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Abstract

Imaging can be used to capture detailed information about complex anatomical structures
such as vessel trees. This can help to detect disease such as stenosis (blockages) which is
important for diagnosis and clinical decision making. Current approaches for extracting
vasculature from images involve generating binary segmentation maps followed by further
processing. However, these binary maps may be sub-optimal, implicit representations of
the underlying geometry while trees seem a more natural way of describing vasculature.
In this work, we propose a novel image-to-tree approach, which is an end-to-end system
for extracting explicit tree representations of vasculature from biomedical scans. We de-
signed a moving patch algorithm that utilizes a U-Net component for predicting individual
tree nodes. The methodology is presented for both synthetically generated tree images
and publicly available Digital Retinal Vessel Extraction dataset (DRIVE). Using vascular
tree construction, we discuss applications to thickness estimation in diabetic retinopathy
prediction, and explore insights from visualizing these trees.
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1. Introduction

The system of distributed blood vessels across each part of the body constitutes the vascular
system, or vasculature. It is a crucial component to transfer oxygen and other nutrients
to distant organs through blood circulation. The study of vasculature is important to
characterize the flow of blood in lumens. Restricted blood flow through vessels can lead
to severe health problems. Narrowing of vessels can be caused by lesions, calcification or
plague reducing the area of the lumen. Aortic stenosis for example, restricts the blood flow
from the left ventricle to aorta and increases the risk of heart failure (Czarny and Resar,
2014). Such information about blood vessels is captured in biomedical scans. Current
approaches to extracting the vascular networks from these biomedical scans mostly involve
segmentation followed by further processing (Bates et al., 2017), (Chapman et al., 2015).
An elaborate survey of segmentation methodologies used was presented by Fraz et al. (Fraz
et al., 2012). However, it seems sub-optimal to deal with binary segmentation maps while
studying graph-like structures. We require a more interpretable and explicit way of modeling
the underlying geometry.
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In this work, we study an algorithm to directly retrieve a tree structure from an im-
age, hence called image-to-tree. We propose a ‘moving patch algorithm’ that progressively
moves over connected regions in the image, using a neural network at each region to con-
struct nodes and edges of the tree. We assess the performance of several neural networks
on a synthetically generated dataset and then apply it to biomedical scans. Synthetic data
consists of vasculature-like images generated with a piecewise linear assumption and a kine-
matics modeling approach. We use the best performing models from tree construction in
synthetic images to extract vascular trees from retinal images using DRIVE (Digital Retinal
Vessel Extraction) dataset. Edges of vascular trees thus derived contain vital information
about diabetic retinopathy in the arteriolar-to-venular width ratio (AVR) (Nguyen and
Wong, 2009). In this direction, we also discuss an algorithm that estimates the width of
each associated edge in the extracted vascular tree. We also present some insightful ways
of visualizing the trees using GraphViz and node2vec.

A work that closely resembles our moving-patch approach for image-to-tree is the 3D
vessel crawler by McIntosh and Hamarneh (2006). They propose a deformable object ap-
proach to crawl through 3D vessels. However, it is difficult to determine the prior shape
knowledge. On the other hand, our approach is entirely data-driven, and hence easily
extensible beyond vasculature construction. Discussion within this paper is organized as
follows. In Sections 2 and 3, we explain and evaluate image-to-tree for synthetic and real
data respectively. In Sec. 3.2, we discuss a method to predict edge thickness, corresponding
to vessel widths. In Sec. 4, we show two visualization approaches for vascular trees.

2. Image-to-tree for synthetic images

Working with synthetic images to demonstrate image-to-tree is useful because of two rea-
sons. First, its simplicity will help us to better understand the moving patch algorithm, and
second, because we can generate ample data, we can better compare different approaches.
We would like to generate images that have characteristics similar to that of a vascular
system. In order to achieve this, we discuss two methods to generate synthetic images. We
construct synthetic data, 2D images of size 51 x 51 pixels and consider trees which have
edges of width one, further we root the tree in the center top of the 2D image.

1. Piecewise linear model - In this approach, trees are grown downwards by succes-
sively sampling next node(s), starting from the root node based on a fixed spatial
probability matrix M (Figure 1(a)). Value M;; in this matrix denotes the prior of
moving in the corresponding direction, assuming that current node is located at the
top-center position. Moreover, at each node, there is an associated probability for
conditions of split and terminate. It is also checked that the new edge does not create
a cycle. Using Bresenham’s line joining algorithm (Bresenham, 1965), we sketch the
edges on a discrete pixel space, and add salt and pepper noise. A corresponding image
generated using a depth first procedure is shown in Figure 1(b)

2. Kinematics based model - With the piecewise linear trees, it is difficult to model
smooth vasculature-like bends. Here, we try to achieve this by assuming that the
tree nodes are generated by a point vector with velocity and acceleration attributes
i.e. Py = [Py, Dy, Vs, Uy, Az, ay] (Fig 1(¢)). The six values denote position, velocity and
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acceleration along the x and y axes respectively. At each point of edge generation, a
condition is sampled from {continue, split,terminate}:

e continue - Point P; moves to P11 with updated values of p;, py, vz, vy

e split - Point P splits into P/, and P/, ; with values updated according to
conservation of momentum and newton’s third law of equal and opposite reaction.

