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ABSTRACT

Meta-learning has achieved great success in few-shot learning. However, the
existing meta-learning models have been evidenced to overfit on training tasks
when using over-parameterized convolutional neural networks. This means that
the generalization performance of the meta-learner cannot be improved by mere-
ly applying more complex networks. To remedy this deficiency, we propose a
sparsity-constrained meta-learning approach to learn from training tasks a subnet-
work from which first-order optimization methods can quickly converge towards
the optimal network in testing tasks. Our theoretical analysis shows the benefit
of sparsity for reducing the generalization gap of the estimated meta-learner. We
have implemented our approach on top of Reptile assembled with varying net-
work pruning routines including Dense-Sparse-Dense (DSD) and Iterative Hard
Thresholding (IHT). Extensive experimental results on benchmark datasets with
different over-parameterized deep networks demonstrate that our method not only
effectively alleviates meta-overfitting but also in many cases improves the overall
generalization performance when applied to few-shot classification tasks.

1 INTRODUCTION

The ability of adapting to a new task with several trials is essential for artificial agents. The goal of
few-shot learning (Santoro et al., 2016) is to build a model which is able to get the knack of a new
task with limited training samples. Meta-learning (Schmidhuber, 1987; Bengio et al., 1990; Thrun &
Pratt, 2012) provides a principled way to cast few-shot learning as the problem of learning-to-learn,
which typically trains a hypothesis or learning algorithm to memorize the experience from previous
tasks for a future task learning with very few samples. The practical importance of meta-learning
has been witnessed in many vision and online/reinforcement learning applications including image
classification (Ravi & Larochelle, 2016; Li et al., 2017), multi-arm bandit (Sung et al., 2017) and
2D navigation (Finn et al., 2017).

Among others, one particularly simple yet successful meta-learning paradigm is first-order optimiza-
tion based meta-learning which aims to train hypotheses that can quickly adapt to unseen tasks by
performing one or a few steps of (stochastic) gradient descent (Ravi & Larochelle, 2016; Finn et al.,
2017). Reasons for the recent increasing attention to this class of gradient-optimization based meth-
ods include their outstanding efficiency and scalability exhibited in practice (Nichol et al., 2018).

Challenge and motivation. A challenge in the existing meta-learning approaches is their tendency
to overfit (Mishra et al., 2018; Yoon et al., 2018). When training an over-parameterized meta-learner
such as very deep and/or wide convolutional neural networks (CNN) which are powerful for repre-
sentation learning, there are two sources of potential overfitting at play: the inter-task overfitting of
meta-learner (or meta-overfitting) to the training tasks and the inner-task overfitting of task-specific
learner to the task training data. There have been recent efforts put to deal with inner-task overfit-
ting (Lee et al., 2019; Zintgraf et al., 2019). The study on the inter-task meta-overfitting, however,
still remains under explored. Since in principle the optimization-based meta-learning is designed
to learn fast from small amount of data in new tasks, we expect the meta-overfitting to play a more
important role in influencing the overall generalization performance of the trained meta-learner. For
an example, it can be observed from the curves in Figure 1(a) for MiniImageNet that although a 4-
layer CNN with 128 channels achieves significantly higher training accuracy than the same network
architecture with 32 channels, the two networks have quite comparable testing accuracy. It is thus
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(a) Meta-overfitting (b) Meta-overfitting reduction by DSD and IHT based Reptile

Figure 1: (a) The meta-overfitting phenomenon on MiniImageNet (5-way 1-shot) tasks when in-
creasing the number of channels from 32 to 128 in a 4-layer CNN. (b) The proposed DSD and
IHT based Reptile algorithms are effective in closing the gap between training accuracy and testing
accuracy. Bested viewed in color.

crucial to develop robust methods that can well handle meta-overfitting especially when the number
of training tasks is substantially smaller than the number of meta-parameters.

Sparsity model is a promising tool for high-dimensional machine learning with guaranteed statistical
efficiency and robustness to overfitting (Maurer & Pontil, 2012; Yuan et al., 2018; Abramovich &
Grinshtein, 2019). It has been theoretically and numerically justified by Arora et al. (2018) that s-
parsity benefits considerably the generalization performance of deep neural networks. In the regime
of compact deep learning, the so called network pruning technique has been widely studied and ev-
idenced to work favorably in generating sparse subnetworks without compromising generalization
performance (Frankle & Carbin, 2018; Jin et al., 2016; Han et al., 2016). Inspired by these remark-
able success of sparsity models, it is reasonable to conjecture that sparsity would also be of help for
enhancing the robustness of optimization based meta-learning to meta-overfitting.

Our contribution. In this paper, we present a novel sparse optimization based approach for meta-
learning with over-parameterized neural networks. The problem is formulated as learning a sparse
meta-initialization network from training tasks such that in a new task the learned subnetwork can
quickly converge to the optimal solution via gradient descent. The core idea is to reduce meta-
overfitting by controlling the counts of the non-zero parameters in the meta-learner. Theoretically,
we have established a set of generalization gap bounds for the proposed sparse meta-learner showing
the benefit of sparsity in improving its generalization performance. Practically, we have implement-
ed our approach in a joint algorithmic framework of Reptile (Nichol et al., 2018) with network
pruning, along with two specifications to network pruning methods, which are Dense-Sparse-Dense
(DSD) (Han et al., 2016) and Iterative Hard Thresholding (IHT) (Jin et al., 2016), respectively. The
actual performance of our approach has been extensively evaluated on few-shot classification tasks
with over-parameterized deep/wide CNNs including ResNet-18 (He et al., 2016). Numerical re-
sults demonstrate that our method can effectively alleviate overfitting and achieve similar or even
superior generalization performance to the conventional dense models. As illusrated in Figure 1(b),
using 128-channel network on 5-way 1-shot tasks, our DSD and IHT based Reptile algorithms are
effective in closing the gap between the training accuracy and testing accuracy.

