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Abstract
We reproduce the work in Zero-shot Knowledge Transfer via Adversarial Belief
Matching, which describes a novel approach for knowledge transfer. A teacher
network trained on real samples distills knowledge to a student network that
is trained solely on pseudo data extracted from a generator network, with the
student trying to mimic the teacher’s outputs on these datapoints. To this end, we
additionally re-implement Wide Residual Networks which are used as the main
framework for both teacher and student networks and train them from scratch
on CIFAR10 and SVHN. We compare the results of the proposed method with
a few-shot knowledge distillation attention transfer setting implemented and
trained from scratch. We suggest an approach for further exploitation of the learnt
mechanics of the generator network in the zero-shot setting, which operates on
top of the main method, and briefly discuss the benefits and drawbacks of this
approach. Our code can be found publicly available in https://github.com/
AlexandrosFerles/NIPS_2019_Reproducibilty_Challenge_Zero-shot_
Knowledge_Transfer_via_Adversarial_Belief_Matching.

1 Introduction
Knowledge distillation is a model compression technique which attempts to transfer the knowledge
of large cumbersome models to smaller models. Many recent successful deep networks are extremely
large and contain millions of parameters, which limits their usage to machines with more powerful
hardware. For such networks to be available to a wider range of devices, model compression
techniques are vital. In many cases, data availability concerning a specific task is limited, due to
a variety of reasons ranging from corporate-owned datasets to the preservation of privacy of the
individuals that participated in the creation of a dataset. This has in fact motivated the emerge of
few/zero shot distillation approaches, where a pre-trained model can be used for distillation with little
or no access to the data it was trained on.

In this work, we reproduce the paper Zero-shot Knowledge Transfer via Adversarial Belief Matching
[1], where the authors present a method for distilling the knowledge of a larger pre-trained network to
a smaller one, without the use of real data from the side of the student network. Our work comprises
of a full re-implementation and reproduction of this method and any other methods and experiments
described in this paper, including re-training the Wide Residual Network[2] teacher networks from
scratch on CIFAR10 and SVHN and reproducing the few-shot knowledge distillation via attention
transfer of [3]. Additionally, we propose a modification of the main method in an attempt to yield
better zero-shot knowledge transfer results. We present our results, analyze our findings, and discuss
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the reproducibility process of the paper with comments concerning discrepancies compared to the
source code.

2 Methods

2.1 Wide Residual Networks

Wide Residual Networks (WRNs) were originally proposed in [2] and are used as the main framework
for both the teacher and student network in the few-shot knowledge distillation setting of [3] and
zero-shot knowledge transfer setting of [1]. The main motivation of WRNs is to provide a network
with similar performance to much deeper neural networks by taking advantage of less yet wider
residual layers. WRNs are uniquely defined by two hyperparameters: the depth n of the network and
the width factor w of each layer.

WRNs comprise of a single convolutional layer, followed by 3 blocks of convolutional layers that
extract features which are subsampled by a global average pooling layer before being fed to a linear
layer to generate class predictions. The number of convolutional layers at each block is the same, and
is defined by the factor n of the network. Additionally, each convolutional layer which lies inside
the blocks of WRNs, learns a residual function[4] on its input. The initial convolutional layer on all
WRN versions is the same and performs a convolution operation that outputs 16 feature maps. In
their simplest form (n = 16, k = 1) WRNs use 16, 32 and 64 output feature maps at each block in
respect. Wider version multiply each of these values with k to define the amount of feature maps that
will be used at each block.

At each individual block, the first convolution operation is responsible for the sub-sampling of its
input and the increase of the number of feature maps, when necessary. Finally, the operations of batch
normalisation and ReLU activation are applied in a reverse order compared to most deep convolutional
networks, as in WRNs each batch normalisation layer precedes the non-linearity activation function.

