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Abstract
In this paper, we investigate the correlation between the degree of detail (granular-
ity) in the source task and the quality of the learned features for transfer learning to
new tasks. For this purpose, we design a DNN for action classification and video
captioning. The same video encoding architecture is trained to solve multiple tasks
with different granularity levels. In our transfer learning experiments, we fine-tune
a network on a target task, while freezing the video encoding learned from the
source task. Experiments reveal that training with more fine-grained tasks tends to
produce better features for transfer learning. We use Something-Something dataset
with over 220, 000 videos, and multiple levels of granularity of the target labels.
With impressive coarse-grained and fine-grained classification results, our model
introduces a strong baseline on the new Something-Something captioning task.

1 Introduction
Fine-grained video understanding entails recognition of actions, objects, and spatiotemporal relations.
A successful framework needs to discriminate myriad variations of actions and interactions, not
unlike the emergence of fine-grained tasks in visual object recognition. To enable extracting rich
features from video, right kinds of tasks are needed to train the framework. There are various levels at
which we can describe actions, and these levels of granularity match naturally with compositionality
of language. For example, at a coarse-grained level we have actions like ’putting a pen’. Then we can
have similar actions that differ in relatively subtle ways, for instance, ’putting a pen beside the cup’,

’putting the pen in the cup’, or perhaps ’pretending to put the pen in the cup’. Adding prepositions
and categories like “pretending to put” gives us fine-grained action. The complexity of the task at this
level requires features that capture spatial relations. As the complexity of the task begins to match the
complexity of the world that we are trying to understand, it necessitates more powerful features in
order to discriminate these different scenes.
A two-channel DNN architecture is designed for video encoding. The same architecture is then
used for video classification and captioning. Training is performed on Something-Something dataset
[1], with 50 coarse-grained action groups, which are further broken to 174 closely related action
categories, and a caption authored by the crowd actor. These captions mirror the fine-grained action
category, but with placeholder Something replaced by the specific object(s). The main contributions
of this paper include:
1. Explore the link between label granularity and feature quality: We exploit 3 levels of granu-
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Figure 1: Our model architecture includes a video encoder, an action classifier, and an LSTM decoder
for caption generation.

larity in Something-Something, namely, action groups, action categories, and captions. Experiments
show that more fine-grained labels yield richer features.
2. Baselines for captioning on Something-Something data: We note that the captioning task is
new for this dataset; the original version did not provide captions.
3. Captioning as a source task for transfer learning: We show that models trained for captioning
learn features that transfer better to other tasks. To the best of our knowledge, captioning has, to date,
been used as a target task. Our results suggest that captioning is a powerful source task.
4. 20bn-kitchenware: We introduce a new dataset, ostensibly for video transfer learning.

2 Related Work
Video-based action classification dates back to seminal work by Laptev et al [2] with hand-tuned
features, while most recent approaches have focused on DNN features. Existing methods differ in the
way they aggregate information through time. Many approaches rely primarily on spatial features with
CNNs applied to individual frames [3]. Other approaches make use of spatiotemporal information
[4, 5]. Video captioning have received significant attention since the release of large-scale captioning
corpora, notably, Microsoft COCO [6] and MSR-VTT [7]. Captioning tasks, if designed appropriately,
could represent extremely detailed scene properties. Most existing captioning architectures are based
on an encoder-decoder framework [8, 9, 10]. The encoder is typically a convolutional or recurrent
convolutional network. Despite the significant attention to Video tasks, progress has lagged compared
to static images, in part because of the lack of large-scale corpora. Using web sources and human
annotators, larger datasets have been collected in recent years [11, 12]. More recently, crowd-sourced
data have emerged, where crowd actors are asked to generate videos depicting template actions [1, 13].
One of the most astonishing properties of neural networks is their ability to learn representations that
can be successfully transferred to other tasks[14, 15]. One motivation for studying fine-grained video
tasks is to understand and improve the potential for transfer learning on video domain.

