objective 4:

θ = argmin
θ

E[(xi,yi),(xj ,yj)]∼D[L(xi, yi) + L(xj , yj)− α
∂L(xi, yi)

∂θ
· ∂L(xj , yj)

∂θ
], (4)

3We borrow our terminology from operational measures of forward transfer and backward transfer in Lopez-
Paz & Ranzato (2017), but adopt a temporally symmetric view of the phenomenon by dropping the specification
of direction. Interference commonly refers to negative transfer in either direction in the literature.

4The inclusion of L(xj , yj) is largely an arbitrary notation choice as the relative prioritization of the two
types of terms can be absorbed in α. We use this notation as it is most consistant with our implementation.
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Algorithm 1 Meta-Experience Replay (MER)
procedure TRAIN(D, θ, α, β, γ, s, k)

M ← {}
for t = 1, ..., T do

for (x, y) in Dt do
// Draw batches from buffer:
B1, ..., Bs ← sample(x, y, s, k,M)
θA0 ← θ
for i = 1, ..., s do

θWi,0 ← θ
for j = 1, ..., k do

xc, yc ← Bi[j]
θWi,j ← SGD(xc, yc, θ

W
i,j−1, α)

end for
// Within batch Reptile meta-update:
θ ← θWi,0 + β(θWi,k − θWi,0)
θAi ← θ

end for
// Across batch Reptile meta-update:
θ ← θA0 + γ(θAs − θA0 )
// Reservoir sampling memory update:
M ←M ∪ {(x, y)} (algorithm 3)

end for
end for
return θ,M

end procedure

where (xi, yi) and (xj , yj) are randomly sam-
pled unique data points. We will attempt to de-
sign a continual learning system that optimizes
for this objective. However, there are multiple
problems that must be addressed to implement
this kind of learning process in practice. The
first problem is that continual learning deals
with learning over a non-stationary stream of
data. We address this by implementing an ex-
perience replay module that augments online
learning so that we can approximately optimize
over the stationary distribution of all examples
seen so far. Another practical problem is that
the gradients of this loss depend on the second
derivative of the loss function, which is expen-
sive to compute. We address this by indirectly
approximating the objective to a first order Tay-
lor expansion using a meta-learning algorithm
with minimal computational overhead.

3.1 EXPERIENCE REPLAY

Learning objective: The continual lifelong
learning setting poses a challenge for the opti-
mization of neural networks as examples come
one by one in a non-stationary stream. Instead,

we would like our network to optimize over the stationary distribution of all examples seen so far.
Experience replay (Lin, 1992; Murre, 1992) is an old technique that remains a central component of
deep learning systems attempting to learn in non-stationary settings, and we will adopt here conven-
tions from recent work (Zhang & Sutton, 2017; Riemer et al., 2017b) leveraging this approach. The
central feature of experience replay is keeping a memory of examples seen M that is interleaved
with the training of the current example with the goal of making training more stable. As a result,
experience replay approximates the objective in equation 3 to the extent that M approximates D:

θ = argmin
θ

E(x,y)∼M [L(x, y)], (5)

M has a current size Msize and maximum size Mmax. In our work, we update the buffer with
reservoir sampling (Appendix F). This ensures that at every time-step the probability that any of
the N examples seen has of being in the buffer is equal to Msize/N . The content of the buffer
resembles a stationary distribution over all examples seen to the extent that the items stored captures
the variation of past examples. Following the standard practice in offline learning, we train by
randomly sampling a batch B from the distribution captured by M .

Prioritizing the current example: the variant of experience replay we explore differs from offline
learning in that the current example has a special role ensuring that it is always interleaved with the
examples sampled from the replay buffer. This is because before we proceed to the next example,
we want to make sure our algorithm has the ability to optimize for the current example (particularly
if it is not added to the memory). Over N examples seen, this still implies that we have trained
with each example as the current example with probability per step of 1/N . We provide algorithms
further detailing how experience replay is used in this work in Appendix G (algorithms 4 and 5).

Concerns about storing examples: Obviously, it is not scalable to store every experience seen in
memory. As such, in this work we focus on showing that we can achieve greater performance than
baseline techniques when each approach is provided with only a small memory buffer.

3.2 COMBINING EXPERIENCE REPLAY WITH OPTIMIZATION BASED META-LEARNING

First order meta-learning: One of the most popular meta-learning algorithms to date is Model Ag-
nostic Meta-Learning (MAML) (Finn et al., 2017). MAML is an optimization based meta-learning
algorithm with nice properties such as the ability to approximate any learning algorithm and the
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ability to generalize well to learning data outside of the previous distribution (Finn & Levine, 2017).
One aspect of MAML that limits its scalability is the need to explicitly compute second deriva-
tives. The authors proposed a variant called first-order MAML (FOMAML), which is defined by
ignoring the second derivative terms to address this issue and surprisingly found that it achieved
very similar performance. Recently, this phenomenon was explained by Nichol & Schulman (2018)
who noted through Taylor expansion that the two algorithms were approximately optimizing for
the same loss function. Nichol & Schulman (2018) also proposed an algorithm, Reptile, that ef-
ficiently optimizes for approximately the same objective while not requiring that the data be split
into training and testing splits for each task learned as MAML does. Reptile is implemented by
optimizing across s batches of data sequentially with an SGD based optimizer and learning rate α.
After training on these batches, we take the initial parameters before training θ0 and update them to
θ0 ← θ0 + β ∗ (θk − θ0) where β is the learning rate for the meta-learning update. The process re-
peats for each series of s batches (algorithm 2). Shown in terms of gradients in Nichol & Schulman
(2018), Reptile approximately optimizes for the following objective over a set of s batches:

θ = argmin
θ

EB1,...,Bs∼D[2

s∑
i=1

[L(Bi)−
i−1∑
j=1

α
∂L(Bi)

∂θ
· ∂L(Bj)

∂θ
]], (6)

where B1, ..., Bs are batches within D. This is similar to our motivation in equation 4 to the extent
that gradients produced on these batches approximate samples from the stationary distribution.

The MER learning objective: In this work, we modify the Reptile algorithm to properly integrate
it with an experience replay module, facilitating continual learning while maximizing transfer and
minimizing interference. As we describe in more detail during the derivation in Appendix I, achiev-
ing the Reptile objective in an online setting where examples are provided sequentially is non-trivial
and is in part only achievable because of our sampling strategies for both the buffer and batch. Fol-
lowing our remarks about experience replay from the prior section, this allows us to optimize for the
following objective in a continual learning setting using our proposed MER algorithm:

θ = argmin
θ

E[(x11,y11),...,(xsk,ysk)]∼M [2

s∑
i=1

k∑
j=1

[L(xij , yij)−
i−1∑
q=1

j−1∑
r=1

α
∂L(xij , yij)

∂θ
·∂L(xqr, yqr)

∂θ
]].

(7)
The MER algorithm: MER maintains an experience replay style memory M with reservoir sam-
pling and at each time step draws s batches including k − 1 random samples from the buffer to be
trained alongside the current example. Each of the k examples within each batch is treated as its own
Reptile batch of size 1 with an inner loop Reptile meta-update after that batch is processed. We then
apply the Reptile meta-update again in an outer loop across the s batches. We provide further details
for MER in algorithm 1. This procedure approximates the objective of equation 7 when β = 1. The
sample function produces s batches for updates. Each batch is created by first adding the current
example and then interleaving k − 1 random examples from M .

Controlling the degree of regularization: In light of our ideal objective in equation 4, we can
see that using a SGD batch size of 1 has an advantage over larger batches because it allows for the
second derivative information conveyed to the algorithm to be fine grained on the example level.
Another reason to use sample level effective batches is that for a given number of samples drawn
from the buffer, we maximize s from equation 6. In equation 6, the typical offline learning loss has a
weighting proportional to s and the regularizer term to maximize transfer and minimize interference
has a weighting proportional to αs(s−1)/2. This implies that by maximizing the effective s we can
put more weight on the regularization term. We found that for a fixed number of examples drawn
from M , we consistently performed better converting to a long list of individual samples than we
did using proper batches as in Nichol & Schulman (2018) for few shot learning.

Prioritizing current learning: To ensure strong regularization, we would like our number of
batches processed in a Reptile update to be large – enough that experience replay alone would
start to overfit to M . As such, we also need to make sure we provide enough priority to learning
the current example, particularly because we may not store it in M . To achieve this in algorithm 1,
we sample s separate batches from M that are processed sequentially and each interleaved with the
current example. In Appendix H we also outline two additional variants of MER with very similar
properties in that they effectively approximate for the same objective. In one we choose one big
batch of size sk − s memories and s copies of the current example (algorithm 6). In the other, we
choose one memory batch of size k−1 with a special current item learning rate of sα (algorithm 7).
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Unique properties: In the end, our approach amounts to a quite easy to implement and computa-
tionally efficient extension of SGD, which is applied to an experience replay buffer by leveraging the
machinery of past work on optimization based meta-learning. However, the emergent regularization
on learning is totally different than those previously considered. Past work on optimization based
meta-learning has enabled fast learning on incoming data without considering past data. Meanwhile,
past work on experience replay only focused on stabilizing learning by approximating stationary
conditions without altering model parameters to change the dynamics of transfer and interference.

4 EVALUATION FOR SUPERVISED CONTINUAL LIFELONG LEARNING

To test the efficacy of MER we compare it to relevant baselines for continual learning of many
supervised tasks from Lopez-Paz & Ranzato (2017) (see Appendix D for in-depth descriptions):

• Online: represents online learning performance of a model trained straightforwardly one
example at a time on the incoming non-stationary training data by simply applying SGD.