2.2 Knowledge Distillation and Attention Transfer

The zero-shot method is evaluated through comparison with a few-shot knowledge distillation method
proposed in [5]. A student network matches the outputs of a pre-trained teacher network by feeding
real data to the teacher and using the output probabilities as targets for training the student. The
original paper uses cross entropy loss to train the student with softened teacher probability outputs

qi =
exp(zi/T )∑
j exp(zj/T )

, (1)

where temperature T yields a softer probability distribution of classes and (1) corresponds to standard
softmax activation of the teacher outputs zi when T = 1. To make use of the true labels of the data,
a weighted combination of cross entropy losses with labels and teacher outputs as targets serve as
objective for training the student. In the experiments of [1], the Kullback-Leibler divergence is used.
Moreover, the baseline model is augmented by adding an attention transfer loss [3]:
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The additional loss takes a subset of activation blocks Al and computes the squared mean over
channels in order to get spatial attention maps f(Al). By adding (2) to the objective, the student is
encouraged to match the spatial attention maps of the teacher.

As in the zero-shot setting that follows, WRNs will be used for both the teacher and student network.
They can easily be integrated in attention-based knowledge transfer methods since we can make
use of the output feature maps of each block as a point of comparison, while the spatial resolution
of the output of each block is the same regardless of the WRN version. Hence there is no need
for interpolation. Additionally, since we aggregate over the filter dimension in order to create the
spatial attention maps of each output, we can effectively compare teacher and student WRNs of
different widths without extra operations on this dimension, such as a linear mapping to the same
filter dimension.

To follow the notation of [3] and [1] for the rest of this paper we refer to this method as KD-AT.
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2.3 Zero-Shot Knowledge Transfer

The proposed idea of zero-shot knowledge transfer from teacher to student network is to introduce a
generator network, and train the student and the generator adversarially, by using the representation
learned from the teacher network. Following the notations of [1], we let T (x), S(x; θ) andG(z;φ) be
pretrained teacher network, student network and generator, where the weights θ and φ parameterize
their respective networks that are to be trained. In order to train the student to match the teacher
without real data, we sample noise z ∼ N (0, I) and let G(z) generate fake samples xp. Gradient
updates are alternated between student and generator to optimize the Kullback-Leibler divergence:

DKL(T (xp) || S(xp)) =
∑
i

t(i)p log

(
t
(i)
p

s
(i)
p

)
, (3)

where tp, sp are the teacher and student output probabilities given pseudo-data, and i denotes the
class. The student minimizes (3) to force it to match the output probabilities of the teacher, which the
authors call "belief matching". For the generator, the objective is instead maximized so that it learns
to produce samples where the student and teacher disagree the most. The adversarial belief matching
is balanced through an appropriate choice in numbers of gradient steps nG, nS when alternating the
training. In addition, the authors experiment with extra loss functions. The attention transfer term (2)
used for the baseline is also applied to the zero-shot model for the main experiments of the paper.

Thus, zero-shot knowledge transfer acts based on the samples drawn from the generator network,
and distills knowledge to a student network by matching the outputs of the teacher much like the
knowledge distillation approach in [5]. The advantage, however, becomes clear compared to the case
when only a few training samples are available: Instead of learning to match the teacher on the same
limited number of samples at each iteration, the generator is trained alongside the student and will
continue to generate challenging pseudo-data to further close the gap between student and teacher.

2.4 Modification of the Zero-Shot Method

In the training setting of the main method, for each iteration the generator creates a single batch
of samples (when nG) on which we then train the student network ns times to match the teacher’s
feature maps and outputs on this sole batch. The motivation for using only one batch is clear and
justified, since we first force the samples in a position of the sample space which makes it difficult for
the student to learn, which requires multiple student updates to balance the training. However, we
propose a slight modification on the zero-shot training setting. Instead of using the same sample that
the generator was updated on, we use the updated generator to provide us with ns different batches
(keeping nG the same as before), each of them used only once to update the student based on the
teacher’s outputs on them. This way, we intend to create a more diverse pseudo-training dataset
which could provide an improved training setting for the student network.

