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ABSTRACT

In this paper, we aim at tackling a general issue in NLP tasks where some of the
negative examples are highly similar to the positive examples, i.e., hard-negative
examples). We propose the distant supervision as a regularizer (DSReg) approach
to tackle this issue. We convert the original task to a multi-task learning problem,
in which we first utilize the idea of distant supervision to retrieve hard-negative
examples. The obtained hard-negative examples are then used as a regularizer, and
we jointly optimize the original target objective of distinguishing positive examples
from negative examples along with the auxiliary task objective of distinguishing
soften positive examples (comprised of positive examples and hard-negative ex-
amples) from easy-negative examples. In the neural context, this can be done by
feeding the final token representations to different output layers. Using this unbe-
lievably simple strategy, we improve the performance of a range of different NLP
tasks, including text classification, sequence labeling and reading comprehension.

1 INTRODUCTION

Consider the following sentences in a text-classification task, in which we want to identify text
describing hotels with good service/staff (as depicted as aspect-level sentiment classification in Tang
et al. (2015); Li et al. (2016); Lei et al. (2016)):

• S1: the staff are great. (positive)
• S2: the location is great but the staff are surly and unhelpful .. (hard-negative)
• S3: the staff are surly and unhelpful. (easy-negative)

S1 is a positive example since it describes a hotel with good staff. Both S2 and S3 are negative
because staff are unhelpful. However, since S2 is lexically and semantically similar with S1, standard
models can be easily confused. As another example, in reading comprehension tasks like NarrativeQA
Kočiskỳ et al. (2018), truth answers are human-generated ones and might not have exact matches
in the original passage. A commonly adopted strategy is to first locate similar sequences from
the original passage using a pre-defined threshold (using metrics like ROUGE-L) and then treat
them as positive training examples. Sequences that are semantically similar but right below this
specific threshold will be treated as negative examples and will thus inevitably introduce massive
labeling noise in training. This problem is ubiquitous in a wide range of NLP tasks, i.e., some of
the negative examples are highly similar to positive examples. We refer to these negative examples
as hard-negative examples for the rest of this paper. Similarly, the negative examples that are not
similar to the positive examples are refered to as easy-negative examples. Hard-negative examples can
cause big trouble in model training, because the nuance between positive examples and hard-negative
examples can cause confusion for a model trained from scratch. To make things worse, when there is
a class-balance problem where the number of negative examples are overwhelmingly larger than that
of positive examples (which is true in many real-world use cases), the model will be at loose ends
because positive features are buried in the sea of negative features.

To tackle this issue, we propose using the idea of distant supervision (e.g., Mintz et al. (2009);
Riedel et al. (2010)) to regularize training. We first harvest hard-negative examples using distant
supervision. This process can be done by a method as simple as using word overlapping metrics
(e.g., ROUGE, BLEU or whether a sentence contains some certain keywords). With the harvested
hard-negative examples, we transform the original binary classification setting to a multi-task learning
setting, in which we jointly optimize the original target objective of distinguishing positive examples
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from negative examples along with an auxiliary objective of distinguishing soften positive examples
(comprised of positive examples and hard-negative examples) from easy-negative examples. For a
neural network model, this goal can be easily achieved by using different output layers to readout
the final-layer representations. In this way, the features that are shared between positive examples
and hard negative examples can be captured by the model. Models can easily tell which features that
can distinguish positive examples the most. Using this unbelievably simple strategy, we improve the
performance of in a range of different NLP tasks, including text classification, sequence labeling and
reading comprehension.

The key contributions of this work can be summarized as follows:

• We study a general situation in NLP, where a subset of the negative examples are highly
similar to the positive examples. We analyze why it is a problem and how to deal with it.
• We propose a general strategy that utilize the idea of distant supervision to harvest hard-

negative training examples, and transform the original task to a multi-task learning problem.
The strategy is widely applicable for a variaty of tasks.
• Using this unbelievably simple strategy, we can obtain significant improvement on the tasks

of text-classification, sequence-labeling and reading comprehension.