2 RELATED WORK

Optimization-based meta-learning. The family of optimization-based meta-learning approaches
usually learns a good hypothesis which can fast adapt to unseen tasks (Ravi & Larochelle, 2016;
Finn et al., 2017; Nichol et al., 2018; Khodak et al., 2019). Compared to the metric (Koch et al.,
2015; Snell et al., 2017) and memory (Weston et al., 2014; Santoro et al., 2016) based meta learn-
ing algorithms, optimization based meta-learning algorithms are gaining increasing attention due
to their simplicity, versatility and effectiveness. As a recent leading framework for optimization-
based meta-learning, MAML (Finn et al., 2017) is designed to estimate a meta-initialization net-
work which can be well fine-tuned in an unseen task via only one or few steps of minibatch gradi-
ent descent. Although simple in principle, MAML requires computing Hessian-vector product for
back-propagation, which could be computationally expensive when the model is big. The first-order
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MAML (FOMAML) is therefore proposed to improve the computational efficiency by simply ig-
noring the second-order derivatives in MAML. Reptile Nichol et al. (2018) is another approximated
first-order algorithm which works favorably since it maximizes the inner product between gradients
from the same task yet different minibatches, leading to improved model generalization. In (Lee
et al., 2019), the meta-learner is treated as a feature embedding module of which the output is used
as input to train a multi-class kernel support vector machine as base learner. To deal with overfitting,
the CAVIA method (Zintgraf et al., 2019) decomposes the meta-parameters into the so called con-
text parameters and shared parameters. The context parameters are updated for task adaption with
limited capacity while the shared parameters are meta-trained for generalization across tasks.

Network pruning. Early network weight pruning algorithms date back to Optimal Brain Dam-
age (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi et al., 1993). A dense-to-sparse algo-
rithm was developed by Han et al. (2015) to first remove near-zero weights and then fine tune the
preserved weights. As a serial work of dense-to-sparse, the dense-sparse-dense (DSD) method (Han
et al., 2016) was proposed to re-initialize the pruned parameters as zero and retrain the entire net-
work after the dense-to-sparse pruning phase. The iterative hard thresholding (IHT) method (Jin
et al., 2016) shares a similar spirit with DSD to conduct multiple rounds of iteration between prun-
ing and retraining. Srinivas & Babu (2015) proposed a data-free method to prune the neurons in a
trained network. In (Louizos et al., 2017), an L0-norm regularized risk minimization framework was
proposed to learn sparse networks during training. More recently, Frankle & Carbin (2018) intro-
duced and studied the “lottery ticket hypothesis” which assumes that once a network is initialized,
there should exist an optimal subnetwork, which can be learned by pruning, that performs as well as
the original net or even superior.

Despite the remarkable success achieved by both meta-learning and network pruning, it still remains
largely open to investigate the impact of network pruning on alleviating the meta-overfitting of
optimization based meta-learning, which is of primal interest to our study in this paper.

3 META-LEARNING WITH SPARSITY

In this section, we propose a sparse optimization based meta-learning approach for few-shot learning
with over-parameterized neural networks. Our hope is to alleviate the overfitting of meta-learner by
reducing its parameter counts without compromising accuracy.

3.1 PROBLEM SETTING

We consider theN -wayK-shot problem as defined in (Vinyals et al., 2016). Tasks are sampled from
a specific distribution p(T ) and will be divided into meta training set Str, meta validation set Sval,
and meta testing set Stest. Classes in different datasets are disjoint (i.e., the class in Str will not
appear in Stest). During training, each task is made up of support set Dsupp and query set Dquery.
Both Dsupp and Dquery are sampled from the same classes of Str. Dsupp is used to for training
while Dquery is used for evaluation. For a N -way K-shot classification task, we sampled N classes
from dataset, and then K samples are sampled from each of these classes to form Dsupp, namely
Dsupp = {(xkc , ykc ), k = 1, 2, ...,K; c = 1, 2, ..., N}. For example, for a 5-way 2-shot task, we
sample 2 data-label pairs from each of 5 classes, thus, such a task has 10 samples. Usually, several
other samples of the same classes will be sampled to compose Dquery. For example, Dquery is used
in Reptile (Nichol et al., 2018) in evaluation steps. We use the loss function `(ŷ, y) to measure the
discrepancy between the predicted label ŷ and the true label y.

Notation. For an integer n, we denote [n] as the abbreviation of the index set {1, ..., n}. We use� to
denote the element-wise product operator. We say a function g : Rp 7→ R is G-Lipschitz continuous
if |g(θ)− g(θ′)| ≤ G‖θ − θ′‖2, and g is H-smooth if it obeys ‖∇g(θ)−∇g(θ′)‖2 ≤ H‖θ − θ′‖2.
For any sparsity level 1 ≤ s ≤ p, we say a function g is restricted µs-strongly convex if there exists
µs > 0 such that g(θ)− g(θ′)− 〈∇g(θ′), θ − θ′〉 ≥ µs

2 ‖θ − θ
′‖2,∀‖θ − θ′‖0 ≤ s.

3.2 META-LEARNING WITH SPARSITY

Our ultimate goal is to learn a good initialization of parameters for a convolutional neural network
fθ : X 7→ Y , where θ is the model parameters set, from a set of training tasks such that the learned
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initialization network generalizes well to future unseen tasks. Inspired by the recent remarkable suc-
cess of MAML (Finn et al., 2017) and the strong generalization capability of sparse deep learning
models (Frankle & Carbin, 2018; Arora et al., 2018), we propose to learn from previous task expe-
rience a sparse subnetwork started from which the future task-specific networks can be efficiently
learned using first-order optimization methods. To this end, we introduce the following layer-wise
sparsity constrained stochastic first-order meta-learning formulation:

min
θ
R(θ) := ET∼p(T )

[
LDquery

T

(
θ − η∇θLDsupp

T
(θ)
)]
, s.t. ‖θl‖0 ≤ kl, l ∈ [L], (1)

where LDsupp
T

(θ) = 1
NK

∑
(xk

c ,y
k
c )∈Dsupp

T
`(fθ(x

k
c ), ykc ) is the empirical risk for task T , η is a step-

size constant, ||θl||0 denotes the number of non-zero entries in the parameters of l-th layer θl, kl
controls the sparsity level of the l-th layer, and L is the total number of layers in the network.

In general, the mathematical formulation of task distribution p(T ) is unknown but we usually have
access to a set of i.i.d. training tasks S = {Ti}Mi=1 sampled from p(T ). Thus the following empirical
version of the population form in equation 1 is alternatively considered for training:

min
θ
RS(θ) :=

1

M

M∑
i=1

[
LDquery

Ti

(
θ − η∇θLDsupp

Ti
(θ)
)]
, s.t. ‖θl‖0 ≤ kl, l ∈ [L]. (2)

To compare with MAML, our model shares an identical objective function but with the layer-wise
sparsity constraints ‖θl‖0 ≤ kl imposed for the purpose of enhancing learnability of the over-
parameterized meta-initialization network. In view of the “lottery ticket hypothesis” (Frankle &
Carbin, 2018), the model in equation 2 can be interpreted as a first-order meta-learner for estimating
a subnetwork, or a “winning ticket”, for future task learning. Given the strong statistical efficien-
cy and generalization guarantees of sparsity models (Yuan et al., 2018; Arora et al., 2018), such a
subnetwork is expected to achieve advantageous generalization performance over the dense initial-
ization networks learned by vanilla MAML.