2.5 Measuring Belief Matching

In order to measure the student network’s degree of belief matching (network’s ability to match
output probabilities of teacher) with its teacher, the following procedure is executed: Test samples are
progressively changed in the direction of the student’s decision boundary until they resemble input
data of another class. As the student’s confidence in a sample belonging to the other class increases,
we monitor the predictions of teacher as well. Ideally, we would expect the teacher to follow closely
the behaviour of the student. We thus iterate over a number of test samples whose predicted labels are
the same for student and teacher. Then, iterating over all possible classes that are not the predicted
one, we take K steps of gradient updates on the sample to alter it towards the "fake" class j with
learning rate ξ. We get the gradient by feeding the sample to the student and computing the cross
entropy with class j as target. In each step we let both student and teacher predict the progressively
altered sample, and store their respective probability pj of the sample belonging to class j. Finally,
the mean over fake classes and test data size results in a transition curve of pj over K steps. Mean
Transition Error is introduced to quantify this matching capability, and computed through the absolute
difference |psj − ptj | between networks and taking the mean over K steps, fake classes and sample
size.
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3 Implementation

3.1 Discussion on Reproducibility Issues

For all of the methods used to derive the results of this paper, we used the PyTorch framework to
train our deep networks along with external components such as Adversarial Belief Matching. We
first designed each method on our own, and then consulted the official codes of the zero-shot and
few-shot knowledge transfer to find hyperparameter values and fine-tune our networks. In detail, we
had to integrate the following settings in our work, which were not mentioned in the paper[1] but
implemented in the official repository of the authors:

• To our knowledge, there is no mention about weight initialization in [2] or [3] from the
authors of Wide ResNets. We thus used the weight initialization presented on GitHub1.

• We initially treated the hyperparameters of Temperature T and α value on knowledge
distillation between the teacher and student network as presented in [5], and then changed it
to the values used by the authors on [3]. In particular, T is equal to 4, while α is equal to
0.9.

• In attention transfer, the authors in [3] suggest that the best way to extract the spatial attention
map would be to use the sum of the square of each individual pixel per channel, but the
authors of [1] use the squared mean instead. Furthermore, the distance between student
and teacher maps is quantified by taking the squared mean over batch and spatial size, as
opposed to Euclidean distance which they state in their paper.

• In [3] and [5], cross entropy is used for the student’s loss term with teacher outputs as targets.
However, in both the few-shot KD and zero-shot settings of [1] teacher and student are
compared with the use of KL divergence between the softmax activations of the former and
the log-softmax of the latter (KL for the zero-shot model is stated in the paper).

• There is no description of the Generator network in [1] apart from "We use a generic
generator with only three convolutional layers, and our input noise z has 100 dimensions".
Thus, we consulted the official code for more details in order to design this network. The
structure of the generator can de found in the Appendix Section B.

• In the zero-shot method of [1] the paper does not mention that weight clipping is performed
on both the student and generator networks. We proceeded with integrating weight clipping
to our training too.

4 Experiments

4.1 Data and Preprocessing

The network is evaluated on two commonly used data sets, CIFAR-10 and SVHN, that include 60000
and approximately 100000 32x32 images respectively. On CIFAR-10. 50000 images are allocated to
its training set, while the remaining 10000 images comprise its test set and are used for evaluation
purposes. On SVHN, 73257 and 26032 are allocated to its training and test set respectively. The only
pre-processing method applied on SVHN is mean/std normalization. On the other hand, we perform
a few methods of data augmentation on CIFAR-10 in addition to normalization, namely reflect mode
image padding, random cropping and random horizontal flipping.

4.2 Training WRN Scratches

The batch size on both datasets is equal to 128, and in order to match the update steps claimed on [1],
we trained CIFAR10 for 200 epochs and SVHN for 100 epochs respectively. For both datasets, we
apply a Stochastic Gradient Descent (SGD) optimizer with Nesterov momentum (equal to 0.9) and a
weight decay of 5 ∗ 10−4. The initial learning rate is equal to 0.1 and divided by 5 when 30%, 60%
and 80% of the update steps have been completed. Most of the steps were directly motivated from
[1], while we also consulted [3] and [2] when some settings were not clear to us. We apply three
seeds on each training, namely 0, 1 and 2, and apart from our own method described in 2.4 we use

1https://github.com/szagoruyko/wide-residual-networks
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the same 3 seeds for the rest of this work. As in [1], we train 4 variants of WRN, namely WRN-16-1,
WRN-16-2, WRN-40-1 and WRN-40-2.