2 RELATED WORK

Distant Supervision Mintz et al. (2009); Riedel et al. (2010); Hoffmann et al. (2011); Surdeanu
et al. (2012) It is proposed to address the data sparsity issue in relation extraction. Suppose that
we wish to extract sentences expressing the ISCAPITAL relation, distant supervision augments the
positve training set by first aligning unlabeled text corpus with all entity pairs between which the
ISCAPITAL relation holds and then treating all aligned texts as positive training examples. The idea
has been extended to other domains such as sentiment analysis Go et al. (2009), computer security
event Ritter et al. (2015), life event extraction Li et al. (2014) and image classification Chen and
Gupta (2015). Deep leaning techniques have significantly improved the results of distant supervision
for relation extraction Zeng et al. (2017); Luo et al. (2017); Lin et al. (2017); Toutanova et al. (2015).

Multi-Task Learning (MTL) The idea of using data harvested via distant supervision as auxiliary
supervision signals is inspired by recent progress on multi-task learning: models for auxiliary tasks
share hidden states or parameters with models for the main task and act as regularizers. In addition,
neural models often celebrate performance boost when jointly trained for multiple tasks Collobert
et al. (2011); Chen et al. (2017); Hashimoto et al. (2017); FitzGerald et al. (2015). For instance,
Luong et al. (2015) use sequence-to-sequence model to jointly train machine translation, parsing
and image caption generation models. Dong et al. (2015) adopt an alternating training approach
for different language pairs, i.e., they optimize each task objective for a fixed number of parameter
updates (or mini-batches) before switching to a different language pair. Swayamdipta et al. (2018)
propose using syntactic tasks to regularize semantic tasks like semantic role labeling. Hashimoto
et al. (2017) improve universal syntactic dependency parsing using a multi-task learning approach.

3 MODELS

In this section, we discuss the details of the proposed model. We focus on two different types of NLP
tasks, text classification and sequence labeling.

3.1 TEXT CLASSIFICATION

Suppose that we have text-label pairs D = {xi, yi}. xi consists of a sequence of tokens xi =
{wi,1, wi,2, ..., wi,ni

}, where ni denotes the number of tokens in xi. Each text xi is paired with a
binary label yi ∈ {0, 1}. The training set can be divided into a positive set D+ and a negative set
D−. Let ŷi denote the model prediction. The standard training objective can be given as follows:

L1 =−
∑

(xi,yi)∈D

logP (ŷi = yi|xi)

=−
∑

(xi,yi)∈D+

logP (ŷi = 1|xi)−
∑

(xi,yi)∈D−

logP (ŷi = 0|xi)
(1)
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Figure 1: An illustration of the classification model with distant-supervision regularizier.

group notation y z l
positive examples D+ 1 1 1

hard-negative examples Dhard-neg 0 1 2
easy-negative examples D− −Dhard-neg 0 0 0

Table 1: Labels for different instances in binary classification tasks.

LetDhard-neg denote the hard-negative examples retrieved using distant supervision. Here we introduce
a new label z: z = 1 for instances in Dhard-neg ∪D+, and z = 0 for instances in D− −Dhard-neg. We
regularize L1 using an additional objective L2:

L2 =−
∑

(xi,zi)∈D+∪Dhard-neg

logP (ẑi = 1|xi)−
∑

(xi,zi)∈D−−Dhard-neg

logP (ẑi = 0|xi) (2)

L2 can be thought as an objective to capture the shared features in positive examples and hard-
negative examples. Equ.2 can also be extended to another similar form, distinguishing between
Dhard-pos∪D− (i.e., the union of positive examples that are similar to negative and negative examples)
and D+ −Dhard-pos.

Empirically, we also find that adding one more three-class classification objective L3, which separates
positive vs hard-negative vs easy-negative introduces additional performance boost. We suggest that
adding this three-class classification will additionally highlight the difference between hard negative
examples and easy negative examples for the model. The label is denoted by l, where l = 0 for easy
negative examples, l = 1 for positive examples and l = 2 for hard negative examples. This leads the
final objective function at test time to be :

L = λ1L1 + λ2L2 + λ3L3 (3)
where λ1 + λ2 + λ3 = 1 are used to control the relative importance of each loss. For a neural
classification model, p(z|x), p(y|x) and p(l|x) share the same model structure. The input text x is
first mapped to a d-dimensional vector representation hx using suitable contextualization strategy,
such as LSTMs Hochreiter and Schmidhuber (1997), CNNs Kim (2014) or transformers Vaswani
et al. (2017). Then hx is fed to three fully connected layers with softmax activation function to
compute p(y|x), p(z|x) and p(l|x) respectively:

p(y|x) = softmax(Wyhx)

p(z|x) = softmax(Wzhx)

p(l|x) = softmax(Wlhx)

(4)

where Wy,Wz ∈ R2×d, Wl ∈ R3×d.