3.3 GENERALIZATION PERFORMANCE ANALYSIS

We now analyze the generalization performance of the sparsity constrained meta-learning model
in equation 2. Let p be the total number of parameters in the over-parameterized network and
Θ ⊆ Rp be the domain of interest for θ. Let k =

∑L
l=1 kl be the total desired sparsity level of the

subnetwork. Our first result is a uniform convergence bound for the k-sparse neural networks.
Theorem 1. Assume that the domain of interest Θ is bounded byR and the loss function `(fθ(x), y)
is G-Lipschitz continuous and H-smooth with respect to θ. Then for any δ ∈ (0, 1), with probability
at least 1− δ over the random draw of S, the generalization gap is uniformly upper bounded as

sup
‖θl‖0≤kl,l∈[L]

|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k/δ) + k2 log(M) log(ep/k)

M

)
.

We remark that the dominant term O
(√

k2 log(M) log(ep/k)/M
)

in the above uniform conver-
gence bound is paid for not knowing the sparsity pattern of an arbitrary k-sparse subnetwork. Com-
paring to theO

(√
p log(M) log(p)/M

)
uniform bound in Lemma 1 (see Appendix A.1) for dense

networks, the uniform bound established in Theorem 1 is stronger when p � k2, which shows the
benefit of sparsity constraint imposed on the meta-initialization network. Although quite general,
the uniform generalization bound established in the above theorem is still relatively loose due to the
k2 factor appeared in the bound. We next show how to improve upon such a uniform bound via
further exploring the optimality of the estimated subnetwork.

Let J = {J ⊆ [p] : |Jl| = kl} be the set of index set with layer-wise cardinality kl, l ∈ [L],
and let J ∗ := {J : J ∈ J |minsupp(θ)=J R(θ) ≤ minsupp(θ′)∈J R(θ′)}. Our analysis also re-
lies on the quantity ∆ := minsupp(θ′)∈J\J ∗ R(θ′) − minsupp(θ)∈J ∗ R(θ) which measures the gap
between the smallest k-sparse meta-loss value and the second smallest k-sparse meta-loss value.
The following theorem shows the improved generalization gap bound for the sparse meta-learner
θS := arg minsupp(θ)∈J RS(θ).
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Theorem 2. Assume that the domain of interest is bounded by R and the loss function `(fθ(x), y)
is G-Lipschitz continuous and H-smooth with respect to θ. Assume that M is sufficiently large such

that ∆ = Ω

(
GR(1 + ηH)

√
k log(M) log(k/δ)+k2 log(M) log(ep/k)

M

)
. Then for any δ ∈ (0, 1) the

generalization gap of θS is upper bounded by

|R(θS)−RS(θS)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k|J ∗|/δ)

M

)
.

Remark 1. As is expected that the larger the gap value ∆ is, the easier the condition ∆ =

Ω
(√

k2 log(M) log(ep/k)/M
)

can be fulfilled with respect to the meta-sample size M .

Theorem 2 mainly conveys the message that the generalization gap of θS is upper bounded by
O
(√

k log(M) log(k|J ∗|)/M
)

with high probability. Since |J ∗| is expected to be much smaller

than |J | = O
(
(p/k)k

)
, this bound would be substantially tighter than the corresponding uniform

convergence bound established in Theorem 1 when |J ∗| � |J | (e.g., |J ∗| = O(1)). Specially,
the following corollary shows that if further assuming restricted strong convexity and certain signal
strength condition on the meta-loss function R, then J ∗ will be a singleton and thus the bound in
Theorem 2 holds with |J ∗| = 1. We denote θmin the smallest (in magnitude) nonzero element of θ.
Corollary 3. Assume thatR(θ) is µ2k-strongly convex. Suppose that there exists a k-sparse vector
θ̄ such that ‖θ̄l‖0 ≤ kl,∀l ∈ [L] and θ̄min > 2

√
2k‖∇R(θ̄)‖∞/µ2k. Assume that the conditions

in Theorem 2 hold. Then for any δ ∈ (0, 1) the generalization gap of θS is upper bounded by

|R(θS)−RS(θS)| ≤ O
(√

k log(M) log(k/δ)/M
)

.

Remark 2. Particularly, if there exists a layer-wise sparse stationary point θ̄ such that∇R(θ̄) = 0,
then the signal strength condition θ̄min > 2

√
2k‖∇R(θ̄)‖∞/µ2k can be naturally satisfied.

4 ALGORITHM

We have implemented the proposed sparse meta-learning model 2 based on Reptile (Nichol et al.,
2018) which is a scalable method for solving the meta-learning model of the form 2 but without
layer-wise sparsity constraint. In order to handle the sparsity constraint, we follow the principles
behind the widely applied dense-sparse-dense (DSD) (Han et al., 2016) and iterative hard thresh-
olding (IHT) (Jin et al., 2016) network pruning algorithms to alternate the Reptile iteration between
pruning insignificant weights in each layer and retraining the pruned network.

4.1 MAIN ALGORITHM: REPTILE WITH ITERATIVE NETWORK PRUNING

The algorithm of our network-pruning-based Reptile method is outlined in Algorithm 1. The learn-
ing procedure contains a pre-training phase followed by an iterative procedure of network pruning
and retraining. We want to emphasize that since our ultimate goal is not to do network compression,
but to reduce meta-overfitting via controlling the sparsity level of the meta-initialization network, the
final output of our algorithm is typically dense after the retraining phase which has been evidenced
in practice to be effective for improving the prediction accuracy. In the following subsections, we
describe the key components of our algorithm in details.

4.1.1 MODEL PRETRAINING

For model pre-training, we run a few number of Reptile iteration rounds to generate a relatively
good initialization. In each loop of the Reptile iteration, we first sample a mini-batch of meta-tasks
{Ti}si=1 from the task distribution p(T ). Then for each task Ti, we compute the adapted parameters
via (stochastic) gradient descent as θ̃Ti

= θ(0) − η∇θLDsupp
Ti

(θ(0)), where θ̃Ti
denotes the task-

specific parameters learned from each task Ti, θ(0) is the current initialization of model parameters,
η is the inner-task learning rate, and DsuppTi

denotes the support set of task Ti. When all the task-
specific parameters are updated, the initialization parameters will be updated according to θ(0) =
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Algorithm 1: Reptile with Iterative Network Pruning

Input : inner loop learning rate η, outer loop learning rate β, layer-wise sparsity level {kl}Ll=1,
mini-batch batch size s for meta training.