We also trained few-shot scratches of WRN-16-1 on M samples per class (M drawn from {10, 25,
50 , 75, 100}) on each dataset under the same configurations, to generate the ’No Teacher’ models
mentioned in [1]. In order to train for the same number of update steps, we scale the number of
original epochs based on each training dataset size and the value of M, by the following formula:

epochs′ =
Dataset_Size

10 ∗M
∗ epochs (4)

Lastly, we evaluate WRN-16-1 directly on each test set to mimic the ’No Teacher’ model with M=0.
Since this is exact setting of KD-AT with M=0, we only train this setting once per seed for both cases.

4.3 Few-Shot Knowledge Attention Transfer

For few-shot knowledge distillation with attention transfer, we train WRN-16-1 under the same
hyperparameter settings for each dataset and values of M drawn from {10, 25, 50 , 75, 100} for
WRN-16-1 for both CIFAR and SVHN, and M=5000 for knowledge distillation when trained on full
data. Additionally, we combine all the possible teacher-student pairs of the 4 variants of WRN (listed
in table 1) to train the KD-AT setting for M=200 on CIFAR10. Formula (4) is once again used to
define the number of training epochs for each dataset and value of M.

4.4 Zero-Shot and Modified Zero-Shot Training

The zero-Shot training setting relies on training with fake samples, so we do not need to scale the
number of epochs. Instead, for both CIFAR10 and SVHN we train for 80000 iterations, sample
a pseudo-batch and update the generator once per iteration (ng = 1) and then update the student
ns = 10 times per iteration. For the modified zero-shot model, the generator produces a new batch for
each student update. As in [1] we use Adam optimizer[6] with cosine annealing[7] in these settings,
with an initial learning rate of 2 ∗ 10−3 for the student network and 1 ∗ 10−3 for the generator. Noisy
inputs are sampled from a standard normal distribution with 100 dimensions, and fed to the generator
which extracts pseudo batches of size 128*3*32*32, like the input batches of WRNs when trained
on real data. In case we wish to use extra M samples for the zero-shot methods, the models are in
addition fine-tuned few-shot by using the KD-AT procedure for a further 200 epochs. While the value
of M is not clearly stated on [1] for the SVHN data, we perform a KD-AT training with M=200 to
match the case with the CIFAR data.

4.5 Measuring Belief Matching

For the belief matching experiment, we make use of a WRN-40-2 teacher and three WRN-16-1
students, one trained from the KD-AT setting one from the zero-shot setting and one from the modified
zero-shot setting. The paper does not state which M is used for KD-AT. Hence, we choose M = 200
for fair comparison as it has similar test accuracy to the zero-shot model. In order to compute the
probability transition curves described in section 2.5, the process is guided from a learning rate ξ
equal to 1, and 100 update steps are performed per sample and fake label. For each of CIFAR10 and
SVHN, we use 1000 test set samples, and average over the extracted probability transition curves to
display our results. We also compute the Mean Transition Error (MTE) between the teacher and each
of the students on each dataset as in [3] via the formula:

1

Nsamples

Nsamples∑
n=1

1

C − 1

C−1∑
n=1

1

K
|pstudent − pteacher| (5)

where Nsamples represents the 1000 samples from each dataset, C is the number of different classes
(equal to 10 for both CIFAR10 and SVHN),K represents the 100 updates steps, pstudent and pteacher
are the probability estimations of the student and teacher for each of the K update steps on C-1 fake
labels and Nsamples samples.
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5 Results

5.1 Evaluation of the Knowledge Transfer Methods

We first reproduce the zero-shot and few-shot experiments for the teacher and student architectures
WRN-40-2 and WRN-16-1 on SVHN and CIFAR-10. The results are presented in Figure 1, which
shows test accuracy of the baseline model KD-AT trained with M samples or all data, as well as
the zero-shot model and a student trained from scratch with M samples. The test accuracy are the
means over three trials. In addition, the results include the performance of Variational Information
Distillation (VID) of [8]. We can see in Figure 1 that the results of the paper are reproduced, where
the zero-shot model outperforms KD-AT and VID trained withM = 100 samples, and almost reaches
the accuracy of KD-AT with M = 5000 on SVHN.

(a) (b)

Figure 1: Performance for different algorithms using SVHN (a) and CIFAR-10 (b) datasets. Variational
information distillation (VID)[8] has a single value for the CIFAR-10 dataset using M=100 samples per class.