• Independent: an independent predictor per task with less hidden units proportional to the
number of tasks. When useful, it can be initialized by cloning the last predictor.

• Task Input: has the same architecture as Online, but with a dedicated input layer per task.
• EWC: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is an algorithm that

modifies online learning where the loss is regularized to avoid catastrophic forgetting.
• GEM: Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) is an approach

for making efficient use of episodic storage by following gradients on incoming examples
to the maximum extent while altering them so that they do not interfere with past memories.
An independent adhoc analysis is performed to alter each incoming gradient. In contrast to
MER, nothing generalizable is learned across examples about how to alter gradients.

We follow Lopez-Paz & Ranzato (2017) and consider final retained accuracy across all tasks after
training sequentially on all tasks as our main metric for comparing approaches. Moving forward
we will refer to this metric as retained accuracy (RA). In order to reveal more characteristics of
the learning behavior, we also report the learning accuracy (LA) which is the average accuracy for
each task directly after it is learned. Additionally, we report the backward transfer and interference
(BTI) as the average change in accuracy from when a task is learned to the end of training. A
highly negative BTI reflects catastrophic forgetting. Forward transfer and interference (Lopez-Paz
& Ranzato, 2017) is only applicable for one task we explore, so we provide details in Appendix K.

Question 1 How does MER perform on supervised continual learning benchmarks?

To address this question we consider two continual learning benchmarks from Lopez-Paz & Ranzato
(2017). MNIST Permutations is a variant of MNIST first proposed in Kirkpatrick et al. (2017)
where each task is transformed by a fixed permutation of the MNIST pixels. As such, the input
distribution of each task is unrelated. MNIST Rotations is another variant of MNIST proposed in
Lopez-Paz & Ranzato (2017) where each task contains digits rotated by a fixed angle between 0 and
180 degrees. We follow the standard benchmark setting from Lopez-Paz & Ranzato (2017) using a
modest memory buffer of size 5120 to learn 1000 sampled examples across each of 20 tasks. We
provide detailed information about our architectures and hyperparameters in Appendix J.

In Table 1 we report results on these benchmarks in comparison to our baseline approaches. Clearly
GEM outperforms our other baselines, but our approach adds significant value over GEM in terms
of retained accuracy on both benchmarks. MER achieves this by striking a superior balance between
transfer and interference with respect to the past and future data. MER displays the best adaption to
incoming tasks, while also providing very strong retention of knowledge when learning future tasks.
EWC and using a task specific input layer both also lead to gains over standard online learning in
terms of retained accuracy. However, they are quite far below the performance of approaches that
make usage of episodic storage. While EWC does not store examples, in storing the Fisher informa-
tion for each task it accrues more incremental resources than the episodic storage approaches.

Question 2 How do the performance gains from MER vary as a function of the buffer size?

To make progress towards the greater goals of lifelong learning, we would like our algorithm to
make the most use of even a modest buffer. This is because in extremely large scale settings it is
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Model MNIST Rotations MNIST Permutations
RA LA BTI RA LA BTI

Online 53.38 ± 1.53 58.82 ± 2.17 -5.44 ± 1.70 55.42 ± 0.65 69.18 ± 0.99 -13.76 ± 1.19

Independent 60.74 ± 4.55 60.74 ± 4.55 - 55.80 ± 4.79 55.80 ± 4.79 -
Task Input 79.98 ± 0.66 81.04 ± 0.34 -1.06 ± 0.59 80.46 ± 0.80 81.20 ± 0.52 -0.74 ± 1.10

EWC 57.96 ± 1.33 78.38 ± 0.72 -20.42 ± 1.60 62.32 ± 1.34 75.64 ± 1.18 -13.32 ± 2.24

GEM 87.58 ± 0.32 86.46 ± 0.46 +1.12 ± 0.35 83.02 ± 0.23 80.46 ± 0.38 +2.56 ± 0.42

MER 89.56 ± 0.11 87.62 ± 0.16 +1.94 ± 0.18 85.50 ± 0.16 86.36 ± 0.21 -0.86 ± 0.21

Table 1: Performance on continual lifelong learning 20 tasks benchmarks from (Lopez-Paz & Ranzato, 2017).

Model Buffer MNIST Rotations MNIST Permutations
RA LA BTI RA LA BTI

GEM 5120 87.58 ± 0.32 86.46 ± 0.46 +1.12 ± 0.35 83.02 ± 0.23 80.46 ± 0.38 +2.56 ± 0.42

500 74.88 ± 0.93 85.90 ± 0.53 -11.02 ± 1.22 69.26 ± 0.66 80.28 ± 0.52 -11.02 ± 0.71

200 67.38 ± 1.75 85.40 ± 0.53 -18.02 ± 1.99 55.42 ± 1.10 79.84 ± 1.01 -24.42 ± 1.10

MER 5120 89.56 ± 0.11 87.62 ± 0.16 +1.94 ± 0.18 85.50 ± 0.16 86.36 ± 0.21 -0.86 ± 0.21

500 82.08 ± 0.31 85.66 ± 0.20 -3.58 ± 0.39 77.50 ± 0.46 83.90 ± 0.23 -6.40 ± 0.35

200 77.42 ± 0.78 83.02 ± 0.23 -5.60 ± 0.70 73.46 ± 0.45 84.42 ± 0.20 -9.96 ± 0.45

Table 2: Performance varying the buffer size on continual learning benchmarks (Lopez-Paz & Ranzato, 2017).

unrealistic to assume a system can store a large percentage of previous examples in memory. As
such, we would like to compare MER to GEM, which is known to perform well with an extremely
small memory buffer (Lopez-Paz & Ranzato, 2017). We consider a buffer size of 500, that is over 10
times smaller than the standard setting on these benchmarks. Additionally, we also consider a buffer
size of 200, matching the smallest setting explored in Lopez-Paz & Ranzato (2017). This setting
corresponds to an average storage of 1 example for each combination of task and class. We report
our results in Table 2. The benefits of MER seem to grow as the buffer becomes smaller. In the
smallest setting, MER provides more than a 10% boost in retained accuracy on both benchmarks.

Question 3 How effective is MER at dealing with increasingly non-stationary settings?

Another larger goal of lifelong learning is to enable continual learning with only relatively few
examples per task. This setting is particularly difficult because we have less data to characterize
each class to learn from and our distribution is increasingly non-stationary over a fixed amount of
training. We would like to explore how various models perform in this kind of setting. To do this we
consider two new benchmarks. Many Permutations is a variant of MNIST Permutations that has 5
times more tasks (100 total) and 5 times less training examples per task (200 each). Meanwhile we
also explore the Omniglot (Lake et al., 2011) benchmark treating each of the 50 alphabets to be a
task (see Appendix J for experimental details). Following multi-task learning conventions, 90% of
the data is used for training and 10% is used for testing (Yang & Hospedales, 2017). Overall there
are 1623 characters. We learn each character and task sequentially with a task specific output layer.

We report continual learning results using these new datasets in Table 3. The effect on Many Per-
mutations of efficiently using episodic storage becomes even more pronounced when the setting
becomes more non-stationary. GEM and MER both achieve nearly double the performance of EWC
and online learning. We also see that increasingly non-stationary settings lead to a larger perfor-
mance gain for MER over GEM. Gains are quite significant for Many Permutations and remarkable
for Omniglot. Omniglot is even more non-stationary including slightly fewer examples per task and
MER nearly quadruples the performance of baseline techniques. Considering the poor performance

Model Buffer Many Permutations Omniglot
RA LA BTI RA LA BTI

Online 0 32.62 ± 0.43 51.68 ± 0.65 -19.06 ± 0.86 4.36 ± 0.37 5.38 ± 0.18 -1.02 ± 0.33

EWC 0 33.46 ± 0.46 51.30 ± 0.81 -17.84 ± 1.15 4.63 ± 0.14 9.43 ± 0.63 -4.80 ± 0.68

GEM 5120 56.76 ± 0.29 59.66 ± 0.46 -2.92 ± 0.52 18.03 ± 0.15 3.86 ± 0.09 +14.19 ± 0.19

500 32.14 ± 0.50 55.66 ± 0.53 -23.52 ± 0.87 - - -
MER 5120 62.52 ± 0.32 59.44 ± 0.23 +3.08 ± 0.31 75.23 ± 0.52 69.12 ± 0.83 +6.11 ± 0.62

500 47.40 ± 0.35 65.18 ± 0.20 -17.78 ± 0.39 32.05 ± 0.69 28.78 ± 0.91 +3.27 ± 1.04

Table 3: Performance on many task non-stationary continual lifelong learning benchmarks.

7



Published as a conference paper at ICLR 2019

0 25k 50k 75k 100k 125k 150k

0

50

100

150

task 0

Frames

M
ea

n 
sc

or
e

0 25k 50k 75k 100k 125k 150k
0

100

200

300

Frames

M
ea

n 
sc

or
e

0 25k 50k 75k 100k 125k 150k

0

50

100

150

task 0

Frames

M
ea

n 
sc

or
e

DQN DQN-MER

Catcher Task 1

Flappy Bird

Task 1

Figure 2: Left: a sequence of frames from Catcher and Flappy Bird respectively. The goal in Catcher is to
capture the falling pellet by moving the racket on the bottom of the screen. In Flappy Bird, the goal is to
navigate the bird through as many pipes as possible by making it go up or letting it fall. Right: average score in
Catcher (above) and Flappy Bird (below) for evaluation on the first task which has slower falling pellets and a
larger pipe gap.

of online learning and EWC it is natural to question whether or not examples were learned in the
first place. We experiment with using as many as 100 gradient descent steps per incoming example
to ensure each example is learned when first seen. However, due to the extremely non-stationary
setting no run of any variant we tried surpassed 5.5% retained accuracy. GEM also has major deficits
for learning on Omniglot that are resolved by MER which achieves far better performance when it
comes to quickly learning the current task. GEM maintains a buffer using a recent item based sam-
pling strategy and thus can not deal with non-stationarity within the task nearly as well as reservoir
sampling. Additionally, we found that the optimization based on the buffer was significantly less
effective and less reliable as the quadratic program fails for many hyperparameter values that lead
to non-positive definite matrices. Unfortunately, we could not get GEM to consistently converge on
Omniglot for a memory size of 500 (significantly less than the number of classes), meanwhile MER
handles it well. In fact, MER greatly outperforms GEM with an order of magnitude smaller buffer.