Output: θ(t).
Initialization Randomly initialize θ(0).
/* Pre-training with Reptile */
while the termination condition is not met do

Sample a mini-batch tasks {Ti}si=1 of size s;
For each task Ti, compute the task-specific adapted parameters using gradient descent:

θ̃Ti = θ(0) − η∇θLDsupp
Ti

(θ(0));

Update the parameters: θ(0) = θ(0) + β
(

1
s

∑s
i=1 θ̃Ti

− θ(0)
)

.

end
for t = 1, 2, ... do

/* Pruning phase */

Generate a network zero-one maskM(t) whose non-zero entries at each layer l are those top kl
entries in θ(t)

l ;
Compute θ(t)

M = θ(t) �M(t);
/* Subnetwork fine-tune with Reptile */
while the termination condition is not met do

Sample a mini-batch tasks {Ti}si=1 of size s;
For each task Ti, compute the adapted parameters using gradient descent:

θ̃Ti = θ
(t)
M − η∇θLDsupp

Ti
(θ

(t)
M);

Update the parameters: θ(t) = θ
(t)
M + β

(
1
s

∑s
i=1 θ̃Ti

− θ(t)
M

)
;

Compute θ(t)
M = θ(t) �M(t);

end
/* Retraining phase */

Set θ(t) ← θ
(t)
M;

while the termination condition is not met do
Sample a mini-batch tasks {Ti}si=1 of size s;
For each task Ti, compute the adapted parameters using gradient descent:

θ̃Ti
= θ(t) − η∇θLDsupp

Ti
(θ(t));

Update the parameters: θ(t) = θ(t) + β
(

1
s

∑s
i=1 θ̃Ti

− θ(t)
)

.

end
end

θ(0) +β
(

1
s

∑s
i=1 θ̃Ti

− θ(0)
)

with learning rate β. Here we follow Reptile to use 1
s

∑s
i=1 θ̃Ti

−θ(0)

as an approximation to the negative meta-gradient, which has been evidenced to be effective for
scaling up the MAML-type first-order meta-learning models (Nichol et al., 2018).

4.1.2 ITERATIVE NETWORK PRUNING AND RETRAINING

After model pre-training, we proceed to the main loop of our Algorithm 1 that carries out iterative
network pruning and retraining.

Pruning phase. In this phase, we first greedily truncate out of the model a portion of near-zero
parameters which are unlikely to contribute significantly to the model performance. To do so, we
generate a network binary mask M(t) whose non-zero entries at each layer l are those top kl (in
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magnitude) entries in θ(t)
l , and compute θ(t)

M = θ(t) �M(t) as the sparsity restriction of θ(t). Then
we fine-tune the subnetwork over the maskM(t) by applying Reptile restrictively to this subnetwork
with initialization θ(t)

M. Our numerical experience suggests that sufficient steps of subnetwork fine-
tuning tends to substantially improve the stability and convergence behavior of the method.

The fine-tuned subnetwork θ(t)
M at the end of the pruning phase is expected to reduce the chance of

overfitting to noisy data. However, it is also believed that such subnetwork will reduce the capacity
of the network, which could in turn lead to potentially biased learning with higher training loss.
To remedy this issue, inspired by the retraining trick introduced in (Han et al., 2016) for network
pruning, we propose to restore the pruned weights that would be beneficial for enhancing the model
representation power to improve the overall generalization performance in average.

Retraining phase. In this phase, the layer-wise sparsity constraints are relaxed and the pruned
parameters are re-activated for fine-tuning. The retraining procedure is almost identical to the pre-
training phase, but with the main difference that the former is initialized with the subnetwork gen-
erated by the pruning phase while the latter uses random initialization. Such a retraining operation
restores the representation capacity of the pruned parameters, which tends to lead to improved gen-
eralization performance in practice. For theoretical justification, roughly speaking, since the sparse
meta-initialization network obtained in the pruning phase generalizes well in light of Theorem 1 and
Theorem 2, it is expected to serve as a good initialization for future retraining via gradient descent.
Then according to the uniform stability theory of gradient descent methods in (Hardt et al., 2016)
the output dense network will also generalize well if the retraining phase converges fast.

4.2 TWO SPECIAL IMPLEMENTATIONS

Reptile with DSD pruning. The DSD method is an effective network pruning approach for prevent-
ing the learned model from capturing noise during the training (Han et al., 2016). By implementing
the main loop with t = 1, the proposed Algorithm 1 reduces to a DSD-based Reptile method for
first-order meta-learning.

Reptile with IHT pruning. The IHT method (Jin et al., 2016) is another representative network
pruning approach which shares a similar dense-sparse-dense spirit with DSD. Different from the
one-shot weight pruning and network training by DSD, IHT is designed to perform multiple rounds
of iteration between pruning and retraining, and hence is expected to have better chance to find an
optimal sparse subnetwork than DSD does. By implementing the main loop of Algorithm 1 with
t > 1, we actually obtain a variant of Reptile with IHT-type network pruning.

5 EXPERIMENTS

This section is devoted to illustrating the empirical performance of our proposed algorithms when
evaluated on two benchmark datasets Omniglot (Lake et al., 2011) and MiniImageNet (Vinyals et al.,
2016). The baseline algorithms considered for comparison include Reptile and CAVIA (Zintgraf
et al., 2019). The model used throughout the experiment contains 4 sequential modules. Each
module has a convolutional layer with 3×3 kernel, followed by a batch normalization and a ReLU
activation. Additionally for the experiments on MiniImageNet, a 2× 2 max-pooling pooling is used
on the batch normalization layer output while for Omniglot a stride of 2 is used in convolution.
The above network structure design is consistent with those considered for Reptile in (Nichol et al.,
2018). We test with varying channel number {32, 64, 128, 256} in each convolution layer to show
the robustness of our algorithms to meta-overfitting.

There are several additional hyper-parameters in our approach including the number of iterations
for pre-training, pruning and retraining phases. These hyper-parameters are selected from a smal-
l number of candidate configurations based on our numerical experience with optimal validation
performance.

5.1 FEW-SHOT CLASSIFICATION ON OMNIGLOT

Dataset. The Omniglot dataset has 1623 characters from 50 alphabets. Each character contains
20 instances drawn by different individuals. The size of each image is 28×28. We randomly select
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1200 characters for meta training and the rest are used for meta testing. Following (Santoro et al.,
2016), we also adopt a data augmentation strategy based on image rotation to enhance performance.