Table 1 shows reproduced results of the experiment investigating architecture dependence on CIFAR-
10. The mean test accuracy over three trials is close to the results of the paper, with small discrepancies.
Similar to the official results, we also notice that the zero-shot distilling setting from WRN-40-2 to
WRN-16-2 performs better than distilling from the same teacher to WRN-40-1, suggesting that deeper
student networks with similar number of parameters not necessarily perform better. The opposite
can be seen for KD-AT, with the deeper student network performing best (but with larger standard
deviations than the paper). Moreover, we include results of our modified zero-shot algorithm, which
show improved performance for all network architectures. Training our modified algorithm requires
multiple generated batches per iteration, and results in higher complexity in terms of speed. However,
it converges to a similar or higher accuracy in fewer iterations of the training process, making it run
in a similar time or sometimes faster than the original zero-shot algorithm. Due to the complexity of
the task, we did not have enough resources to further evaluate the performance of the algorithm.

Teacher Student Teacher Student KD+AT Zero-Shot Modified
(# params) (# params) scratch scratch M = 200 Zero-Shot

WRN-16-2 WRN-16-1 94.21±0.03 91.38±0.33 85.55±0.25 81.25±0.86 82.82±1.09

WRN-40-1 WRN-16-1 (175K) 93.83±0.22 91.38±0.33 83.64±0.22 79.90±1.82 82.61±2

WRN-40-2 (2.243M) WRN-16-1 (175K) 95.16±0.04 91.38±0.33 82.85±0.95 83.63±0.15 84.78±0.5

WRN-40-1 (563K) WRN-16-2 (691K) 93.83±0.22 94.21±0.03 87.25±0.18 87.71±0.71 89.27±0.6

WRN-40-2 (2.243M) WRN-16-2 (691K) 95.16±0.04 94.21±0.03 87.27±0.69 89.31±0.14 91.12±0.32

WRN-40-2 (2.243M) WRN-40-1 (563K) 95.16±0.04 93.83±0.22 88.41±0.64 87.46±0.33 90.27±0.22

Table 1: Zero-shot and modified zero-shot results versus few-shot attention transfer (KD+AT) using WRN for CIFAR-10
and SVHN. Results display mean and standard deviation over 3 seeds.
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Overall, we observe that even in the reproducibility part we get slightly better results on the same
settings as [1]. We tried to stay as close as possible to the methods that were reported, and mostly
attribute the small improvements to the data augmentation that we applied on CIFAR when both
optimizing the scratch teacher networks and training the student networks in the few-shot, zero-shot
and modified zero-shot settings. Additionally, we observed that the modified zero-shot setting brings
improvements even close to 3 percentage points for some cases. Our intuition is that this can be
attributed to the greater diversity of samples drawn from the generator, which was our main motivation
for introducing this method. The accuracy of both zero-shot settings can slightly increase if we switch
to few-shot training by taking extra update steps on the student on a few real samples, however this
increase stays limited (at a few cases there was no improvement at all) which hints us that the majority
of the necessary features have already been learned by the student when trained on the zero-shot
settings.

5.2 Visual Inspection of Learned Patterns from the Generator

Samples drawn from different generator networks at different stages of their training can be seen
in the following figure. Through visual inspection, we observe that starting from random noise (as
expected), features start to grow dependencies and form patterns that are useful for network training
and can serve as a substitute of real data, when the latter are not available.

Figure 2: Pseudo images sampled from generators of different seed, hyperparameters and Teacher-Student pairs
at different times during training. As the training develops (from left to right) the images evolve from diverse,
random features to shaped patterns.

5.3 Adversarial Belief Matching

We finally measure the belief matching between teacher and student in both the zero-shot and few-shot
settings for both datasets. Figure 3 depicts the reproduced transition curves for all four cases, and
Table 2 shows MTE (equation 5). The performance of the zero-shot model is very similar to the
paper, but the transition error of KD-AT is higher. We observe the same pattern as the authors,
that similarity in predictions between student and teacher as samples are altered is much worse for
KD-AT, despite having comparable test accuracy to the zero-shot model. This is surprising since the
procedure is using real data, which KD-AT uses for distillation. We provide a possible explanation
for this: The process of manipulating samples towards the student decision boundary might result in
images outside the space of real data. Examples of images after K update steps towards the student
decision boundary of other classes can be found in Figure 5 of the appendix. The images look like
noisy versions of the original class, but are now predicted as another class with almost full certainty
by the student. For KD-AT, the student matches the teacher and true labels solely on real samples,
whereas the zero-shot student is trained on pseudo-data which is not limited to this space, as is shown
in Figure 2. A toy experiment is also conducted in [1], demonstrating how the generator produces
samples that follow the decision boundary of the teacher in order to make it more difficult for the
student, which could explain the high degree of belief matching in our experiments.