Figure 3: Further details on Omniglot perfor-
mance characteristics for each model.

We provide additional details about our experiments
on Omniglot in Figure 3. We plot retained train-
ing accuracy, retained testing accuracy, and compu-
tation time for the entire training period using one
CPU. We find that MER strikes the best balance
of computational efficiency and performance even
when using algorithm 1 for MER which performs
more computation than algorithm 7. The computa-
tion involved in the GEM update does not scale well
to large CNN models like those that are popular for
Omniglot. MER is far better able to fit the training
data than our baseline models while maintaining a computational efficiency closer to online update
methods like EWC than GEM.

5 EVALUATION FOR CONTINUAL REINFORCEMENT LEARNING

Question 4 Can MER improve a DQN with ER in continual reinforcement learning settings?

We considered the evaluation of MER in a continual reinforcement learning setting where the en-
vironment is highly non-stationary. In order to produce these non-stationary environments in a
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Figure 4: Continual learning performance for a non-stationary version of Catcher. Graphs show averaged values
over ten validation episodes across five different seeds. Vertical grid lines on the x-axis indicate a task switch.

controlled way suitable for our experimental purposes, we utilized arcade games provided by Tasfi
(2016). Specifically, we used Catcher and Flappy Bird, two simple but interesting enough environ-
ments (see Appendix N.1 for details). For the purposes of our explanation, we will call each set of
fixed game-dependent parameters a task5. The multi-task setting is then built by introducing changes
in these parameters, resulting in non-stationarity across tasks. Each agent is once again evaluated
based on its performance over time on all tasks. Our model uses a standard DQN model, developed
for Atari (Mnih et al., 2015). See Appendix N.2 for implementation details.

In Catcher, we then obtain different tasks by incrementally increasing the pellet velocity a total of
5 times during training. In Flappy Bird, the different tasks are obtained by incrementally reducing
the separation between upper and lower pipes a total of 5 times during training. In Figure 4, we
show the performance in Catcher when trained sequentially on 6 different tasks for 25k frames each
to a maximum of 150k frames, evaluated at each point in time in all 6 tasks. Under these non-
stationary conditions, a DQN using MER performs consistently better than the standard DQN with
an experience replay buffer (see Appendix N.4 for further comments and ablation results). If we
take as inspiration how humans perform, in the last stages of training we hope that a player that
obtains good results in later tasks will also obtain good results in the first tasks, as the first tasks are
subsumed in the latter ones. For example, in Catcher, the pellet moves faster in later tasks, and thus
we expect to be able to do well on the first task. However, DQN forgets significantly how to get
slowly moving pellets. In contrast, DQN-MER exhibits minimal or no forgetting after training on
the rest of the tasks. This behavior is intuitive because we would expect transfer to happen naturally
in this setting. We see similar behavior for Flappy Bird. DQN-MER becomes a Platinum player
on the first task when it is learning the third task. This is a more difficult environment in which the
pipe gap is noticeably smaller (see Appendix N.4). DQN-MER exhibits the kind of learning patterns
expected from humans for these games, while a standard DQN struggles to generalize as the game
changes and to retain knowledge over time.

6 FURTHER ANALYSIS OF THE APPROACH

In this section we would like to dive deeper into how MER works. To do so we run additional
detailed experiments across our three MNIST based continual learning benchmarks.

Question 5 Does MER lead to a shift in the distribution of gradient dot products?

We would like to directly verify that MER achieves our motivation in equation 7 and results in
significant changes in the distribution of gradient dot products between new incoming examples and
past examples over the course of learning when compared to experience replay (ER) from algorithm

5Agents are not provided task information, forcing them to identify changes in game play on their own.
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Model MNIST Permutations MNIST Rotations Many Permutations
ER -0.569 ± 0.077 -1.652 ± 0.082 -1.280 ± 0.078

MER +0.042 ± 0.017 +0.017 ± 0.007 +0.131 ± 0.027

Table 4: Analysis of the mean dot product across the period of learning between gradients on incoming
examples and gradients on randomly sampled past examples across 5 runs on MNIST based benchmarks.

5. For these experiments, we maintain a history of all examples seen that is totally separate from our
notion of memory buffers that only include a partial history of examples. Every time we receive a
new example we use the current model to extract a gradient direction and we also randomly sample
five examples from the previous history. We save the dot products of the incoming example gradient
with these five past example gradients and consider the mean of the distribution of dot products
seen over the course of learning for each model. We run this experiment on the best hyperparamater
setting for both ER and MER from algorithm 6 with one batch per example for fair comparison. Each
model is evaluated five times over the course of learning. We report mean and standard deviations
of the mean gradient dot product across runs in Table 4. We can thus verify that a very significant
and reproducible difference in the mean gradient encountered is seen for MER in comparison to ER
alone. This difference alters the learning process making incoming examples on average result in
slight transfer rather than significant interference. This analysis confirms the desired effect of the
objective function in equation 7. For these tasks there are enough similarities that our meta-learning
generalizes very well into the future. We should also expect it to perform well during drastic domain
shifts like other meta-learning algorithms driven by SGD alone (Finn & Levine, 2017).

Question 6 What components of MER are most important?

We would like to further analyze our MER model to understand what components add the most
value and when. We want to understand how powerful our proposed variants of ER are on their own
and how much is added by adding meta-learning to ER. In Appendix L we provide detailed results
considering ablated baselines for our experiments on the MNIST lifelong learning benchmarks. 6

Our versions of ER consistently provide gains over GEM on their own, but the techniques perform
very comparably when we also maintain GEM’s buffer with reservoir sampling or use ER with
a GEM style buffer. Additionally, we see that adding meta-learning to ER consistently results in
performance gains. In fact, meta-learning appears to provide increasing value for smaller buffers. In
Appendix M, we provide further validation that our results are reproducible across runs and seeds.

We would also like to compare the variants of MER proposed in algorithms 1, 6, and 7. Conceptu-
ally algorithms 1 and 7 represent different mechanisms of increasing the importance of the current
example in algorithm 6. We find that all variants of MER result in significant improvements on ER.
Meanwhile, the variants that increase the importance of the current example see a further improve-
ment in performance, performing quite comparably to each other. Overall, in our MNIST experi-
ments algorithm 7 displays the best tradeoff of computational efficiency and performance. Finally,
we conducted experiments demonstrating that adaptive optimizers like Adam and RMSProp can not
account for the gap between ER and MER. Particularly for smaller buffer sizes, these approaches
overfit more on the buffer and actually hurt generalization in comparison to SGD.

7 CONCLUSION

In this paper we have cast a new perspective on the problem of continual learning in terms of a fun-
damental trade-off between transfer and interference. Exploiting this perspective, we have in turn
developed a new algorithm Meta-Experience Replay (MER) that is well suited for application to
general purpose continual learning problems. We have demonstrated that MER regularizes the ob-
jective of experience replay so that gradients on incoming examples are more likely to have transfer
and less likely to have interference with respect to past examples. The result is a general purpose so-
lution to continual learning problems that outperforms strong baselines for both supervised continual
learning benchmarks and continual learning in non-stationary reinforcement learning environments.
Techniques for continual learning have been largely driven by different conceptualizations of the
fundamental problem encountered by neural networks. We hope that the transfer-interference trade-
off can be a useful problem view for future work to exploit with MER as a first successful example.

6Code available at https://github.com/mattriemer/mer.

10

https://github.com/mattriemer/mer


Published as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

We would like to thank Pouya Bashivan, Christopher Potts, Dan Jurafsky, and Joshua Greene for
their input and support of this work. Additionally, we would like to thank Arslan Chaudhry and
Marc’Aurelio Ranzato for their helpful comments and discussions. We also thank the three anony-
mous reviewers for their valuable suggestions. This research was supported by the MIT-IBM Watson
AI Lab, and is based in part upon work supported by the Stanford Data Science Initiative and by the
NSF under Grant No. BCS-1456077 and the NSF Award IIS-1514268.

REFERENCES

Robert Ajemian, Alessandro DAusilio, Helene Moorman, and Emilio Bizzi. A theory for how sen-
sorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proceedings
of the National Academy of Sciences, 110(52):E5078–E5087, 2013.

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. ICLR,
2018.

Rahaf Aljundi, Jay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a network
of experts. In Proceedings CVPR 2017, pp. 3366–3375, 2017.
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A CONTINUAL LEARNING PROBLEM FORMULATION

In the classical offline supervised learning setting, a learning agent is given a fixed training data
set D = {(xi, yi)}ni=1 of n samples, each containing an input feature vector xi ∈ X associated
with the corresponding output (target, or label) yi ∈ Y; a common assumption is that the training
samples are i.i.d. samples drawn from the same unknown joint probability distribution P (x, y).
The learning task is often formulated as a function approximation problem, i.e. finding a func-
tion, or model, fθ(x) : X → Y from a given class of models (e.g., neural networks, decision
trees, linear functions, etc.) where θ are the parameters estimated from data. Given a loss function
L(fθ(x), y), the parameter estimation is formulated as an empirical risk minimization problem:
minθ

1
|D|
∑

(xi,yi)∼D L(fθ(x), y).