Experimental Settings. In DSD-based Reptile training, we set the iteration numbers of pre-
training, pruning/fine-tuning and retraining as 3 × 104, 5 × 104 and 2 × 104, respectively. For
IHT-based Reptile model training, we first pre-train the model. Then we iterate between the sparse
model fine-tuning (with 1.5×104 iterations) and dense-model retraining (with 5×103 iterations) for
t = 4 rounds. The setting of other model training related parameters is identical to those in Nichol
et al. (2018). For this group of experiments, the inner-task learning rate is 0.001 and the number of
inner-task gradient descent steps is 5. The inter-task learning rate is initialized as 1.0 and the value
decays during the entire learning process.

Table 1: Results on Omniglot with different number of channels
and pruning rates. The “±” indicates 95% confidence intervals.

Methods 5-way 1-shot 5-way 5-shot
Reptile baseline (32) 96.63±0.17% 99.31±0.07%
Reptile baseline (64) 97.68±0.10% 99.48±0.06%
Reptile baseline (128) 97.99±0.11% 99.60±0.13%
Reptile baseline (256) 98.05±0.13% 99.65±0.06%

DSD+Reptile (32, 10%) 96.42±0.17% 99.38±0.07%
DSD+Reptile (64, 10%) 97.64±0.02% 99.50±0.05%
DSD+Reptile (128, 10%) 98.04±0.10% 99.61±0.10%
DSD+Reptile (256, 10%) 98.12±0.12% 99.68±0.05%
IHT+Reptile (32, 20%) 96.54±0.17% 99.57±0.06%
IHT+Reptile (64, 30%) 97.77±0.15% 99.52±0.06%

IHT+Reptile (128, 20%) 98.22±0.12% 99.64±0.05%
IHT+Reptile (256, 10%) 98.16±0.12% 99.66±0.05%

Results. We present the result-
s of 5-way classification accura-
cy comparison in Table 1. More
results are available in Table 4 in
Appendix B. The results of Rep-
tile with varying channel num-
ber are treated as baseline result-
s. The results in Table 1 show
that when using fewer channel-
s (e.g. 32 and 64), both DSD
and IHT based Reptile algorithms
achieve comparable performance
to baselines. When the channel
size increases to 128 and 256, s-
lightly improved performance can
be observed. This is consisten-
t with our analysis that overfit-
ing is more likely to happen when
channel number is relatively large
and weight pruning helps to re-
duce overfitting, which then leads to accuracy improvement with retraining operation.

5.2 FEW-SHOT CLASSIFICATION ON MINIIMAGENET

Dataset. The MiniImageNet dataset consists of 100 classes from the ImageNet
dataset (Krizhevsky et al., 2012) and each class contains 600 images of size 84 × 84×3.
There are 64 classes are used for training, 12 classes for validation and 24 classes for testing.

Experimental Settings. For DSD-based Reptile, with 32 channels, we set the iteration numbers
for the pre-traning, pruning and retraining phases respectively as 3×104, 5×104 and 2×104, while
with 64, 128, 256 channels, the corresponding number is 3× 104, 6× 104 and 104 respectively. For
IHT-based Reptile, the setting of iteration numbers is the same as those in Section 5.1. Besides, we
also evaluate our method on ResNet-18 (He et al., 2016) with DSD-based Reptile. For ResNet-18,
we set different pruning rates for residual blocks with different channels. The first convolutional
layer is not pruned. For residual block with 64 channels, 128 channels, 256 channels, 512 channels
and fully-connected layer, the corresponding pruning rates are 40%, 60%, 60%, 70%, 70% and the
corresponding iteration numbers are 3× 104, 6× 104, 104 iterations, respectively. For this group of
experiments, the inner-task learning rate is 0.001 and the number of inner-task iteration loops is 8.
The initial inter-task learning rate is 1.0 which will decay during the learning process.

Results. The classification accuracies of DSD-based Reptile approach, IHT-based Reptile ap-
proach and baselines on MiniImageNet dataset are presented in Table 2. More results are provided in
Table 5 in Appendix B. From these results, we can observe that our methods consistently outperform
the considered baselines. The following observations can be highlighted:

• In the 32-channel setting in which the model is less prone to overfit, when applying DSD-based
Reptile with 40% pruning rate, the accuracy gain is 0.5% on 5-way 1-shot tasks and 1.5% on
5-way 5-shot tasks. In the 64-channel setting, our IHT-based Reptile approach respectively im-
proves about 1.5% and 1.95% over the baselines on 5-way 1-shot tasks and 5-way 5-shot tasks.
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(a) DSD-based Reptile in the 64-channel setting (b) IHT-based Reptile in the 128-channel setting

Figure 2: Demonstration of overfitting reduction with network pruning: (a) DSD-based Reptile in
the setting of 64-channel and 5-way tasks. (b) IHT-based Reptile in the setting of 128-channel and
5-way tasks. In most cases, the gap between training accuracy and testing accuracy reduces as the
pruning rate increases, which confirms that both our DSD and IHT-based Reptile approaches can
considerably ease meta-overfitting.

In the setting of 128-channel, the accuracy of DSD-based Reptile on 5-way 1-shot tasks is nearly
3% higher than the baseline while on 5-way 5-shot tasks the gain is about 4.47%.

• As expected that ResNet-18 exhibits severe overfitting and DSD-based Reptile can improve∼ 8%
upon baseline in this case.

• In the 128-channel setting, the accuracies of our approaches are all higher than those of CAVIA,
and the highest gain of accuracy is over 3%.

Table 2: Results on MiniImageNet with different number of
channels and pruning rates.

Methods 5-way 1-shot 5-way 5-shot
Reptile baseline (32) 50.30±0.40% 64.27±0.44%
Reptile baseline (64) 51.08±0.44% 65.46±0.43%
Reptile baseline (128) 49.96±0.45% 64.40±0.43%
Reptile baseline (256) 48.60±0.44% 63.24±0.43%
CAVIA baseline (32) 47.24±0.65% 59.05±0.54%

CAVIA baseline (128) 49.84±0.68% 64.63±0.54%
CAVIA baseline (512) 51.82±0.65% 65.85±0.55%

DSD+Reptile (32, 40%) 50.83±0.45% 65.24±0.44%
DSD+Reptile (64, 30%) 51.91±0.45% 67.23±0.43%
DSD+Reptile (128, 50%) 52.08±0.45% 68.87±0.42%
DSD+Reptile (256, 60%) 53.00±0.45% 68.04±0.42%

IHT+Reptile(32, 20%) 50.26±0.47% 63.63±0.45%
IHT+Reptile(64, 40%) 52.59±0.45% 67.41±0.43%
IHT+Reptile(128, 40%) 52.73±0.45% 68.69±0.42%
IHT+Reptile(256, 60%) 49.85±0.44% 66.56±0.42%

ResNet-18(baseline) 39.22±0.45% -
DSD+ResNet-18 47.23±0.47% -

It is also worth noting from Ta-
ble 2 that the accuracy of our
algorithms tends to increase as
the channel size increases while
the baselines behave opposite-
ly. Although in 256-channel
case the performance of IHT-
based approach drops compared
with the 128-channel setting, it
still achieves ∼ 1.2% accuracy
gain over the baseline on 5-way
1-shot tasks and ∼ 3.32% on 5-
way 5-shot tasks. These result-
s clearly confirm the robustness
of our algorithms to the meta-
overfitting suffered from the over-
parameterization of CNNs.