The transition curve plots concerning zero-shot and modified zero-shot on CIFAR show that the
deviation between the teacher and student predictions is higher in our method. This is also confirmed
by the Mean Transition Error values in Table 2, and is expected since in our setting more images are
used to train the student, and at each batch iteration only one update is performed per image. On the
other hand, the original zero-shot method focuses on a single image per batch iteration, where the
student in updated ns = 10 times on this single image to match the teachers predictions.

We finally perform an extra ablation study on CIFAR for both the original zero-shot and KD-AT
methods, where we replicate the setting of measuring belief matching, with the core difference that
samples are updated based on the gradients of the teacher network. This way, the manipulated samples
will be the same for both methods. We observe that the performance under this setting is different.
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Figure 3: Transition curves of teacher and student network when samples from the test sets are manipulated to
change their labels. Top row: Zero-Shot on CIFAR(left), Modified Zero-Shot on CIFAR (center) and Zero-Shot
on SVHN (right). Bottom row: Corresponding results under the same settings with KD-AT few-shot training.
The first two plots are identical of this row are identical.

Zero-Shot Modified Zero-Shot KD+AT
SVHN 0.11 - 0.83

CIFAR-10 0.18 0.22 0.81

Table 2: Mean Transition errors (MTE) for SVHN and CIFAR-10

The teacher network grows full confidence in the ’new’ class after a few updates, while the student
network reaches up to a low threshold in its confidence for that class. Thus, mean transition errors are
kept high for both cases, with the zero-shot method resulting in a lower error value (0.64) compared
to KD-AT (0.78). Plots for the transition curves can be found on section D of the Appendix.

6 Conclusions and Future Work
In this work, we reproduced the zero-shot knowledge transfer proposed in [1]. Training a generator
to produce images on which a student fails to match its teacher and then training the same student to
mimic the decisions of its teacher on these pseudo data, ends up with similar or better performance
in datasets such as SVHN and CIFAR-10. Moreover, we modified the training setting and sampled
new images from the generator at each student gradient update instead of once in the beginning of
the iteration. Consequently, the dataset is more diverse for the student to learn and the algorithm
converges, resulting in better performance than the original method.

The initial work along with the proposed modifications leave room for further exploration and analysis.
For example, the generator of a shallow network but with a more thorough designed generator, better
quality adversarial features can be constructed. In-depth analysis of generated pseudo data and
their diversity could also be performed, so that the resulting modified zero-shot model can provide
additional insight to what effect sampling multiple batches has on the student network.

Future work can also focus on the selection of the teacher and student network architecture. Frame-
works with higher representation learning capabilities compared to WRNs have emerged (a recent
example would be EfficientNets[9]) which can be alternatively used to build a better teacher network.
In this direction different frameworks can be combined to match intermediate layer representation
with access to the same receptive field of the original image, along with matching the distribution of
the output class predictions. Another research direction, would be to further explore the usability of
the fact that intermediate feature maps are also optimized through the attention transfer loss. In [10],
visual attention is applied to the VGG network[11] by scaling middle and coarse layer feature maps
in combination with the output feature maps to improve its performance compared to its baseline
version.
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A Wide Res Net architecture
The architecture of Wide ResNet is summed on the following figure:

Figure 4: General structure of a Wide Residual Network (left) and form of a single residual convolutional layer
at each block, as presented in [3]. The factor N which defines how many convolutional layers will be used at
each block is not to be confused with the depth n of the network, and is directly depended on n via the formula
N = (n− 4) div 6.