Sample image using depth first procedure of edge generation is shown in Fig 1(d)
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Figure 1: Two approaches for tree generation - piecewise linear model and kinematics model

2.1. Moving patch algorithm

Now that we have images which contain trees, we can define our algorithm to extract
tree-structures from images. Figure 2 explains the moving patch algorithm. For synthetic
images, the algorithm starts at the top center pixel of the image and samples a 11 x 11
patch. Then, it uses a predictor to output a 11 x 11 binary matrix, with ones corresponding
to position of next node. This output is then used to sample the next image patch on which
the predictor is run again and new node(s) are generated. The process continues until a
matrix of Os is reached, representing leaf state. In case of multiple predicted nodes (step
3,4 in Fig 2), they are processed on a depth first basis, storing the patch states on a stack.
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Figure 2: Explaining moving patch algorithm for a recurrent type predictor

The predictor mentioned above is a deep neural network trained such that it predicts
the position of the next nodes. Ground truth for such a predictor can be easily generated
by using a depth first search on our original noiseless image. As a choice of predictor, we
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experiment with four types of neural networks - Long Short Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997), Convolutional LSTMs (Xingjian et al., 2015), Deep
Convolutional Network (DCN) and U-Net (Ronneberger et al., 2015). Former two networks
use patch sequences as input (recurrent type), while the later two networks do not use
sequence history.

2.2. Evaluation

In order to quantify the efficacy of the predictors, or how well the extracted tree represents
the original tree there are several metrics which can be used to compare trees, here we are
interested in a metric which is agnostic of number of nodes, edges and emphasizes spatial
coverage. Since there is no single metric that captures all, we compute four measures -
precision, recall, Dice score and average Hausdorff distance. We use these four metrics to
evaluate the binary maps of tree generated by all four predictors.

Variation of Recall with threshold
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(a) Performance metrics vs threshold (b) Precision recall curve

Figure 3: Sequence-based (LSTM, ConvLSTM) vs sequence-less predictors (DCN, U-Net)

The predictors output a real number in the range [0,1] for each cell in the image patch.
A cutoff threshold is used to determine if a cell is predicted as a next node or not. Varying
this threshold gives a tradeoff between high precision and high recall. Variation of precision,
recall, Dice and haussdorff distance with threshold for all the models mentioned above is
shown in Fig. 3(a). Precision recall curves (PRC) for four predictors are shown in Fig.
3(b). It can be learnt from both these figures that sequence-less models perform better on
average. Specifically, U-Net shows the best performance from PRC analysis. Hence, we will
use U-Net for tree extraction in the next section.

3. Image-to-tree for Digital Retinal Images Vessel Extraction (DRIVE)

Study of vasculature can help us determine pathology in blood vessels and discover potential
stenosis/blockages. In our work, we focus on the retinal vasculature for mainly two reasons.
First, blood vessels present on the thin lining at the end of the eye possess useful indicators
for certain diseases like diabetes, macular degeneration, glaucoma and others, which could
be useful for diagnosis by an optometrist. Second, the dataset from retinopathy is widely
accessible for research allowing reproducibility of our results. In our experiments, we use
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the Digital Retinal Images for Vessel Extraction (DRIVE) dataset released by Staal et al.
(2004) for benchmarking vessel segmentation algorithms. The DRIVE dataset consists of 40
retinal images. Each image also has a labeling for the vessels, generated under supervision
of experienced ophthalmologists. Images are divided 20/20 into a training and testing set.

Ground truth for moving patch algorithm - For DRIVE dataset, we do not have
the ground truth information for next move. While in section 2.1, it was easy to locate the
point(s) of next move because trees were generated programmatically, this information is
absent in the real data. Also, vascular trees do not have a uniform edge width everywhere.
To overcome these issues, we use the available segmentation maps and define heuristics to
get ground truth move(s) at each position. Two heuristics are sequentially used for this.
Firstly, we skeletonize the segmentation. Since image-to-tree attempts to find the latent
centerline tree, it is important to reduce the variable thickness vasculature into one-pixel
wide skeleton. Morphological thinning (Lam et al., 1992) can be used to achieve this. Figure
4(b) shows the skeletonized version of the segmentation map in 4(a). After we have the one-
pixel wide skeleton, we use an edge-heuristic to locate the point(s) of next move. Among
several possible choices for this, our edge heuristic chooses the skeleton pixels crossing a
window at Chebyshev distance of 5 pixels from the center point. This heuristic gave best
results among others tried. Figure 4(¢) shows the next points (in green) for 21 x 21 patches.