On the contrary, the online learning setting does not assume a fixed training dataset but rather a
stream of data samples, where unlabeled feature vectors arrive one at a time, or in small mini-
batches, and the learner must assign labels to those inputs, receive the correct labels, and update
the model accordingly, in iterative fashion. While classical online learning assumes i.i.d. samples,
continual or lifelong learning does not make such an assumption, and requires a learning agent to
handle non-stationary data streams.

In this work, we define continual learning as online learning from a non-stationary input data stream,
with a specific type of non-stationarity as defined below. Namely, we follow a commonly used
setting to define non-stationary conditions for continual learning, dubbed locally i.i.d by Lopez-Paz
& Ranzato (2017), where the agent learns over a sequence of separate stationary distributions one
after another. We call the individual stationary distributions tasks, where each task tk is an online
supervised learning problem associated with its own data probability distribution Pk(x, y). Namely,
we are given a (potentially infinite) sequence

(x1, y1, t1), ..., (xi, yi, ti), ..., (xi+j , yi+j , ti+j)

While many continual learning methods assume the task descriptors tk are available to a learner,
we are interested in developing approaches which do not have to rely on such information and can
learn continuously without explicit announcement of the task change. Borrowing terminology from
Chaudhry et al. (2018), we explore the single-headed setting in most of our experiments, which
keeps learning a common function fθ across changing tasks. In contrast, multi-headed learning,
which we consider for our Omniglot experiments, involves a separate final classification layer for
each task. This makes more sense in case of Omniglot dataset, where the number of classes for each
task varies considerably from task to task. We should also note that for Omniglot we consider a
setting that is locally i.i.d. at the class level rather than the task level.

B RELATION TO PAST WORK

With regard to the continual learning setting specifically, other recent work has explored similar
operational measures of transfer and interference. For example, the notions of Forward Transfer
and Backward Transfer were explored in Lopez-Paz & Ranzato (2017). However, the approach
of that work, GEM, was primarily concerned with solving the classic stability-plasticity dilemma
(Carpenter & Grossberg, 1987) at a specific instance of time. Adjustments to gradients on the
current data are made in an ad hoc manner solving a quadratic program separately for each example.
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In our work we try to learn a generalizable theory about weight sharing that can learn to influence
the distribution of gradients not just in the past and present, but in the future as well. Additionally,
in Chaudhry et al. (2018) similar ideas were explored with operational measures of intransigence
(the inability to learn new data) and forgetting (the loss of previous performance). These measures
are also intimately related to the stability-plasticity dilemma as intransigence is high when plasticity
is low and forgetting is high when stability is low. The major distinction in the transfer-interference
trade-off proposed in this work is that we aim to learn the optimal weight sharing scheme to optimize
for the stability-plasticity dilemma with the hope that our learning about weight sharing will improve
the stability and efficacy of learning on unseen data as well.

With regard to the problem of weight-sharing in neural networks more generally, a host of differ-
ent strategies have been proposed in the past to deal with the problems of catastrophic forgetting
and/or the stability-plasticity dilemma (for review, see French (1999)). For example, one strat-
egy for alleviating catastrophic forgetting is to make distributed representations less distributed –
or semi-distributed (French, 1991) – for the case of past learning. Activation sharpening as intro-
duced by French (1991) is a prominent example. A second strategy known as dual network models
(McClelland et al., 1995; Ans & Rousset, 1997) is based on the neurobiological finding that both
hippocampal and cortical circuits contributed differentially to memory. The cortical circuits are
highly distributed with overlapping representations suitable for task generalization, while the more
sparse hippocampal representations tend to be non-overlapping. The existence of dual circuits pro-
vides an extra degree of freedom for balancing the dual constraints of stability and plasticity. In a
similar spirit, models have been proposed that have two classes of weights operating on two different
timescales (Hinton & Plaut, 1987). A third strategy also motivated by neurobiological considera-
tions is the use of latent synaptic dynamics (Fusi et al., 2005; Lahiri & Ganguli, 2013). Here the
basic idea is that synaptic strength is determined by a multiple of variables, including latent ones not
easily observed, operating at different timescales such that their net effect is to provide the system
with additional degrees-of-freedom to store past experience without interfering with current learn-
ing. A fourth strategy is the use of feedback mechanisms to stabilize representations (Carpenter &
Grossberg, 1987; Murre, 1992). In this class of models, a previously experienced memory will trig-
ger top down feedback that prevents plasticity, while novel stimuli that experience no such feedback
trigger plasticity. All of these approaches have their own strengths and weaknesses with respect to
the stability-plasticity dilemma and, by extension, the transfer-interference trade-off we propose.

Another relevant work is the POWERPLAY framework (Schmidhuber, 2004; 2013) which is a
method for asymptotically optimal curriculum learning that by definition cannot forget previously
learned skills. POWERPLAY also uses environment-independent replay of behavioral traces to
avoid forgetting previous skills. However, POWERPLAY is orthogonal to our work as we consider
a different setting where the agent cannot directly control the new tasks that will be encountered in
the environment and thus must instead learn to adapt and react to non-stationarity conditions.

In contrast to past work on meta-learning for few shot learning (Santoro et al., 2016; Vinyals et al.,
2016; Ravi & Larochelle, 2016; Finn et al., 2017) and reinforcement learning across successive
tasks (Al-Shedivat et al., 2018), we are not only trying to improve the speed of learning on new
data, but also trying to do it in a way that preserves knowledge of past data and generalizes to future
data. While past work has considered learning to influence gradient angles, so that there is more
alignment and thus faster learning within a task, we focus on a setting where we would like to
influence gradient angles from all tasks at all points in time.

As our model aims to influence the dynamics of weight sharing, it bears conceptual similarity to
mixtures of experts (Jacobs et al., 1991) style models for lifelong and multi-task learning (Misra
et al., 2016; Riemer et al., 2016b; Aljundi et al., 2017; Fernando et al., 2017; Shazeer et al., 2017;
Rosenbaum et al., 2018). MER implicitly affects the dynamics of weight sharing, but it is possible
that combining it with mixtures of experts models could further amplify the ability for the model to
control these dynamics. This is potentially an interesting avenue for future work.

The options framework has also been considered as a solution to a similar continual RL setting to
the one we explore (Mankowitz et al., 2018). Options formalize the notion of temporally abstraction
actions in RL. Interestingly, generic architectures designed for shallow (Bacon et al., 2017) or deep
(Riemer et al., 2018) hierarchies of options in essence learn very complex patterns of weight sharing
over time. The option hierarchies constitute an explicit mechanism of controlling the extent of
weight sharing for continual learning, allowing for orthogonalization of weights relating to different
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skills. In contrast, our work explores a method of implicitly optimizing weight sharing for continual
learning that improves the efficacy of experience replay. MER should be simple to implement in
concert with options based methods and combining the two is an interesting direction for future
work.

C THE CONNECTION BETWEEN WEIGHT SHARING AND THE
TRANSFER-INTERFERENCE TRADE-OFF

In this section we would like to generalize our interpretation of a large set of different weight sharing
schemes including (Riemer et al., 2015; Bengio et al., 2015; Rosenbaum et al., 2018; Serrà et al.,
2018) and how the concept of weight sharing impacts the dynamics of transfer (equation 1) and
interference (equation 2). We will assume that we have a total parameter space θ that can be used
by our network at any point in time. However, it is not a requirement that all parameters are actually
used at all points in time. So, we can consider two specific instances in time. One where we receive
data point (x1, y1) and leverage parameters θ1. Then, at the other instance in time, we receive data
point (x2, y2) and leverage parameters θ2. θ1 and θ2 are both subsets of θ and critically the overlap
between these subsets influences the possible extent of transfer and interference when training on
either data point.

First let us consider two extremes. In the first extreme imagine θ1 and θ2 are entirely non-
overlapping. As such ∂L(x1,y1)

∂θ · ∂L(x2,y2)
∂θ = 0. On the positive side, this means that our solution

has no potential for interference between the examples. On the other hand, there is no potential for
transfer either. On the other extreme, we can imagine that θ1 = θ2. In this case, the potential for
both transfer and interference is maximized as gradients with respect to every parameter have the
possibility of a non-zero dot product with each other.

From this discussion it is clear that both the extreme of full weight sharing and the extreme of no
weight sharing have value depending on the relationship between data points. What we would really
like for continual learning is to have a system that learns when to share weights and when not to on
its own. To the extent that our learning about weight sharing generalizes, this should allow us to find
an optimal solution to the transfer-interference trade-off.

D FURTHER DESCRIPTIONS AND COMPARISONS WITH BASELINE
ALGORITHMS

Independent: originally reported in (Lopez-Paz & Ranzato, 2017) is the performance of an inde-
pendent predictor per task which has the same architecture but with less hidden units proportional to
the number of tasks. The independent predictor can be initialized randomly or clone the last trained
predictor depending on what leads to better performance.

EWC: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is an algorithm that modi-
fies online learning where the loss is regularized to avoid catastrophic forgetting by considering the
importance of parameters in the model as measured by their fisher information. EWC follows the
catastrophic forgetting view of the continual learning problem by promoting less sharing of parame-
ters for new learning that were deemed to be important for performance on old memories. We utilize
the code provided by Lopez-Paz & Ranzato (2017) in our experiments. The only difference in our
setting is that we provide the model one example at a time to test true continual learning rather than
providing a batch of 10 examples at a time.