3.2 SEQUENCE LABELING

In sequence labeling tasks Lafferty et al. (2001); Ratinov and Roth (2009); Collobert et al. (2011);
Huang et al. (2015); Ma and Hovy (2016); Chiu and Nichols (2016), a model is trained to assign
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group notation y z l
B of positive examples D+ B B B1

I positive examples D+ I I I1
B of hard-negative examples Dhard-neg O B B2

I hard-negative examples Dhard-neg O I I2
O D− −Dhard-neg O O O

Table 2: Labels for different instances in sequence labeling tasks. B short for beginning and I short for inside.

labels to each of the tokens in a text sequence. Suppose that we are to assign labels to all tokens in a
chunk of text D = {x1, x2, ..., xnD

} where nD denotes the number of tokens in D. Let us consider
a simple case where we only have one type of tag and we will use the standard IOB (short for inside,
outside, beginning) sequence labeling format. In this case, it is a three-class classification problem,
assigning yi ∈ (B, I,O) to each token. We treat tokens with label B and I as D+ and tokens with
label O as D−. The objective function for the vanilla sequence labeling task is given as follows:

L1 =− logP (y1:nD
|x1:nD

) (5)
P (y1:nD

|x1:nD
) can be computed using standard sequence tagging models such as CRF Lafferty

et al. (2001), hybrid CRF+neural models Huang et al. (2015); Ma and Hovy (2016); Chiu and Nichols
(2016); Ye and Ling (2018) or purely neural models Collobert et al. (2011); Devlin et al. (2018).

Figure 2: An illustration of the CRF tagging model with the distant-supervision regularizer.

To take into account negative examples that are highly similar to positive ones, we use the idea
of distant supervision to first retrieve the set of hard-negative dataset Dhard-neg. Akin to the text
classification task, we introduce a new label zi ∈ (B, I,O), indicating whether the current token
belongs to Dhard-neg. To incorporate the collected hard-negative examples into the model, again we
introduce an auxiliary objective of assigning correct z labels to different tokens:

L2 =− logP (z1:nD
|x1:nD

) (6)
Similar to the text classification task, we also want to separate hard negative examples, easy negative
examples and positive examples, so we associate each example with a label l. We thus have
distinct “outside” and “beginning” labels for positive examples and hard-negative examples, i.e.,
l ∈ (Bpos, Ipos, Bhard-neg, Ihard-neg, O). Labels for different categories regarding y and z are shown in
Table 2. The final objective function is thus as follows:

L = λ1L1 + λ2L2 + λ3L3 (7)
Again λ1 + λ2 + λ3 = 1. At the training time, the two functions are simultaneously trained. At the
test time, we only use P (yi|x1:nD

) to predict yi as the final decision.

For CRF-based models Huang et al. (2015); Ma and Hovy (2016); Chiu and Nichols (2016), neural
representations are fed to the CRF layer and used as features for decision making. As in Ma and Hovy
(2016), neural representation hxi

is computed for each token/position using LSTMs and CNNs, and
then forwarded to the CRF layer. The key issue with CRF-based models is that the CRF model is only
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able to output one single label. This rules out the possibility of directly feeding hx to three readout
layers to simultaneously predict y, z and l. We propose the following solution: we use three separate
CRFs to predict y (for L1), z (for L2) and l (for L3), denoted by CRFy, CRFz and CRFl. The
three CRFs use the same hidden representation hx obtained from the same neural model as inputs,
but independently learn their own features weights. We iteratively perform gradient descent on the
three CRF s, and the error from the three CRF s are back-propagated to the neural model iteratively.

4 EXPERIMENTS

4.1 TEXT CLASSIFICATION

For the text classification task, we used three datasets, the Stanford Sentiment Treebank dataset (SST)
Socher et al. (2013), the hotel review dataset for aspect-specific sentiment analysis in Lei et al. (2016)
and the financial statement dataset that we created.

The Stanford Sentiment Treebank (SST) Dataset associates each phrase within a sentence with
a sentiment label. The task is originally further divided into two-class coarse-grained classification
and five-class fine-grained classification. We only report binary classification results. For baseline,
we used BERT-large Devlin et al. (2018). The representation for CLS is output to the softmax layer
for classification. We used distant supervision to retrieve hard-negative examples: similar to Mintz
et al. (2009), we employed a simple strategy, in which we treat negative reviews that contain positive
sentiment lexicons as hard-negative examples. Positive sentiment words are retrieved using the
MPQA corpus Wilson et al. (2005).