B Generator Network
The following table shows the layer structure of the generator network:

#Layer Type Configuration
1 Linear Input dim: 100, Output dim: 128*64

2 Batch Normalization -

3 Upsampling Scale factor: 2

4 Convolutional Input channels: 128, Output channels: 128

5 Batch Normalization -

6 Activation Leaky ReLU (α = 0.2)

7 Upsampling Scale factor: 2

8 Convolutional Input channels: 128, Output channels: 64

9 Batch Normalization -

10 Activation Leaky ReLU (α = 0.2)

11 Convolutional Input channels: 128, Output channels: 64

12 Batch Normalization -

Table 3: Layers of the generator network used in all zero-shot methods

For all the convolutional layers, the kernel size k is equal to 3,while the stride s and padding p are
equal to 1.
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C Full Experiments

C.1 Training scratches of Wide ResNets

In order to use Wide ResNets of different depth and width as teacher networks for the Few-Shot
Attention Knowledge Distillation and the Zero-Shot Knowledge Transfer, we trained 4 variants of
Wide ResNet from scratch. The results on CIFAR10 are shown in Table 4 below.

Model Seed 0 Seed 1 Seed 2
WRN-16-1 90.97 91.41 91.78
WRN-16-2 94.21 94.27 94.18
WRN-40-1 93.52 94.04 93.94
WRN-40-2 95.14 95.12 95.23

Table 4: Wide ResNet scratches performance on CIFAR-10

The results of training teachers on SVHN are shown in Table 5 below.

Model Seed 0 Seed 1 Seed 2
WRN-16-1 95.52 95.43 95.47
WRN-16-2 96.17 96.09 96.03
WRN-40-1 96.07 96.14 96.19
WRN-40-2 96.14 96.13 96.37

Table 5: Wide ResNet scratches performance on SVHN

C.2 Training Wide ResNet 16-1 with no Teacher

We also trained WRN-16-1 from scratch on small subsets of M images per class on CIFAR10 and
SVHN and without the use of a teacher network to assist in the learning process. We firstly show the
results on CIFAR10 in Table 6 below.

M Seed 0 Seed 1 Seed 2
10 23.7 21.68 25.86
25 34.4 38 36.07
50 41.69 44.2 45.27
75 54.45 51.89 50.99

100 57.02 56.87 56.69

Table 6: Wide ResNet 16-1 few-shot training on CIFAR-10 with no assistance from a teacher network
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The results on SVHN are the following in Table 7:

M Seed 0 Seed 1 Seed 2
10 11.97 12.67 11.73
25 31.83 34.21 26.82
50 44.08 45.93 42.93
75 50.07 41.88 53.96

100 56.71 69.58 59.56
200 87.65 87.92 87.18

Table 7: Wide ResNet 16-1 few-shot training on SVHN with no assistance from a teacher network

C.3 Few-Shot Knowledge Distillation with Attention Transfer (KD-AT)

Few-Shot Knowledge Distillation with Attention Transfer is trained using different pairs of Teacher-
Student and different values of M for CIFAR-10 and SVHN datasets. We firstly show the results on
CIFAR10 using WRN-40-2 for the Teacher and WRN-16-1 for the Teacher, for different values of M
in Table 8.

M Seed 0 Seed 1 Seed 2
10 39.08 35.33 36.49
25 60.05 58.94 63.05
50 70.9 65.83 68.68
75 73.84 74.29 77

100 76.67 76.72 79.57
5000 92.15 92.25 92.17

Table 8: Few-shot training on CIFAR-10 with Attention Transfer using WRN-40-2 for the Teacher and WRN-
16-1 for the Student, for different values of M

The results on SVHN using WRN-40-2 for the Teacher and WRN-16-1 for the Student, for different
values of M are shown in Table 9.

M Seed 0 Seed 1 Seed 2
10 37.35 31.32 33.88
25 48.71 48.89 47.44
50 68.84 65.33 66.48
75 78.51 78.4 79.28

100 81.18 79.63 81.45
5000 95.19 95.44 95.72

Table 9: Few-shot training on SVHN with Attention Transfer using WRN-40-2 for the Teacher and WRN-16-1
for the Student, for different values of M
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The results for different pairs of Teacher-Student for M=200 is shown in Table 10.