3 Architecture
The video encoder, inspired in part by magno- and parvo-cellular pathways in visual cortex, first
processes the video through a spatial 2D-CNN and a spatio-temporal 3D-CNN in parallel (Fig. 2).
Our video encoder is most closely related to approaches that perform temporal reasoning via a
recurrent convolutional architecture [16, 17, 18]. It is also related to TwoStream architectures [19];
but our model does not explicitly use optical flow, opting instead for generic 3D CNN features. The
basic building block of each channel is a 3× 3× 3 (3× 3 in 2D-CNN channel) convolution filter with
batchnorm [20] and ReLU activation. Feature vectors from two channels are concatenated and then
fed to a 2-layer bidirectional LSTM. We average these features to get an encoding of the entire video,
h. This encoding is used by both the classifier and the captioning decoder(See Fig. 1). The action
classifier applies an FC layer to the encoder output h, followed by a softmax layer. For training we
use a cross-entropy loss over the action categories.

lossclassification = − log p(c|h; θ). (1)

The caption decoder is a two-layer LSTM which generates captions using a softmax over the
vocabulary words, conditioned on previously generated words. The loss used for a caption is the
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Figure 2: Our encoder includes a two-channel CNN followed by an LSTM for aggregating features.

Figure 3: 20bn-kitchenware samples: Using a knife to cut something (left), Trying but failing to pick
something up with tongs(right).

usual negative log-probability of the word sequence:

losscaptioning = −
N−1∑
i=0

log p(wi+1|w≤i, h; θ). (2)

where wi denotes the ith word of the caption, h is the video encoding, and θ denotes model
parameters. In order to optimize speed and memory usage during training, the length of captions
generated by the decoder is fixed at 14 words. We train using teacher-forcing [21], however at test
time, the input to the decoder at each time-step is the token generated at the previous time-step.

4 Tasks
We have trained our model end-to-end on 4 different tasks: Coarse-grained classification (on 50
action groups), fine-grained classification (on 174 action categories), captioning with simplified
object placeholders and fine-grained captioning with full object placeholders. Labels with more
subtle and fine-grained distinctions expose the ability (or inability) of a network to correctly infer the
scene properties encoded in the captions.

Coarse- and fine-grained classification Something-Something provides coarse-grained categories
called action groups, which comprise disjoint sets of fine-grained actions. Classification accuracy of
our model is at 57.60% on action groups. We use the same architecture and train it on fine-grained
action categories, and achieve 51.62%.
Captioning with simplified object placeholders We consider a captioning task in which we
modify the ground truth captions to only contain one word per placeholder. Table 1 shows an example
of the process. In the spectrum of granularity, captioning with simplified objects can be considered as
a middle ground between fine-grained action classification and captioning with full labels.
Fine-grained captioning with full object placeholders We also train networks on the full object
placeholders. This constitutes the finest level of action granularity. Table 2 summarizes the captioning
results. We evaluate the models using standard captioning metrics: BLEU [22], ROUGE-L [23] and
METEOR [24]. The captioning models produce impressive qualitative results with a high degree of
approximate action and object accuracy. For qualitative examples of captioning and classification,
please refer to the supplementary material.

5 Transfer Learning to 20bn-kitchenware:
We introduce 20bn-kitchenware, a few-shot video classification dataset that contains 390 videos of 13
action categories. This dataset contains video clips of manipulating a kitchen utensil for roughly 4
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Video ID 81955
Action Group Holding [something]
Action Category Holding [something] in front of [something]
Somethings “a blue plastic cap”, “a men’s short sleeve shirt”
Simplified somethings’s “cap”, “shirt”
Simplified-object Caption Holding cap in front of shirt
Full Caption Holding a blue plastic cap in front of a men short sleeve shirt

Table 1: An example of labels with different granularity levels for a Something-Something video

Task BLEU@4 ROUGE-L METEOR Exact-Match
Accuracy

Classification
Accuracy

SO captions 23.04 44.89 22.60 8.63 51.38
Full captions 17.61 41.28 19.69 3.76 50.56

Table 2: Performance of our two-channel models for captioning with simplified and full object
placeholders.

Figure 4: 20bn-kitchenware transfer learning results: averaged scores obtained using a VGG16,
an Inflated ResNet34, as well as two-channel models trained on coarse-grained classification(CG),
fine-grained classification(FG), simplified-object captions(SO), and full captions(FG). We report
results using 1, 5, or 10 training samples per class.