GEM: Gradient Episodic Memory (GEM) (Lopez-Paz & Ranzato, 2017) is an algorithm meant to
enhance the effectiveness of episodic storage based continual learning techniques by allowing the
model to adapt to incoming examples using SGD as long as the gradients do not interfere with
examples from each task stored in a memory buffer. If gradients interfere leading to a decrease
in the performance of a past task, a quadratic program is used to solve for the closest gradient to
the original that does not have negative gradient dot products with the aggregate memories from
any previous tasks. GEM is known to achieve superior performance in comparison to other recently
proposed techniques that use episodic storage like Rebuffi et al. (2017), making superior use of small
memory buffer sizes. GEM follows similar motivation to our approach in that it also considers the
intelligent use of gradient dot product information to improve the use case of supervised continual
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learning. As a result, it is a very strong and interesting baseline to compare with our approach. We
modify the original code and benchmarks provided by Lopez-Paz & Ranzato (2017). Once again
the only difference in our setting is that we provide the model one example at a time to test true
continual learning rather than providing a batch of 10 examples at a time.

We can consider the GEM algorithm as tailored to the stability-plasticity dilemma conceptualiza-
tion of continual learning in that it looks to preserve performance on past tasks while allowing for
maximal plasticity to the new task. To achieve this, GEM solves a quadratic program to find an
approximate gradient gnew that closely matches ∂L(xnew,ynew)

∂θ while ensuring that the following
constraint holds:

gnew ·
∂L(xold, yold)

∂θ
> 0. (8)

E REPTILE ALGORITHM

We detail the standard Reptile algorithm from (Nichol & Schulman, 2018) in algorithm 2. The
sample function randomly samples s batches of size k from dataset D. The SGD function applies
min-batch stochastic gradient descent over a batch of data given a set of current parameters and
learning rate.

Algorithm 2 Reptile for Stationary Data

procedure TRAIN(D, θ, α, β, s, k)
while not done do

// Draw batches from data:
B1, ..., Bs ← sample(D, s, k)
θ0 ← θ
for i = 1, ..., s do

θi ← SGD(Bi, θi−1, α)
end for
// Reptile meta-update:
θ ← θ0 + β(θs − θ0)

end while
return θ

end procedure

F DETAILS ON RESERVOIR SAMPLING

Throughout this paper we refer to updates to our memory M as M ←M ∪{(x, y)}. We would like
to now provide details on how we update our memory buffer using reservoir sampling as outlined in
Vitter (1985) (algorithm 3). Reservoir sampling solves the problem of keeping some limited number
M of N total items seen before with equal probability M

N when you don’t know what number N
will be in advance. The randomInteger function randomly draws an integer inclusively between
the provided minimum and maximum values.
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Algorithm 3 Reservoir Sampling with Algorithm R

procedure RESERVOIR(M,N, x, y)
if M > N then

M [N ]← (x, y)
else

j = randomInteger(min = 0,max = N)

if j < M then
M [j]← (x, y)

end if
end if
return M

end procedure

G EXPERIENCE REPLAY ALGORITHMS

We detail the our variant of the experience replay in algorithm 4. This procedure closely follows
recent enhancements discussed in Zhang & Sutton (2017); Riemer et al. (2017b;a) The sample
function randomly samples k − 1 examples from the memory buffer M and interleaves them with
the current example to form a single size k batch. The SGD function applies mini-batch stochastic
gradient descent over a batch of data given a set of current parameters and learning rate.

Algorithm 4 Experience Replay (ER) with Reservoir Sampling

procedure TRAIN(D, θ, α, k)
M ← {}
for t = 1, ..., T do

for (x, y) in Dt do
// Draw batch from buffer:
B ← sample(x, y, k,M)
// Update parameters with mini-batch SGD:
θ ← SGD(B, θ, α)
// Reservoir sampling memory update:
M ←M ∪ {(x, y)} (algorithm 3)

end for
end for
return θ,M

end procedure

Unfortunately, it is not straightforward to implement algorithm 4 in all circumstances. In particular,
it depends whether the neural network architecture is single headed (sharing an output layer and
output space among all tasks) or multi-headed (where each task gets its own unique output space).
In multi-headed settings, it is common to consider the tasks in separate batches and to equally weight
the sampled tasks during each update. This results in training the parameters evenly for each task
and is particularly important so we pay equal attention to each set of task specific parameters. We
detail an approach that separates tasks into sub-batches for a balanced update in algorithm 5. Here
L is the loss given a set of parameters over a batch of data and SGD applies a mini-batch gradient
descent update rule over a loss given a set of parameters and learning rate.
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Algorithm 5 Experience Replay (ER) with Tasks

procedure TRAIN(D, θ, α, k)
M ← {}
for t = 1, ..., T do

for (x, y) in Dt do
// Draw batch from buffer:
B ← sample(x, y, k,M)
// Compute balanced loss across tasks
loss = 0.0
for task in B do

loss = loss+ L(B[task], θ)
end for
// Update parameters with mini-batch SGD:
θ ← SGD(loss, θ, α)
// Reservoir sampling memory update:
M ←M ∪ {(x, y)} (algorithm 3)

end for
end for
return θ,M

end procedure

Our experiments demonstrate that both variants of experience replay are very effective for continual
learning. Meanwhile, each performs significantly better than the other on some datasets and settings.

H THE VARIANTS OF MER

We detail two additional variants of MER (algorithm 1) in algorithms 6 and 7. The sample function
takes on a slightly different meaning in each variant of the algorithm. In algorithm 1 sample is used
to produce s batches consisting of k − 1 random examples from the memory buffer and the current
example. In algorithm 6 sample is used to produce one batch consisting of sk − s examples from
the memory buffer and s copies of the current example. In algorithm 7 sample is used to produce
one batch consisting of k − 1 examples from the memory buffer. In algorithm 6, sample places
the current example at the end of the batch. Meanwhile, in algorithm 7, sample places the current
example in a random location within the batch. In contrast, the SGD function carries a common
meaning across algorithms, applying stochastic gradient descent over a particular input and output
given a set of current parameters and learning rate.
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Algorithm 6 Meta-Experience Replay (MER) - One Big Batch

procedure TRAIN(D, θ, α, γ, sk)
M ← {}
for t = 1, ..., T do

for (x, y) in Dt do
// Draw batch from buffer:
B ← sample(x, y, s, k,M)
θ0 ← θ
for i = 1, ..., sk do

xc, yc ← Bi[j]
θi ← SGD(xc, yc, θi−1, α)

end for
// Reptile meta-update:
θ ← θ0 + γ(θsk − θ0)
// Reservoir sampling memory update:
M ←M ∪ {(x, y)} (algorithm 3)

end for
end for
return θ,M

end procedure

Algorithm 7 Meta-Experience Replay (MER) - Current Example Learning Rate

procedure TRAIN(D, θ, α, γ, s, k)
M ← {}
for t = 1, ..., T do

for (x, y) in Dt do
// Draw batch from buffer:
B, index← sample(k − 1,M)
θ0 ← θ
// SGD on individual samples from batch:
for i = 1, ..., k − 1 do

xc, yc ← Bi[j]
if j = index

// High learning rate SGD on current example:
θk ← SGD(x, y, θk−1, sα)

else
θi ← SGD(xc, yc, θi−1, α)

end for
// Reptile meta-update:
θ ← θ0 + γ(θk − θ0)
// Reservoir sampling memory update:
M ←M ∪ {(x, y)} (algorithm 3)

end for
end for
return θ,M

end procedure

I DERIVING THE EFFECTIVE OBJECTIVE OF MER

We would like to derive what objective Meta-Experience Replay (algorithm 1) approximates and
show that it is approximately the same objective from algorithms 6 and 7. We follow conventions
from Nichol & Schulman (2018) and first demonstrate what happens to the effective gradients com-
puted by the algorithm in the most trivial case. As in Nichol & Schulman (2018), this allows us
to extrapolate an effective gradient that is a function of the number of steps taken. We can then
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consider the effective loss function that results in this gradient. Before we begin, let us define the
following terms from Nichol & Schulman (2018):

gi =
∂L(θi)

∂θi
(gradient obtained during SGD) (9)

θi+1 = θi − αgi (sequence of parameter vectors) (10)

ḡi =
∂L(θi)

∂θ0
(gradient at initial point) (11)

gji =
∂L(θi)

∂θj
(gradient evaluated at point i with respect to parameters j) (12)

H̄i =
∂2L(θi)

∂θ20
(Hessian at initial point) (13)

Hj
i =

∂2L(θi)

∂θ2j
(Hessian evaluated at point i with respect to parameters j) (14)

In Nichol & Schulman (2018) they consider the effective gradient across one loop of reptile with
size k = 2. As we have both an outer loop of Reptile applied across batches and an inner loop
applied within the batch to consider, we start with a setting where the number of batches s = 2 and
the number of examples per batch k = 2. Let’s recall from the original paper that the gradients of
Reptile with k = 2 was:

gReptile,k=2,s=1 = g0 + g1 = ḡ0 + ḡ1 − αH̄1ḡ0 +O(α2) (15)

So, we can also consider the gradients of Reptile if we had 4 examples in one big batch (algorithm
6) as opposed to 2 batches of 2 examples:

gReptile,k=4,s=1 = g0 + g1 + g2 + g3

= ḡ0 + ḡ1 + ḡ2 + ḡ3 − αH̄1ḡ0 − αH̄2ḡ0 − αH̄2ḡ1 − αH̄3ḡ0 − αH̄3ḡ1 − αH̄3ḡ2 +O(α2)
(16)