Figure 2 plots the evolving curves
of training accuracy and testing
accuracy under varying pruning
rates from 0 to 40% for DSD and
IHT based Reptile. From these
curves we can clearly observe that
in most cases, the gap between
training accuracy and testing ac-
curacy reduces when the pruning rate increases, which confirms our theoretical predictions in The-
orem 1 and Theorem 2 that sparsity matters in alleviating meta-overfitting.

5.3 ABLATION STUDY

In order to gain better understanding of the impact of dense retraining on the task-specific testing
performance, we further carry out an ablation study. For the purpose of fair comparison, only the
retraining phase is removed and other settings are the same as proposed in Section 5.1 and 5.2. This
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Table 3: Results of ablation study in the 5-way setting. The “±” shows 95% confidence intervals.

Methods Retraining 5-way 1-shot 5-way 5-shot
Reptile baseline(64) - 51.08±0.44% 65.46±0.43%

Reptile baseline(128) - 49.96±0.45% 64.40±0.43%
DSD+Reptile(64, 40%) × 43.92±0.43% 60.09±0.45%
DSD+Reptile(128, 60%) × 47.06±0.44% 55.07±0.44%
IHT+Reptile(64, 40%) × 40.03±0.41% 60.59±0.45%

IHT+Reptile(128, 60%) × 42.01±0.42% 52.71±0.45%
DSD+Reptile(64, 40%)

√
51.96±0.45% 66.64±0.43%

DSD+Reptile(128, 60%)
√

52.27±0.45% 68.44±0.42%
IHT+Reptile(64, 40%)

√
52.59±0.45% 67.41±0.43%

IHT+Reptile(128, 60%)
√

52.95±0.45% 68.04±0.42%

(a) Ablation study on DSD-based Reptile (b) Ablation study on IHT-based Reptile

Figure 3: Ablation study: Overfitting reduction by DSD and IHT based Reptile without retraining.

study is conducted on MiniImageNet dataset for both DSD-based and IHT-based Reptile approaches.

The results of ablation study are listed in Table 3. It can be clearly seen from this group of results
that the retraining phase plays an important role in the accuracy performance of our method. Under
the same pruning rate, without the retraining phase, the accuracy of both DSD-based and IHT-based
Reptile approach drops dramatically. For an instance, in the 64-channel case with 40% pruning rate,
the variant of IHT-based Reptile without retraining phase suffers from a ∼ 11% drop in accuracy
compared with the baseline. On the other side, as shown in Figure 3 that sparsity structure of the
network does help to reduce the gap between training accuracy and testing accuracy even with the
retraining phase removed. This confirms the benefit of sparsity for generalization gap reduction as
revealed by Theorem 1 and 2. Therefore, the network pruning phase makes the model robust to over-
fitting but in the meanwhile tend to suffer from the deteriorated training loss. The retraining phase
helps to restore the capacity of the model to further improve the overall generalization performance.

6 CONCLUSION

In this paper, we proposed a sparsity-constrained meta-learning approach for overfitting reduction
when using over-parameterized neural networks. We have theoretically proved that the generaliza-
tion gap bounds of the sparse meta-learner have polynomial dependence on the sparsity level rather
than the number of parameters. Our approach has been implemented in a scalable meta-learning
framework of Reptile with the sparsity level of parameters maintained by network pruning routines
including dense-sparse-dense and iterative hard thresholding. Extensive experimental results on
benchmark few-shot classification datasets confirm our theoretical predictions and demonstrate the
power of network pruning and retraining for improving the generalization performance of gradient-
optimization-based meta-learning approaches.
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A TECHNICAL PROOFS

A.1 PROOF OF THEOREM 1

We need the following lemma which guarantees the uniform convergence of RS(θ) towards R(θ)
for all θ when the loss function is Lipschitz continuous and smooth, and the optimization is lim-
ited on a bounded domain. The lemma is essentially an implication of the uniform convergence
bound in (Shalev-Shwartz et al., 2009, Theorem 5) to our problem regime without imposing sparsity
constraint.

Lemma 1. Assume that the domain of interest Θ ⊆ Rp is bounded by R and the loss function
`(fθ(x), y) is G-Lipschitz continuous and H-smooth with respect to θ. Then for any δ ∈ (0, 1), the
following bound holds with probability at least 1 − δ over the random draw of sample set S for all
θ ∈ Θ,

|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
p log(M) log(p/δ)

M

)
.

Proof. Let us denote f(θ) := LDsupp
Ti

(
θ − η∇θLDsupp

Ti
(θ)
)

. Since `(fθ(x), y) is G-Lipschitz con-
tinuous with respect to θ, we can show that

|f(θ)− f(θ′)| ≤G‖θ − η∇θLDsupp
Ti

(θ)− θ′ + η∇θLDsupp
Ti

(θ′)‖

≤G
(
‖θ − θ′‖+ η‖∇θLDsupp

Ti
(θ)−∇θLDsupp

Ti
(θ′)‖

)
≤G(1 + ηH)‖θ − θ′‖,

which indicates that f is G(1 + ηH)-Lipschitz continuous. The desired bound then follows readily
from the uniform convergence bound in (Shalev-Shwartz et al., 2009, Theorem 5).

Based on this lemma, we can readily prove the main result in the theorem.

Proof of Theorem 1. For any fixed supporting set J ∈ J , by applying Lemma 1 we obtain that the
following uniform convergence bound holds for all w with supp(θ) ⊆ J with probability at least
1− δ over S:

|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k/δ)

M

)
.

Since by constraint the parameter vector θ is always k-sparse, we thus have supp(θ) ∈ J . Then by
union probability we get that with probability at least 1−δ, the following bound holds for all w with
‖θ‖0 ≤ k:

|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k/δ) + k log(M) log(|J |)

M

)
.

It remains to bound the cardinality |J |. From (Rigollet, 2015, Lemma 2.7) we know |J | =
(
p
k

)
≤(

ep
k

)k
, which then implies the desired generalization gap bound. This completes the proof.