Teacher Student Seed 0 Seed 1 Seed 2
WRN-16-2 WRN-16-1 85.51 85.26 85.89
WRN-40-1 WRN-16-1 83.9 83.35 83.67
WRN-40-1 WRN-16-2 87.52 87.14 87.13
WRN-40-2 WRN-16-1 82.41 81.97 84.18
WRN-40-2 WRN-16-2 87.15 86.49 88.18
WRN-40-2 WRN-40-1 88.18 87.77 89.29

Table 10: Teacher-Student Wide ResNets few-shot training on CIFAR-10 with Attention Transfer, for M = 200

C.4 Zero-Shot Knowledge Transfer

We trained the zero-show Knowledge transfer algorithm for various pairs of Teacher Student for
CIFAR-10 and SVHN. In Table 11 the results for CIFAR-10 is shown for various seeds and Teacher
Student pairs and in Table 12 the experiment for SVHN is shown.

Teacher Student Seed 0 Seed 1 Seed 2
WRN-16-2 WRN-16-1 80.59 80.7 82.48
WRN-40-1 WRN-16-1 77.4 80.61 81.7
WRN-40-1 WRN-16-2 88.71 87.34 87.08
WRN-40-2 WRN-16-1 83.73 83.76 83.42
WRN-40-2 WRN-16-2 89.13 89.48 89.32
WRN-40-2 WRN-40-1 87.94 87.28 87.18

Table 11: Teacher-Student Wide ResNets zero-shot training on CIFAR-10

Teacher Student Seed 0 Seed 1 Seed 2
WRN-40-2 WRN-16-1 94.21 93.85 93.94

Table 12: Teacher-Student Wide ResNets zero-shot training on SVHN

C.5 Zero-Shot Knowledge Transfer with modified generator

Table 13 shows the results for the modified zero-shot we tried.

Teacher Student Seed 0 Seed 1 Seed 2
WRN-16-2 WRN-16-1 82.42 81.73 84.32
WRN-40-1 WRN-16-1 79.87 84.62 83.34
WRN-40-1 WRN-16-2 88.71 90.11 88.99
WRN-40-2 WRN-16-1 85.09 84.07 85.18
WRN-40-2 WRN-16-2 90.67 91.41 91.27
WRN-40-2 WRN-40-1 90.08 90.16 90.59

Table 13: Teacher-Student Wide ResNets zero-shot training on CIFAR-10 with modified generator
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C.6 Zero-Shot Knowledge Transfer with extra M real samples

Our results in CIFAR10 when extra samples are drawn from the generator, are presented in Table 14.

M Seed 0 Seed 1 Seed 2
10 83.89 83.37 83.77
25 84.08 83.57 84.22
50 84.69 84.37 84.94
75 84.98 84.53 85.0

100 85.27 84.73 85.35

Table 14: Performance of Zero-Shot pre-trained student WRN-16-1 when few-shot knowledge distillation is
performed from a teacher WRN-40-2 for a few epochs with M samples.

The same setting is repeated on the SVHN dataset in Table 15 with the following results:

M Seed 0 Seed 1 Seed 2
10 94.29 93.9 94.0
25 94.26 93.97 93.98
50 94.26 93.94 93.97
75 94.27 93.95 93.94

100 94.24 93.97 93.94

Table 15: Performance of Zero-Shot pre-trained student WRN-16-1 when few-shot knowledge distillation is
performed from a teacher WRN-40-2 for a few epochs with M samples.

C.7 Modified Zero-Shot Knowledge Transfer with extra M real samples

Our results in CIFAR10 when extra samples are drawn from the generator, are presented in Table 16.

M Seed 0 Seed 1 Seed 2
10 85.09 84.54 85.31
25 85.09 85.21 85.43
50 86.37 86.18 86.29
75 86.77 86.4 86.67

100 87.2 86.74 86.96

Table 16: Performance of Zero-Shot pre-trained student WRN-16-1 when few-shot knowledge distillation is
performed on top of our modified training method from a teacher WRN-40-2 for a few epochs with M samples.
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D Samples for Measuring Belief Matching
The following figure shows the evolution of images when manipulated at different steps regarding the
belief matching experiment conducted in section 4.5:

Figure 5: Two test samples from the measuring of belief matching. The figure shows the original images and
the result of K = 100 altering steps towards each other class.

E Transition Curves of Teacher Updates

Figure 6: Transition curves of teacher and student with KD-AT (left) and Zero-Shot (right) methods when
sample are updated based on the gradients of the teacher.
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