seconds(see Fig. 8). For each utensil X ∈ {fork, spoon, knife, tongs}, the target label belongs to
1 of 3 actions, namely, “Using X", “Pretending to use X" or “Trying but failing to use X". We also
include a fall-back class of “Doing other things". We encourage the model to pay attention to visual
details by including unused ‘negative’ objects in the scene.
5.1 Experiments
We explore transfer learning performance on 20bn-kitchenware as a function of source task granu-
larity. We consider two-channel models that are pre-trained on the four aforementioned tasks. We
also include a VGG16 network pre-trained on ImageNet, and an Inflated-ResNet34 pre-trained on
Kinetics1. For each pre-trained model, we fine-tune an MLP with 512 units on top of the penultimate
features from the frozen encoder, using only 10 samples per class. We evaluate 1-shot, 5-shot and
10-shot performance, averaging scores obtained over 10 runs. Figure 4 shows the average scores as
well as 95% confidence intervals. Our results support the contention that training on fine-grained
tasks leads to better features. The best model on this benchmark is our model trained on full captions.
In all our experiments we use frame rate of 12fps. During training we randomly pick 48 consecutive
frames. For videos with less than 48 frames, we replicate the first and last frames to achieve the
intended length. We resize the frames to 128× 128, and then use random cropping of size 96× 96.
For validation and testing, we use 96 × 96 center cropping. We optimize all models using Adam,
with an initial learning rate of 0.001.

6 Conclusion
Ever since ImageNet became popular as a generic feature extractor, a hypothesis has been that the
dataset size, the amount of detail and the variety of labels, drive a network’s capability to learn useful
features. This paper provides further evidence for that hypothesis, showing that task granularity has a
strong influence on the quality of the learned features for transfer learning. For the new task, given
the limited amount of training data, the action granularity and the presence of negative objects, we
hypothesize that only models that have some understanding of physical world properties will perform
well on this dataset. Our experiments support that fine-grained tasks generally leads to better features.

1https://github.com/kenshohara/3D-ResNets-PyTorch
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Supplementary Material

20bn-kitchenware:

Table 3 provides the full list of 20bn-kitchenware action categories.

Action categories
Using a fork to pick something up
Pretending to use a fork to pick something up
Trying but failing to pick something up with a fork
Using a spoon to pick something up
Pretending to use a spoon to pick something up
Trying but failing to pick something up with a spoon
Using a knife to cut something
Pretending to use a knife to cut something
Trying but failing to cut something with a knife
Using tongs to pick something up
Pretending to use tongs to pick something up
Trying but failing to pick something up with tongs
Doing other things

Table 3: The 13 action categories represented in 20bn-kitchenware.

The action categories in this dataset are somewhat ambiguous by design, we further encourage the
model to pay attention to visual details by including unused ‘negative’ objects in the scene. The last
row of Figure 8 shows one such example; while the target label indicates a manipulation of tongs, the
clip also contains a spoon with an egg in it that could fool a model which simply recognizes objects.

Figure 5: Using a knife to cut something

Figure 6: Pretending to use a spoon to pick something up

Figure 7: Trying but failing to pick something up with tongs

Figure 8: 20bn-kitchenware samples.

6.1 Baseline models for classification and captioning

As a classification baseline, we use ImageNet-pretrained models on individual frames, to which we
then add additional layers. For the first baseline, we use just the middle frame of the video, with a
classifier comprising a 2-layer MLP with 1024 hidden units. We also consider a baseline in which
we apply this approach to all 48 frames, after which we average the frame by frame predictions.
Lastly, we aggregate temporal information an LSTM layer with 1024 units. We report results in
Table 5. There is a marked improvement with the LSTM, confirming that this task requires some
form of temporal analysis. The number of features for VGG16 and Resnet152 are 4096 and 2048
respectively.
To the best of our knowledge there are no baselines for the Something-Something captioning task. To
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quantify the performance of our captioning models, we count the percentage of generated captions
that match ground truth word by word. We refer to this as “Exact-Match Accuracy”. This is a
challenging metric as the model is deemed correct only if it generates the entire caption correctly.
If we use the action category predicted by our model trained for classification, and replace all
occurrences of [something] with the most likely object string conditioned on that action class, the
Exact-Match accuracy is 3.15%. The same baseline for simplified object placeholders is 5.69%. We
also implemented a conventional encoder-decoder model for captioning 4.

Models BLEU@4 ROUGE-L METEOR Exact-Match
Accuracy

Classification
Accuracy

VGG16+LSTM 31.83 52.22 24.79 3.13 31.69
Resnet152+LSTM 31.93 51.76 24.89 3.25 28.82

Table 4: Captioning baselines using a conventional encoder-decoder architecture.

Models Test Accuracy
VGG16 + MLP 1024 (averaged over 48 frames) 17.57
VGG16 + LSTM 1024(48 steps) 31.69
ResNet152 + MLP 1024 (averaged over 48 frames ) 16.79
ResNet152 + LSTM 1024 (48 steps) 28.82

Table 5: Classification results on 174 action categories using VGG16 and ResNet152 as frame
encoders. For both MLP and LSTM we use 1024 hidden units before producing predictions.
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