Now we can consider the case for MER where we define the parameter values as follows extending
algorithm 1 where A stands for across batches and W stands for within batches:

θ0 = θA0 = θW00 (17)

θW01 = θW00 − αg00 (18)

θW02 = θW01 − αg01 (19)

θA1 = θA0 + β
(θW02 − θA0 )

α
= θ0 + β

(θW02 − θ0)

α
= θW10 (20)

θW11 = θW10 − αg10 (21)

θW12 = θW11 − αg11 (22)
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θA2 = θA1 + β
(θW12 − θA1 )

α
(23)

θ = θA0 + γβ
(θA2 − θA0 )

β
= θA0 + γ(θA2 − θA0 ) (24)

gMER the gradient of Meta-Experience Replay can thus be defined analogously to the gradient of
Reptile as:

gMER =
θA0 − θA2

β
=
θ0 − θA2

β
(25)

By simply applying Reptile from equation 15 we can derive the value of the parameters θA1 after
updating with Reptile within the first batch in terms of the original parameters θ0:

θA1 = θ0 − βḡ00 − βḡ01 + βαH̄01ḡ00 +O(βα2) (26)

By subbing equation 26 into equation 23 we can see that:

θA2 = θ0 − βḡ00 − βḡ01 + βαH̄01ḡ00 − βg10 − βg11 +O(βα2) (27)

We can express g10 in terms of the initial point, by considering a Taylor expansion following the
Reptile paper:

g10 = ḡ10 + αH̄10(θW10 − θ0) +O(α2) (28)

Then substituting in for θW10 we express g10 in terms of θ0:

g10 = ḡ10 − αβH̄10ḡ00 − αβH̄10ḡ01 +O(α2) (29)

We can then rewrite g11 by taking a Taylor expansions with respect to θW10 :

g11 = g1011 − αH10
11g10 +O(α2) (30)

Taking another Taylor expansion we find that we can transform our expression for the Hessian:

H10
11 = H̄11 +O(α) (31)

We can analogously also transform our expression our expression for g1011 :

g1011 = ḡ11 + αH̄11(θW10 − θ0) +O(α2) (32)

Substituting for θW10 in terms of θ0

g1011 = ḡ11 − αβH̄11ḡ00 − αβH̄11ḡ01 +O(α2) (33)

We then substitute equation 31, equation 33, and equation 29 into equation 34:

g11 = ḡ11 − αβH̄11ḡ00 − αβH̄11ḡ01 − αH̄11ḡ10 +O(α2) (34)

Finally, we have all of the terms we need to express θA2 and we can then derive an expression for the
MER gradient gMER:
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gMER = ḡ00 + ḡ01 + ḡ10 + ḡ11

−αH̄01ḡ00 − αH̄11ḡ10 − αβH̄10ḡ00 − αβH̄10ḡ01 − αβH̄11ḡ00 − αβH̄11ḡ01 +O(α2)
(35)

This equation is quite interesting and very similar to equation 16. As we would like to approximate
the same objective, we can remove one hyperparameter from our model by setting β = 1. This
yields:

gMER = ḡ00 + ḡ01 + ḡ10 + ḡ11

−αH̄01ḡ00 − αH̄11ḡ10 − αH̄10ḡ00 − αH̄10ḡ01 − αH̄11ḡ00 − αH̄11ḡ01 +O(α2)
(36)

Indeed, with β set to equal 1, we have shown that the gradient of MER is the same as one loop
of Reptile with a number of steps equal to the total number of examples in all batches of MER
(algorithm 6) if the current example is mixed in with the same proportion. If we include in the
current example for s of sk examples in our meta-replay batch, it gets the same overall priority in
both cases which is s times larger than that of a random example drawn from the buffer. As such,
we can also optimize an equivalent gradient using algorithm 7 because it uses a factor s to increase
the priority of the gradient given to the current example.

While β = 1 is an interesting special case of MER in algorithm 1, in general we find it can be useful
to set β to be a value smaller than 1. In fact, in our experiments we consider the case when β is
smaller than 1 and γ = 1. The success of this approach makes sense because the higher order terms
in the Taylor expansion that reflect the mismatch between parameters across replay batches disturb
the learning process. By setting β to a value below 1 we can reduce our comparative weighting on
promoting inter batch gradient similarities rather than intra batch gradient similarities.

It was noted in (Nichol & Schulman, 2018) that the following equality holds if the examples and
order are random:

E[H̄1ḡ0] = E[H̄0ḡ1] =
1

2
E[

∂

∂θ0
(ḡ0 · ḡ1)] (37)

In our work to make sure this equality holds in an online setting, we must take multiple precautions
as noted in the main text. The issue is that examples are received in a non-stationary sequence so
when applied in a continual learning setting the order is not totally random or arbitrary as in the
original Reptile work. We address this by maintaining our buffer using reservoir sampling, which
ensures that any example seen before has a probability 1

N of being a particular element in the buffer.
We also randomly select over these elements to form a batch. As this makes the order largely
arbitrary to the extent that our buffer includes all examples seen, we are approximating the random
offline setting from the original Reptile paper. As such we can view the gradients in equation 16 and
equation 36 as leading to approximately the following objective function:

θ = argmin
θ

E(x11,y11),...,(xsk,ysk)∼M [2

s∑
i=1

k∑
j=1

[L(xij , yij)−
i−1∑
q=1

j−1∑
r=1

α
∂L(xij , yij)

∂θ
·∂L(xqr, yqr)

∂θ
]].

(38)

This is precisely equation 7 in the main text.

J SUPERVISED CONTINUAL LIFELONG LEARNING

For the supervised continual learning benchmarks leveraging MNIST Rotations and MNIST Permu-
tations, following conventions, we use a two layer MLP architecture for all models with 100 hidden
units in each layer. We also model our hyperparameter search after Lopez-Paz & Ranzato (2017)
while providing statistics for each model across 5 random seeds.

For Omniglot, following Vinyals et al. (2016) we scale the images to 28x28 and use an architecture
that consists of a stack of 4 modules before a fully connected softmax layer. Each module includes
a 3x3 convolution with 64 filters, a ReLU non-linearity and 2x2 max-pooling.
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J.1 HYPERPARAMETER SEARCH

Here we report the hyper-parameter grids that we searched over in our experiments. We note in
parenthesis the best values for MNIST Rotations (ROT) at each buffer size (ROT-5120, ROT-500,
ROT-200), MNIST Permutations (PERM) at each buffer size (PERM-5120, PERM-500, PERM-
200), Many Permutations (MANY) at each buffer size (MANY-5120, MANY-500), and Omniglot
(OMNI) at each buffer size (OMNI-5120, OMNI-500).

• Online Learning

– learning rate: [0.0001, 0.0003 (ROT), 0.001, 0.003 (PERM, MANY), 0.01, 0.03, 0.1
(OMNI)]

• Independent Model Per Task

– learning rate: [0.0001, 0.0003, 0.001, 0.003, 0.01 (ROT, PERM, MANY), 0.03, 0.1]

• Task Specific Input Layer

– learning rate: [0.0001, 0.0003, 0.001, 0.003, 0.01 (ROT, PERM), 0.03, 0.1]

• EWC

– learning rate: [0.001 (ROT, OMNI), 0.003 (MANY), 0.01 (PERM), 0.03, 0.1, 0.3, 1.0]
– regularization: [1 (MANY), 3, 10 (PERM, OMNI), 30, 100 (ROT), 300, 1000, 3000,

10000, 30000]

• GEM

– learning rate: [0.001, 0.003 (MANY-500), 0.01 (ROT, PERM, OMNI, MANY-5120),
0.03, 0.1, 0.3, 1.0]

– memory strength (γ): [0.0 (ROT-500, ROT-200, PERM-200, MANY-5120), 0.1
(MANY-500), 0.5 (OMNI), 1.0 (ROT-5120, PERM-5120, PERM-500)]

• Experience Replay (Algorithm 4)

– learning rate: [0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1 (ROT, PERM,
MANY)]

– batch size (k-1): [5 (ROT-500), 10 (ROT-200, PERM-500, PERM-200), 25 (ROT-
5120, PERM-5120, MANY), 50, 100, 250]

• Experience Replay (Algorithm 5)

– learning rate: [0.00003, 0.0001, 0.0003, 0.001, 0.003 (MANY-5120), 0.01 (ROT-500,
ROT-200, PERM, MANY-500), 0.03 (ROT-5120), 0.1]

– batch size (k-1): [5 (MANY-500), 10 (PERM-200, MANY-5120), 25 (PERM-5120,
PERM-500), 50 (ROT-200), 100 (ROT-5120, ROT-500), 250]

• Meta-Experience Replay (Algorithm 1)

– learning rate (α): [0.01 (OMNI-5120), 0.03 (ROT-5120, PERM, MANY-500), 0.1
(ROT-500, ROT-200, OMNI-500)]

– across batch meta-learning rate (γ): 1.0
– within batch meta-learning rate (β): [0.01 (ROT-500, ROT-200, MANY-5120), 0.03

(ROT-5120, PERM, MANY-500), 0.1, 0.3, 1.0 (OMNI)]
– batch size (k-1): [5 (MANY, OMNI-500), 10 (ROT-500, ROT-200, PERM-200), 25

(PERM-500, OMNI-5120), 50, 100 (ROT-5120, PERM-5120)]
– number of batches per example: [1, 2 (OMNI-500), 5 (ROT-200, OMNI-5120), 10

(ROT-5120, ROT-500, PERM, MANY)]

• Meta-Experience Replay (Algorithm 6)

– learning rate (α): [0.01, 0.03 (ROT-5120, PERM-5120, PERM-500, MANY-5120),
0.1 (ROT-500, ROT-200, PERM-200, MANY-500)]

– meta-learning rate (γ): [0.03 (ROT-500, ROT-200, PERM-200, MANY-500), 0.1
(ROT-5120, PERM-5120, MANY-5120), 0.3 (PERM-500), 0.6, 1.0]

– batch size (k-1): [5 (PERM-200, MANY-500), 10 (ROT-500, PERM-500) 25 (ROT-
200, MANY-5120), 50 (PERM-5120), 100 (ROT-5120), 250]
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Model FTI
Online 58.22 ± 2.03

Task Input 1.62 ± 0.87

EWC 58.26 ± 1.98

GEM 65.96 ± 1.67

MER 66.74 ± 1.41

Table 5: Forward transfer and interference (FTI) experiments on MNIST Rotations.