The Hotel Review Dataset contains roughly 50,000 reviews with an average length of 120 words.
Each review contains ranking scores (integers from 1 to 5) for different aspects of the hotel, such as
service, cleanliness, location, rooms, etc. The dataset is constructed in a way that each review might
contain diverse sentiments towards different aspects, and it is interesting to see how a model manages
or fails to identify these different aspects and their associated scores when entangled with other
aspects. Following Li et al. (2016), the task is divided into four sub-tasks, each of which classifies the
sentiment of one of the following four aspects: we focus on four aspects: value, rooms, service and
location. We filtered neutral reviews (with score 3) and treat those with score 1 and 2 as negative
ones, 4 and 5 as positive one. The task is thus transformed to a binary classification task. The same
review can thus carries positive sentiment regarding one aspect, but negative for the other. We report
average accuracy for the four tasks. For fair comparison, we used the baseline in Li et al. (2016). The
model combines Bi-LSTMs with a memory-network structure Sukhbaatar et al. (2015) at both the
word level and the sentence level to obtain document-level representations, which are then fed to a
sigmoid function for binary classification. Hard-negative examples are retrieved is the same way as
in the SST dataset.

The Financial Statement Dataset is a dataset created by us. It consists 97,736 sentences, each of
which contains labels for the values of financial statement items (FSI) for individual businesses or
services from annual reports of listed companies (Statistics shown in Table 6). The goal is to extract:

• the [value] of [which financial statement item] of [which business or service] of a
listed company

The dataset can be used for both text classification and sequence labeling. For the task of text
classification, the goal to identify whether a sentence contains useful FSI information, i.e., whether a
sentence contains the FSI of interest and the corresponding value. Sentences with annotated financial
statement items and the corresponding values as positive examples, and the rest are negative examples.

We used the following distant-supervision pattern to retrieve hard-negative examples: we treat texts in
negative examples that contain more than one mention of financial statement items as hard-negative
examples. For example, the sentence Benefiting from the decline in raw material costs and the further
improvement of the company’s management skills, the profit of the company increased during the
reporting period is a hard-negative example. Particularly, it is a negative example since it does
not specifically indicate the value of the profit and thus is not of interest. But this sentence is a
hard-negative one because it contains the FSI keyword profit.
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Model SST Hotel Review Financial Statement
L1 81.5 86.2 88.4
Pos∪HardNeg|EasyNeg→ Pos|HardNeg 82.4 86.9 88.0
L3 79.2 85.8 81.3
L1 + L2 82.7 87.9 89.4
L1 + L3 82.4 87.1 88.5
L1 + L2 + L3 82.9 88.0 90.8

Table 3: Performances of different models on the text classification task.

Bi-LSTM + CRF
Model P R F
L1 82.06 83.26 82.65
L1 + L2 82.41 85.51 83.93
L1 + L3 82.22 85.14 83.65
L1 + L2 + L3 83.92 84.97 84.44

Table 4: Performances of different models on the sequence labeling task on the Financial Statement Dataset.

For the ease of notations, we use Pos and Neg to denote positive and negative examples, HardNeg
to denote hard-negative examples and EasyNeg to denote easy-negative examples. We compare
performances of the following models:

• L1: the vanilla classification model to distinguish between positive examples (Pos) and
negative examples.
• Pos∪HardNeg|EasyNeg→ Pos|HardNeg: a hierarchical model that involves two states: 1)

distinguishing between easy-negative (EasyNeg) and the union of positive and hard-negative
(Pos∪HardNeg) 2) distinguishing positive (Pos) from hard-negative (HardNeg) examples.
• L3: a three-class classification model to distinguish Pos, HardNeg and EasyNeg.
• L1 + L2: the proposed multi-task learning model that jointly trains two objective functions:

distinguishing Pos from Neg and positive+easy negative (Pos∪HardNeg) from hard negative
(EasyNeg) examples.
• L1 + L3: combining the standard classification objective with the three class classification

objective.
• L1 + L2 + L3: combining the three.