A.2 PROOF OF THEOREM 2

Proof of Theorem 2. Let us now consider the following set of events associated with S:

E1 :

{
S ∈ T M : sup

supp(θ)∈J
|R(θ)−RS(θ)| < ∆

2

}
, E2 :

{
S ∈ T M : supp(θS) ∈ J ∗

}
,

E3 :

{
S ∈ T M : sup

supp(θ)∈J ∗
|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k|J ∗|/δ)

M

)}
,
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and

E :

{
S ∈ T M : |R(θS)−RS(θS)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k|J ∗|/δ)

M

)}
.

We first show that E1 ⊆ E2. Indeed, if the event E1 occurs, then from the optimality of θS we can
see that for any θ with supp(θ) ∈ J

R(θS) < RS(θS) +
∆

2
≤ RS(θ) +

∆

2
≤ R(θ) + ∆.

Particularly, for any θ with supp(θ) ∈ J ∗, the above bound leads to R(θS) − R(θ) < ∆ which
according to the definition of ∆ immediately implies supp(θS) ∈ J ∗. Therefore, we must have
E1 ⊆ E2. By invoking Theorem 1 we know that the following holds with probability at least 1−δ/2:

sup
supp(θ)∈J

|R(θ)−RS(θ)| ≤ O

(
GR(1 + ηH)

√
k log(M) log(k/δ) + k2 log(M) log(ep/k)

M

)
<

∆

2
,

which implies that under the given conditions on M ,
P (E2) ≥ 1− δ/2.

Next we verify that E ∩ E2 ⊇ E3 ∩ E2. Indeed, for any S ∈ E3 ∩ E2, it follows immediately that
S ∈ E under the condition on the sample size M , and thus S ∈ E ∩ E2. By invoking Lemma 1 with
union probability over J ∗ we obtain that

P (E3) ≥ 1− δ/2.
Then, we can derive

P(E) ≥ P(E ∩ E2) ≥ P(E3 ∩ E2) ≥ 1− P(E3)− P(E2) ≥ 1− δ.
This proves the desired generalization gap bound.

A.3 PROOF OF COROLLARY 3

The following lemma, which shows that the support of θ∗ is unique under the provided conditions,
is key to the proof the theorem.
Lemma 2. Assume that R(θ) is µ2k-strongly convex. Suppose that there exists a k-sparse vector θ̄
such that ‖θ̄l‖0 ≤ kl,∀l ∈ [L] and

θ̄min >
2
√

2k‖∇R(θ̄)‖∞
µ2k

.

Then J̄ = supp(θ̄) is the only element in J ∗.

Proof. Let us consider any fixed J ∈ J ∗ and denote θ∗ = arg minsupp(θ)=J R(θ). Then from the
definition of J ∗ we haveR(θ∗) ≤ R(θ̄). SinceR(θ) is µ2k-strongly convex,

R(θ∗) ≥R(θ̄) + 〈∇R(θ̄), θ∗ − θ̄〉+
µ2k

2
‖θ∗ − θ̄‖2

≥R(θ̄)− ‖∇J∪J̄R(θ̄)‖‖θ∗ − θ̄‖+
µ2k

2
‖θ∗ − θ̄‖2

≥R(θ∗)− ‖∇J∪J̄R(θ̄)‖‖θ∗ − θ̄‖+
µ2k

2
‖θ∗ − θ̄‖2,

where the second inequality follows from Cauchy-Schwarz inequality. The above inequality then
implies

‖θ∗ − θ̄‖ ≤ 2‖∇J∪J̄R(θ̄)‖
µ2k

≤ 2
√

2k‖∇R(θ̄)‖∞
µ2k

.

Assume that J 6= J̄ . Then the above bound leads to

θ̄min ≤ ‖θ∗ − θ̄‖ ≤
2
√

2k‖∇R(θ̄)‖∞
µ2k

,

which contradicts the assumption on θ̄. Therefore, it must be true that J = J̄ for any J ∈ J ∗.

Proof of Corollary 3. The bound follows readily by combining Lemma 2 and Theorem 2.
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B ADDITIONAL EXPERIMENTAL RESULTS

This appendix contains full experimental results for Omniglot, MiniImageNet datasets, the consoli-
dated version of the tables found in the main text is included as well.

B.1 RESULTS ON OMNIGLOT DATASET

Table 4: Few Shot Classification results on Omniglot dataset for 4-layer convolutional network with
different channels on 5-way 1-shot and 5-way 5-shot tasks. The “±” shows 95% confidence intervals
over tasks. The evaluation baselines are run by us.

Methods 5-way 1-shot 5-way 5-shot
Reptile baseline(32) 96.63±0.17% 99.31±0.07%
Reptile baseline(64) 97.68±0.10% 99.48±0.06%

Reptile baseline(128) 97.99±0.11% 99.60±0.13%
Reptile baseline(256) 98.05±0.13% 99.65±0.06%

DSD+Reptile(32, 10%) 96.42±0.17% 99.38±0.07%
DSD+Reptile(32, 20%) 95.98±0.18% 99.33±0.07%
DSD+Reptile(32, 30%) 96.22±0.17% 99.23±0.08%
DSD+Reptile(32, 40%) 96.53±0.17% 99.37±0.07%
IHT+Reptile(32, 10%) 96.65±0.16% 99.49±0.06%
IHT+Reptile(32, 20%) 96.54±0.17% 99.57±0.06%
IHT+Reptile(32, 30%) 96.45±0.17% 99.52±0.06%
IHT+Reptile(32, 40%) 96.21±0.18% 99.48±0.07%
DSD+Reptile(64, 10%) 97.64±0.02% 99.50±0.05%
DSD+Reptile(64, 20%) 97.60±0.07% 99.49±0.04%
DSD+Reptile(64, 30%) 97.47±0.05% 99.49±0.05%
DSD+Reptile(64, 40%) 97.43±0.01% 99.45±0.03%
IHT+Reptile(64, 10%) 97.63±0.14% 99.49±0.06%
IHT+Reptile(64, 20%) 97.60±0.13% 99.57±0.06%
IHT+Reptile(64, 30%) 97.77±0.15% 99.52±0.06%
IHT+Reptile(64, 40%) 97.51±0.1% 99.48±0.07%