– number of batches per example: 1

• Meta-Experience Replay (Algorithm 7)

– learning rate (α): [0.01 (PERM-5120, PERM-500), 0.03 (ROT, PERM-200, MANY),
0.1]

– within batch meta-learning rate (γ): [0.03 (ROT, MANY), 0.1 (PERM), 0.3, 1.0]
– batch size (k-1): [5 (PERM-200, MANY-500), 10, 25 (PERM-500), 50 (ROT-200,

ROT-500, MANY-5120), 100 (ROT-5120, PERM-5120)]
– current example learning rate multiplier (s): [1, 2 (PERM-200), 5 (ROT), 10 (PERM-

5120, PERM-500, MANY)]

K FORWARD TRANSFER AND INTERFERENCE

Forward transfer was a metric defined in Lopez-Paz & Ranzato (2017) based on the average in-
creased performance on a task relative to performance at random initialization before training on
that task. Unfortunately, this metric does not make much sense for tasks like MNIST Permutations
where inputs are totally uncorrelated across tasks or Omniglot where outputs are totally uncorrelated
across tasks. As such, we only provide performance for this metric on MNIST Rotations in Table 5.

L ABLATION EXPERIMENTS

We plot our detailed ablation results in Table 6. In order to consider a version of GEM that uses
reservoir sampling, we maintain our buffer the same way that we do for experience replay and
MER. We consider everything in the buffer to be old data and solve the GEM quadratic program so
that the loss is not increased on this data. We found that considering the task level gradient directions
did not lead to improvements.

M REPRODUCIBILITY OF RESULTS

While the results so far have provided substantial evidence of the benefits of MER for continual
learning, one potential concern with our experimental protocol in Appendix J.1 is that the larger
hyperparameter search space used for MER may artificially inflate improvements given typical run
to run variation. To validate that this is not the case, we have run extensive additional experiments
in this section to see how the model performs across different random seeds and machines. The
codebase presents some inherent stochasticity across runs. As such, in Tables 7, 8, and 9 we report
two levels of generalization for a set of hyperparameters beyond the configuration of an individual
run. In the Same Seeds column, we report the results for the original 5 model seeds (0-4) deployed
on different machines. In the Different Seeds column, we report the results for a different 25 model
seeds (5-29) also deployed on different machines.

In all cases, we see that there are quantitative differences generalizing across seeds and machines.
However, new settings do not always result in lower performance. Additionally, the differences are
not qualitative in nature. In fact, in every setting we come to approximately the same qualitative
conclusions about how each model performs.
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Model Buffer Size Rotations Permutations Many Permutations
ER with SGD (algorithm 4) 5120 87.82 ± 0.44 84.30 ± 0.09 60.67 ± 0.38

500 77.82 ± 1.71 75.80 ± 0.54 44.08 ± 0.40

200 70.72 ± 1.43 69.52 ± 1.07 −
ER with Tasks and SGD (algorithm 5) 5120 88.50 ± 1.90 84.00 ± 0.21 60.05 ± 0.24

500 77.30 ± 0.42 74.32 ± 0.82 43.14 ± 0.86

200 70.82 ± 1.15 68.06 ± 1.14 −
MER (algorithm 1) 5120 89.56 ± 0.11 85.50 ± 0.16 62.52 ± 0.32

500 82.08 ± 0.31 77.50 ± 0.46 47.40 ± 0.35

200 77.42 ± 0.78 73.46 ± 0.45 -
MER (algorithm 6) 5120 88.94 ± 0.17 84.70 ± 0.17 60.98 ± 0.42

500 79.38 ± 0.77 75.88 ± 0.19 44.48 ± 0.62

200 73.74 ± 1.05 70.30 ± 0.84 -
MER (algorithm 7) 5120 89.34 ± 0.21 85.64 ± 0.23 63.14 ± 0.32

500 82.40 ± 0.64 78.20 ± 0.57 46.72 ± 0.55

200 77.26 ± 1.19 73.22 ± 0.37 -
ER with Tasks and Adam 5120 88.68 ± 0.29 83.78 ± 0.19 58.82 ± 0.31

(Kingma & Ba, 2014) 500 77.84 ± 0.97 72.14 ± 1.01 41.10 ± 0.24

200 69.48 ± 1.21 63.52 ± 0.96 −
ER with Tasks and RMSProp 5120 88.28 ± 0.16 82.84 ± 0.50 59.00 ± 0.32

(Hinton et al., 2012) 500 76.32 ± 1.34 67.80 ± 0.80 36.68 ± 0.51

200 66.66 ± 0.71 55.00 ± 0.79 −
ER with Tasks and GEM Style Buffer 5120 86.78 ± 0.37 81.18 ± 0.28 54.56 ± 0.59

500 74.26 ± 0.81 70.04 ± 0.48 38.12 ± 0.64

200 66.02 ± 0.55 62.98 ± 0.69 -
GEM (Lopez-Paz & Ranzato, 2017) 5120 87.58 ± 0.32 83.02 ± 0.23 56.76 ± 0.29

500 74.88 ± 1.29 69.26 ± 0.66 32.14 ± 0.50

200 67.38 ± 0.72 55.42 ± 1.10 -
GEM with Reservoir Sampling 5120 87.16 ± 0.41 83.68 ± 0.40 58.94 ± 0.53

500 77.26 ± 2.09 74.82 ± 0.29 42.24 ± 0.48

200 69.00 ± 0.84 68.90 ± 0.71 -

Table 6: Retained accuracy ablation experiments on MNIST based learning lifelong learning benchmarks.
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Model Buffer Size Original Same Seeds Different Seeds
Online N/A 53.38 ± 1.53 53.12 ± 1.60 52.79 ± 0.98

Independent N/A 60.74 ± 4.55 60.64 ± 4.21 66.27 ± 5.22

EwC N/A 57.96 ± 1.33 57.50 ± 0.92 56.30 ± 1.74

GEM 5120 87.58 ± 0.32 87.56 ± 0.36 87.42 ± 0.59

500 74.88 ± 0.93 73.12 ± 1.68 73.77 ± 1.33

200 67.38 ± 1.75 66.72 ± 2.37 67.45 ± 2.01

ER with SGD (algorithm 4) 5120 87.82 ± 0.44 87.66 ± 0.67 87.56 ± 0.78

500 77.82 ± 1.71 77.76 ± 0.50 77.48 ± 1.57

200 70.72 ± 1.43 70.50 ± 1.36 70.79 ± 1.19

ER with Tasks and SGD (algorithm 5) 5120 88.50 ± 1.90 88.14 ± 0.70 88.31 ± 0.56

500 77.30 ± 0.42 77.52 ± 0.50 77.06 ± 0.60

200 70.82 ± 1.15 70.48 ± 0.95 69.55 ± 1.09

MER (algorithm 1) 5120 89.56 ± 0.11 89.58 ± 0.12 89.58 ± 0.19

500 82.08 ± 0.31 82.08 ± 0.34 82.21 ± 0.51

200 77.42 ± 0.79 77.84 ± 1.14 77.39 ± 0.80

MER (algorithm 6) 5120 88.94 ± 0.17 88.80 ± 0.17 88.90 ± 0.18

500 79.38 ± 0.77 79.80 ± 0.70 80.08 ± 0.50

200 73.74 ± 1.05 74.50 ± 0.59 74.32 ± 0.91

MER (algorithm 7) 5120 89.34 ± 0.21 89.30 ± 0.18 89.33 ± 0.13

500 82.40 ± 0.64 82.60 ± 0.35 81.62 ± 0.52

200 77.26 ± 1.19 77.18 ± 1.25 76.50 ± 0.94

Table 7: A reproducability comparison of retained accuracy across machines and seeds for the best performing
hyperparameters on MNIST Rotations.