Results Table 3 shows results for text classification tasks. As can be seen, three versions of the
proposed DSReg models, i.e., L1+L2, L1+L3 andL1+L2+L3, outperform the binary classification
model and the pipelined model, which aligns with our expectation. For the pipelined model, since
the error accumulates over stages, it underperforms not only the DSReg models, but also the binary
classification model. By using both the three-class classification (L3) and Pos∪HardNeg|EasyNeg
(L2) as regulations, the L1 + L2 + L3 setting leads to the best performance.

4.2 SEQUENCE LABELING

For the sequence labeling task, again we used the Financial Statement Dataset. The task can be
transformed to assigning IOB (short for inside, outside, beginning) of each label category to each
word. Labels to extract include financial statement items (FSI), unit, value, the change of FSI (FSI-
change), time, business & service (B&S), bases of comparison (BoC), as illustrated in the following
example:
The (O) revenue (B-FSI) of education (B-B&S) sector (I-B&S) increased (B-FSI-change) by 25%
(B-value) over (O) the (B-BoC) same (I-BoC) period (I-BoC-I) of (I-BoC) the (I-BoC) previous
(I-BoC) year (I-BoC) . (O)

We used the keyword matching strategy to retrieve hard-negative examples. We report statistics
at the word-level in Table 4. The three-class classification model (L3) Pos|HardNeg|EasyNeg and
the pipelined model Pos∪HardNeg|EasyNeg→ Pos|HardNeg significantly underperform the others,
and their results are omitted due to space limitations. From Table 4, we can see that the proposed
L1 + L2 + L3 model significantly outperforms the Pos|Neg baseline by (+1.79).
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4.3 READING COMPREHENSION

Model Standard L1 DSReg (L1 + L2) DSReg (L1 + L2 + L3) Human

summary: valid/test
BLEU-1 33.45/33.72 34.89/34.90 35.12/35.02 44.24/44.43
BLEU-4 15.69/15.53 16.89/16.89 17.17/17.14 18.17/19.65
Meteor 15.68/15.38 17.05/16.72 17.21/16.84 23.87/24.14

ROUGE-L 36.74/36.30 38.40/37.65 38.55/37.90 57.17/57.02
Model Standard DSReg (L1 + L2) DSReg (L1 + L2 + L3) Human

full version: valid/test
BLEU-1 5.82/5.68 7.60/7.55 7.81/7.77 44.24/44.43
BLEU-4 0.22/0.25 0.35/0.41 0.37/0.37 18.17/19.65
Meteor 3.84/3.72 5.17/5.02 5.22/5.05 23.87/24.14

ROUGE-L 6.33/6.22 7.40/7.17 7.66/7.22 57.17/57.02

Table 5: Results on the NarrativeQA dataset.

The narrativeQA dataset Kočiskỳ et al. (2018) consists of 1,567 stories with 46,765 question-answer
pairs. Following Kočiskỳ et al. (2018), we conduct experiments on both the summary setting and
the full version setting. For the summary setting, answer spans need to be extracted from story
summaries, and for the full version setting, they need to be extracted from the entire books or movie
scripts. We followed the routines of the neural benchmarks in Kočiskỳ et al. (2018), in which we first
retrieve relevant chunks from the story using an IR system. Then we concatenate the selected chunks.
Since the answer for each query is manually annotated, a large proportion of answers do not have
corresponding spans in the original passage that can be exactly matched. In Kočiskỳ et al. (2018),
the span that achieves the highest ROUGE-L score with respect to the reference answer are used as
gold spans. The start and end indices are predicted using BiDAF Seo et al. (2016). As in Kočiskỳ
et al. (2018), spans with highest ROUGE-L scores are treated as positive examples. Suppose that for
a gold answer a, text span a′ has the highest ROUGE-L score of ROUGE(a, a′), and is thus treated as
the positive training example. Since documents and passages in this task are very similar, there are
many text spans that are highly similar to the gold answer. These spans are treated as hard-negative
examples. Specifically, we treat spans whose ROUGE-L scores are greater than α× ROUGE(a, a′)
as hard-negative examples, where α ∈ (0, 1) is the parameter to tune on the development set.

We followed the criteria in Kočiskỳ et al. (2018) to train a vanilla BiDAF model. We used the splits
of positive examples, hard-negative examples and easy-negative examples to train DSReg models,
using both the three-class classification and the (positive+hard-neg) vs. easy-neg as regulations. We
report scores for BLEU-1, BLEU-4 Papineni et al. (2002), Meteor Denkowski and Lavie (2011)
and ROUGE-L scores Lin (2004). Results are shown in Table 5. When combined with BiDAF, the
proposed DSReg model outperforms the standard BiDAF model in both settings. As discussed in
Kočiskỳ et al. (2018), the span prediction model performs the best in the summary setting. This sets
new state-of-the-art results for the summary setting on the NarrativeQA dataset.