DSD+Reptile(128, 10%) 98.04±0.10% 99.61±0.10%
DSD+Reptile(128, 20%) 97.99±0.10% 99.62±0.12%
DSD+Reptile(128, 30%) 97.96±0.12% 99.63±0.12%
DSD+Reptile(128, 40%) 97.99±0.10% 99.61±0.10%
IHT+Reptile(128, 10%) 98.12±0.12% 99.63±0.06%
IHT+Reptile(128, 20%) 98.22±0.12% 99.64±0.05%
IHT+Reptile(128, 30%) 98.01±0.13% 99.65±0.05%
IHT+Reptile(128, 40%) 98.06±0.12% 99.63±0.06%
DSD+Reptile(256, 10%) 98.12±0.12% 99.68±0.05%
DSD+Reptile(256, 20%) 98.02±0.13% 99.66±0.05%
DSD+Reptile(256, 30%) 97.96±0.13% 99.67±0.05%
DSD+Reptile(256, 40%) 97.99±0.10% 99.63±0.06%
IHT+Reptile(256, 10%) 98.16±0.12% 99.66±0.05%
IHT+Reptile(256, 20%) 98.08±0.13% 99.69±0.05%
IHT+Reptile(256, 30%) 98.05±0.13% 99.64±0.05%
IHT+Reptile(256, 40%) 97.90±0.13% 99.65±0.05%

We performed our methods on CNNs with 32, 64, 128, 256 channels respectively as mentioned in
Section 5. The baselines and all the results of Omniglot dataset are reported in Figure 4. For each
case, both DSD-based Reptile approach and IHT-based Reptile approach are evaluated on various
pruning rates. The settings are the same as proposed in Section 5.1.

For 32-channel case and 64-channel cases, which is less prone to be overfitting, both DSD-based
Reptile approach and IHT-based Reptile approach can perform well. On 5-way 1-shot task settings,
it can be observed that the accuracy doesn’t drop too much and can achieve similar performance
as baselines. The accuracy of the worst result is the case of 32-channel CNNs with 20% pruning
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rate which drops about 0.65%, and the best one is the case of 64-channel CNNs with 30% pruning
rate that improves about 0.1%. On 5-way 5-shot task settings, most cases outperform the baseline.
As shown in the table, even in 32-channel case, when the pruning rate is 20%, the performance of
IHT-based Reptile imporves about 0.26%. For 128-channel and 256-channel cases, our method con-
sistently achieves better performance than the baselines. The most important is that with channels
added, the baselines keep increasing, but our method can still improve the performance, which can
manifest the impressive advantage of our method. Table ?? presents the hyper-parameters used in
all the Omniglot experiments.

B.2 RESULTS ON MINIIMAGENET DATASET

Here we report the detailed results of experiments on MiniImageNet dataset. We conduct our exper-
iments with ResNet-18 and CNNs with 32, 64, 128, 256 channels based on the settings detailed in
5.2.

Table 5: Few Shot Classification results on MiniImageNet dataset for 4-layer convolutional network
with different channels on 5 way setting. The “±” shows 95% confidence intervals over tasks. The
evaluation baselines are run by us.

Methods 5-way 1-shot 5-way 5-shot
Reptile baseline(32) 50.30±0.40% 64.27±0.44%
Reptile baseline(64) 51.08±0.44% 65.46±0.43%

Reptile baseline(128) 49.96±0.45% 64.40±0.43%
Reptile baseline(256) 48.60±0.44% 63.24±0.43%
CAVIA baseline (32) 47.24±0.65% 59.05±0.54%

CAVIA baseline (128) 49.84±0.68% 64.63±0.54%
CAVIA baseline (512) 51.82±0.65% 65.85±0.55%
DSD+Reptile(32, 10%) 50.65±0.45% 65.29±0.44%
DSD+Reptile(32, 20%) 49.94±0.43% 64.65±0.43%
DSD+Reptile(32, 30%) 50.18±0.43% 65.78±0.41%
DSD+Reptile(32, 40%) 50.83±0.45% 65.24±0.44%
IHT+Reptile(32, 10%) 50.45±0.45% 63.91±0.46%
IHT+Reptile(32, 20%) 50.26±0.47% 63.63±0.45%
IHT+Reptile(32, 30%) 50.21±0.44% 65.05±0.45%
IHT+Reptile(32, 40%) 49.74±0.46% 64.15±0.45%
DSD+Reptile(64, 10%) 50.98±0.45% 65.31±0.43%
DSD+Reptile(64, 20%) 51.91±0.45% 67.21±0.43%
DSD+Reptile(64, 30%) 51.91±0.45% 67.23±0.43%
DSD+Reptile(64, 40%) 51.96±0.45% 66.64±0.43%
IHT+Reptile(64, 10%) 52.23±0.45% 66.08±0.43%
IHT+Reptile(64, 20%) 52.13±0.46% 66.78±0.43%
IHT+Reptile(64, 30%) 51.98±0.45% 66.14±0.43%
IHT+Reptile(64, 40%) 52.59±0.45% 67.41±0.43%

DSD+Reptile(128, 30%) 51.98±0.45% 68.16±0.43%
DSD+Reptile(128, 40%) 52.15±0.45% 68.19±0.43%
DSD+Reptile(128, 50%) 52.08±0.45% 68.87±0.42%
DSD+Reptile(128, 60%) 52.27±0.45% 68.44±0.42%
IHT+Reptile(128, 30%) 51.64±0.45% 67.05±0.43%
IHT+Reptile(128, 40%) 52.73±0.45% 68.69±0.42%
IHT+Reptile(128, 50%) 52.76±0.45% 67.63±0.43%
IHT+Reptile(128, 60%) 52.95±0.45% 68.04±0.42%
DSD+Reptile(256, 60%) 53.00±0.45% 68.04±0.42%
IHT+Reptile(256, 60%) 49.85±0.44% 66.56±0.42%

ResNet-18(baseline) 39.22±0.45% -
DSD+ResNet-18 47.23±0.47% -
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From the table, we can obviously discover that our method achieves remarkable performance. From
the perspective of channels, for each case, the performance of our method improves obviously and
most results outperform the baselines. Meanwhile, our method reveals more impressive perfor-
mance with more channels since that while the accuracy of baseline decreases with channels added
in the network, the improvement becomes more prominent. For example, with DSD-based Reptile
approach on 5-way 1-shot task settings, for 32-channel case, the accuracy of the best performance
increases by about 0.5%, but for 64-channel, 128-channel case, the best improvement respective-
ly reaches 2.31% and 4.4%. For IHT-based Reptie settings, we can notice such phenomenon as
well. From the perspective of the pruning rate, we notice that for networks with different number of
channels, when under the same condition of pruning rate, networks with more channels will achieve
better performance. Although the overfitting problem on ResNet-18 is not addressed, it can be ob-
served that our method eases such phenomenon obviously. Our method also outperforms CAVIA
(Zintgraf et al., 2019), which can increase the network size without overfitting. These results demon-
strate that by introducing dense-sparse-dense pruning strategy to meta-learning, the pruning phase
can help to avoid learning the useless and thus ease the overfitting, and the retraining phase which
preserves the capacity of the model assist to improve the performance of the generalization.
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