Model Buffer Size Original Same Seeds Different Seeds
Online N/A 55.42 ± 0.65 57.26 ± 1.17 57.45 ± 1.25

Independent N/A 55.80 ± 4.79 55.30 ± 4.98 55.36 ± 5.99

EwC N/A 62.32 ± 1.34 61.40 ± 1.89 60.65 ± 2.74

GEM 5120 83.02 ± 0.23 82.74 ± 0.32 82.61 ± 0.36

500 69.26 ± 0.66 68.90 ± 0.46 68.38 ± 0.87

200 55.42 ± 1.10 55.48 ± 1.37 54.98 ± 1.79

ER with SGD (algorithm 4) 5120 84.30 ± 0.09 84.40 ± 1.79 84.40 ± 0.29

500 75.80 ± 0.54 75.90 ± 0.49 75.61 ± 0.85

200 69.52 ± 1.07 69.38 ± 1.12 68.97 ± 1.13

ER with Tasks and SGD (algorithm 5) 5120 84.00 ± 0.21 83.82 ± 0.17 83.74 ± 0.50

500 74.32 ± 0.82 74.28 ± 0.25 73.72 ± 0.70

200 68.06 ± 1.14 68.06 ± 0.21 67.45 ± 1.21

MER (algorithm 1) 5120 85.50 ± 0.16 85.52 ± 0.13 85.47 ± 0.21

500 77.50 ± 0.46 77.46 ± 0.38 77.72 ± 0.44

200 73.46 ± 0.45 72.54 ± 0.74 72.65 ± 0.62

MER (algorithm 6) 5120 84.70 ± 0.17 84.60 ± 0.18 84.66 ± 0.18

500 75.88 ± 0.19 76.26 ± 0.27 75.65 ± 0.86

200 70.30 ± 0.84 70.12 ± 0.92 69.52 ± 0.66

MER (algorithm 7) 5120 85.64 ± 0.23 85.48 ± 0.19 85.58 ± 0.27

500 78.20 ± 0.57 77.83 ± 0.55 77.93 ± 0.63

200 73.22 ± 0.37 72.33 ± 1.15 71.69 ± 1.13

Table 8: A reproducability comparison of retained accuracy across machines and seeds for the best performing
hyperparameters on MNIST Permutations.
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Model Buffer Original Same Seeds Different Seeds
Online N/A 31.94 ± 1.17 31.92 ± 0.96 31.66 ± 1.21

Independent N/A 13.55 ± 3.66 13.34 ± 2.21 13.42 ± 4.49

EwC N/A 33.46 ± 0.46 32.84 ± 0.93 33.00 ± 0.92

GEM 5120 56.76 ± 0.29 56.82 ± 0.55 56.68 ± 0.51

500 32.14 ± 0.50 31.86 ± 0.64 31.44 ± 0.72

ER with SGD (algorithm 4) 5120 60.67 ± 0.38 60.70 ± 0.31 60.64 ± 0.35

500 44.08 ± 0.40 43.54 ± 0.57 43.60 ± 0.76

ER with Tasks and SGD (algorithm 5) 5120 60.30 ± 0.24 60.24 ± 0.32 60.04 ± 0.56

500 43.14 ± 0.86 43.12 ± 0.56 42.48 ± 0.91

MER (algorithm 1) 5120 62.52 ± 0.33 62.30 ± 0.46 62.45 ± 0.34

500 47.40 ± 0.35 47.60 ± 0.62 47.23 ± 0.68

MER (algorithm 6) 5120 60.98 ± 0.42 60.76 ± 0.34 60.94 ± 0.31

500 44.48 ± 0.62 44.28 ± 0.42 44.80 ± 0.63

MER (algorithm 7) 5120 63.14 ± 0.32 63.08 ± 0.54 63.08 ± 0.33

500 46.72 ± 0.55 46.42 ± 0.70 46.63 ± 0.47

Table 9: A reproducability comparison of retained accuracy across machines and seeds for the best performing
hyperparameters on MNIST Many Permutations.

N CONTINUAL REINFORCEMENT LEARNING

We detail the application of MER to deep Q-learning in algorithm 8, using notation from Mnih et al.
(2015).
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Algorithm 8 Deep Q-learning with Meta-Experience Replay (MER)

procedure DQN-MER(env, frameLimit, θ, α, β, γ, steps, k, EQ)
// Initialize action-value function Q with parameters θ:
Q← Q(θ)

// Initialize action-value function Q̂ with the same parameters θ̂ = θ:
Q̂← Q̂(θ̂) = Q̂(θ)
// Initialize experience replay buffer:
M ← {}
M.age← 0
while M.age ≤ frameLimit do

// Begin new episode:
env.reset()
// Initialize the s state with the initial observation:
while episode not done do

// Select with probability p an action a from set of possible actions:

a =

{
random selection of action â p ≤ ε
arg maxa′ Q(st, a

′; θ) p > ε
// Perform the action a in the environment:
s′, rt ← env.step(s, a)
// Store current transition with reward r:
M ←M ∪ {(s, a, r, s′)} (algorithm 3)
B1, ..., Bsteps ← sample(s, a, r, s′, steps, k,M)
// Store current weights:
θA0 ← θ
for i = 1, ..., steps do

θWi,0 ← θ
for j = 1, ..., k do

// Sample one set of processed sequences, actions, and rewards from M :
s, a, r, s′ = Bi[j]

y =

{
r if final frame in episode
r + Γ maxa Q̂(s′, a; θ̂) otherwise

// Optimize the Huber loss H(y,Q(s, a; θWi,j−1)):
L← H(y,Q(s, a; θWi,j−1))

θWi,j ← θWi,j−1 − α ∂L
∂θWi,j−1

end for
// Within batch Reptile meta-update:
θ ← θWi,0 + β(θWi,k − θWi,0)

θAi ← θ
end for
// Across batch Reptile meta-update:
θ ← θA0 + γ(θAsteps − θA0 )

// Reset target action-value network Q̂ to Q every EQ number of episodes:
Q̂ = Q

end while
end while
return θ,M

end procedure

N.1 DESCRIPTION OF CATCHER AND FLAPPY BIRD

In Catcher, the agent controls a segment that lies horizontally in the bottom of the screen, i.e. a
basket, and can move right or left, or stay still. The goal is to move the basket to catch as many
pellets as possible. Missing a pellet results in losing one of the three available lives. Pellets emerge
one by one from the top of the screen, and have a descending velocity that is fixed for each task.
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The reward and thus y axis in our Catcher experiments refers to the number of fruits caught during
the full game span.

In the case of the very popular game Flappy Bird, the agent has to navigate a bird in an environment
full of pipes by deciding whether to flap or not flap its wings. The pipes appear always in pairs,
one from the bottom of the screen and one from the top of the screen, and have a gap that allows
the bird to pass through them. Flapping the wings results in the bird ascending, otherwise the bird
descends to ground naturally. Both ascending and descending velocities are presets by the physics
engine of the game. The goal is to pass through many pairs of pipes as possible without hitting a
pipe, as this results in losing the game. The scoring scheme in this game awards a point each time a
pipe is crossed. Despite very simple mechanics, Flappy Bird has proven to be challenging for many
humans. According to the original game scoring scheme, players with a score of 10 receive a Bronze
medal; with 20 points, a Silver medal; 30 results in a Gold medal, and any score better than 40 is
rewarded with a Platinum medal.

N.2 DQN WITH META-EXPERIENCE REPLAY

The DQN used to train on both games follows the classic architecture from Mnih et al. (2015): it
has a CNN consisting of 3 layers, the first with 32 filters and an 8x8 kernel, the second layer with
64 filters and a 4x4 kernel, and a final layer with 64 filters and a 3x3 kernel. The CNN is followed
by two fully connected layers. A ReLU non-linearity was applied after each layer. We limited the
memory buffer size for our models to 50k transitions, which is roughly the proportion of the total
memories used in the benchmark setting for our supervised learning tasks.

N.3 PARAMETERS FOR CONTINUAL REINFORCEMENT LEARNING EXPERIMENTS

For the continual reinforcement learning setting we set the parameters using results from the exper-
iments in the supervised setting as guidance. Both Catcher and Flappy Bird used the same hyper
parameters as detailed below with the obvious exception of the game-dependent parameter that de-
fines each task. Models were trained to a maximum of 150k frames and 6 total tasks, switching
every 25k frames. Runs used different random seeds for the initialization as stated in the figures.

• Game Parameters
– Catcher: ∆: 0.03 (vertical velocity of pellet increased from default 0.608).
– Flappy Bird: ∆: −5 (pipe gap decreased 5 from default 100).

• Experience Replay
– learning rate: 0.0001
– batch size (k-1): 16

• Meta-Experience Replay
– learning rate (α): 0.0001
– within batch meta-learning rate (β): 1
– across batch meta-learning rate (γ): 0.3
– batch size (k-1): 16
– number of steps: 1
– buffer size: 50000

N.4 FURTHER COMMENTS ON CONTINUAL REINFORCEMENT LEARNING EVALUATION

Performance during training in continual learning for a non-stationary version of Flappy Bird is
shown in Figure 5. The graphs show averaged values over three validation episodes across three
different seed initializations. Vertical grid lines on the frames axis indicate task switches.

We have also conducted experiments performed using a DQN with reservoir sampling, finding that
it consistently underperforms a DQN with typical recency based sampling. A DQN with MER
achieves approximately the asymptotic performance for the single task DQN by the end of training
for most tasks. On the other hand, DQN with reservoir sampling achieves worse performance than
the standard DQN, so it is clear that, in this particular setting where a later task is subsumed in
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Figure 5: Continual learning for a non-stationary version of Flappy Bird.

previous tasks, keeping easy experiences alone does not account for the benefit of DQN-MER.
DQN-MER performs better at training the first task and experiences positive forward transfer for
the remaining tasks over what is possible just training for 25k steps on a single task. In most
cases, DQN-MER achieves similar performance to the DQN that takes 1 million steps and achieves
asymptotic performance. On the first three tasks DQN-MER performs better and it performs a bit
worse for the later tasks where it has less time to train. There does not seem to a price paid by DQN-
MER in these experiments for not forgetting the easier tasks. Actually, we find that on the final
tasks, DQN-MER achieves significant transfer from easier tasks and achieves better performance
than the single task DQN does after even training on those tasks alone for 150k steps.
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