5 ABLATION STUDY AND VISUALIZATION

5.1 THE EFFECT OF L2: POS∪HARDNEG|EASYNEG

We examine the influence of the parameter λ at the interval of 0.1 in the objectiveL = (1−λ)L1+λL2

on the hotel review dataset. It is worth noticing that λ cannot take the value of 1 here, since we are
not able to make decisions purely based on L2. Results are shown in Figure 3. The performance first
goes up when λ is smaller than 0.4, and then declines dramatically. It accords with our expectation
that these losses are complementary to each other.

5.2 THE EFFECT OF L3: POS|HARDNEG|EASYNEG

We examine the influence of the parameter λ at the interval of 0.1 in the objectiveL = (1−λ)L1+λL3

on the hotel review dataset. Results are shown in Figure 3. Best performance is obtained when λ is
set to 0.3.
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Figure 3: Effect of L2 and L3.

Figure 4: Saliency maps from different models.

5.3 VISUALIZATION

For visualization, we use FIRST DERIVATIVE SALIENCY to unveil why DSReg helps. First Derivative
Saliency is a commonly adopted visualization technique to see how much each input unit contributes
to the final decision using first-order derivatives Erhan et al. (2009); Li et al. (2015); Simonyan et al.
(2013). Given word embedding E = {e}, where e denotes the value of each embedding dimension,
and a class label c, the trained model associates the pair (e, c) with a log likelihood S(c, e). For neural
models, the class score S(c, e) is a highly non-linear function. S(c, e) is approximated with a linear
function of e by computing the first-order Taylor expansion

S(c, e) ≈ w(c, e)T e+ b (8)
where w(c, e) is the derivative of S(c, e) with respect to the embedding dimension e.

w(c, e) =
∂S(c, e)

∂e
|e (9)

The magnitude (absolute value) of the derivative indicates the sensitiveness of the final decision to
the change in one particular dimension, telling us how much one specific dimension of the word
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embedding contributes to making the decision c. The saliency score of a specific word E is the
average of the absolute value of w(c, e):

S(c, E) =
1

|E|
∑
e∈E
|w(c, e)| (10)

We use the example “I hate the movie though the plot is interesting” in SST and “Location is nice.
Staff very surly and un helpful” in aspect sentiment identification to show the working mechanism
of different constituents in DSREG to illustrate why it works better. Both examples consist of two
clauses with opposite sentiments, which inevitably makes a model confused.

Figure 4 shows saliency maps regarding each word output from different models. Vanilla denotes
the baseline classification model, the objective of which consists of only L1. As can be seen from
S(pos, E) of Vanilla-L1 , though the model emphasizes more on hate in the first clause, but attaches
significant amount of importance to ”interesting” in the second clause. This issue is largely alleviated
in S(pos, E) of DSREG-L1, which offers a clearer focus on the first clause than the second one.
The reason why this happens can be explained by the saliency map from S(pos∪hardNeg, E) of
DSREG-L1: the example is hard-negative (it is negative but contains positive lexicon ”interesting”)
and the sentiment from the distracting word “interesting” is captured in the S(pos∪hardNeg, E),
making S(pos, E) more easily focus on the truly positive clause.

6 CONCLUSION

In this paper, we tackle a general problem in NLP, i.e., the situation in which a subset of the negative
examples are highly similar to the positive ones. We propose the DSReg: a model that utilizes distant
supervision as a regularizer. We transform the original task to a multi-task learning problem, in
which we first utilize distant supervision to retrieve hard-negative examples, which are then used
as a regularizer. We show that the proposed strategy lead to significant performance boost text
classification, sequence labeling and machine reading comprehension tasks.
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7 APPENDIX

Tag examples # of instances
financial statement items (FSI) income; revenue 6543

unit ton; Kilowatt hour 5622
value 5;100,000; 25% 9073

bases of comparison (BoC) the same period of last year 2585
the change of FSI (FSI-change) increase; decrease 2821

business & service (B&C) education sector; loan service 1617

Table 6: Details for labels of the financial statement item dataset.
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