Skeleton Patches Ground truth move

(a) Segmentation map (b) Skeletonized version (¢) Edge heuristic

Figure 4: Process of ground truth extraction: Skeletonization followed by edge heuristic

3.1. Evaluation for three levels of vascular tree construction

We want to train our model to learn where to move next for a given input patch. Before
training the models, it might be helpful to break our problem down into simpler levels,
so that we can compare problem complexity and results from experiments. Therefore, we
divide the more difficult problem into three levels of increasing order of difficulty. First,
skeleton-to-tree is the task of extracting a tree data structure from the skeleton map (Fig.
5(a)). Second, segmentation-to-tree is the task of extracting a tree data structure using the
segmented vessels (Fig. 5(b)). Similarly, retinal images to tree works on the raw retinal
images as shown in Fig. 5(c). While the data of later two levels is directly available in
DRIVE dataset, skeleton images are derived using morphological operations.

Model used for predicting the next node(s) in tree, or point(s) (corresponding to green
pixels in 4(¢)) for a patch of size 21 x 21 is a U-Net (Appendix A.1). Unlike single channel
images of skeleton and segmentation, we add some preprocessing for the RGB retinal images.
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(a) Skeleton map (b) Segmentation map (¢) Retinal image

Figure 5: Three levels of image-to-tree problems in increasing order of difficulty
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Figure 6: Performance metrics evaluated for all three levels of image-to-tree

Because of low signal to noise ratio in 21 x 21 x 3 retinal patches, we perform image
enhancement using histogram-equalization and histogram-specification (Osareh et al., 2002)
techniques. It was experimentally observed that using 9 channels (3 RGB + 3 histogram
equalized 4+ 3 histogram normalized) improves overall system performance. 5K patches
are randomly sampled from each of the 20 training images to obtain 100K patches overall.
Data is augmented by rotations. Because we do not have the notion of a “right” tree, we
use weak objective measures to compare different models and qualitative assessment for
overall construction. The four measures we use are again - precision, recall, Dice score and
Hausdorff distance. Fig 3.1 shows the comparison of these measures for the three levels. It
can be seen that trees from retinal images (green) are objectively not as good as the trees
from segmentation (orange) and skeleton (blue). Nevertheless, visually the extracted trees
look very reasonable (Appendix A.2).
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Figure 7: Predicting thickness of vessels

3.2. Predicting vessel thickness

Vessel width is an important marker for diagnosing Diabetic Retinopathy (DR). DR is
among the major causes of loss of vision in people of working age. An important indicator
is a low ratio of thickness of arteries to veins, also called AVR (Nguyen and Wong, 2009).
Kondermann et al. (Kondermann et al., 2007) proposed a method to classify a segmented
pixel as belonging to an artery or vein with an accuracy of 95.32%. In addition, we need
to compute thickness of categorized vessels. We can use the segmentation annotations in
DRIVE dataset to determine a ground truth thickness measure, against which we can train
a regressor. The number of thinning operations which reduces an edge in a segmentation
patch to an edge in skeleton patch is used as our thickness ground truth measure. Figure
7(a) shows some retinal image patches, along with the edges and determined thickness.
We train another U-Net that uses the same input patch as used for predicting the next
edge. Additionally, another channel of predicted edge direction is used along with 9 other
channels as before to train for corresponding edge’s width. Figure 7(b) shows the boxplot
of predictions. The root mean square error (RMSE) was roughly 0.1 pixel, implying a very
good performance. This technique, used in conjunction with an arteries-veins classifier by
Kondermann et al. (2007) could provide a good estimate of arteriolar-to-venular width ratio
(AVR) and help detecting eye blindness in early stages and assist clinical prognosis.

4. Visualizing vascular trees and insights

Given that we can construct vascular trees with good accuracy, here we explore techniques to
for visual assessment. The first visualization is based on graph embeddings using node2vec
(Grover and Leskovec, 2016) which is a popular technique for generating node embeddings.
The basic idea is that the lower dimension representations of a node must be similar to that
of the nodes in its topological neighborhood. A biased random walk is used to explore the
diverse neighborhood of a node for determining embeddings. Figures 8(a),8(b) (left-lower)
show node2vec visualizations of position colored nodes in the extracted tree for two DRIVE
images. This visualization can separate semi-vasculatures. We can also locate the point of
central retinal artery (or optic nerve) node from the overlapping region between two halves.
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(a) DRIVE test image 1 (b) DRIVE test image 4

Figure 8: Color coded nodes in original retinal image representation (left-top), GraphViz
output (right) and node2vec output (left-bottom) for two images from DRIVE

The second visualization we explore is based on edge connectivity. This paradigm helps
us visualize the branching structure by arranging the tree in a top down fashion.We perform
two preprocessing steps. First, we cluster nearby detected nodes into one node (mostly in
thick vessels). Second, we would like to avoid exceptionally long branches during visual-
ization. Hence, we condense n-length edges into unit length. We use an open source tool
called GraphViz (Ellson et al., 2001) to construct the tree creating a simplified layout for
a graph structure by solving a linear integer program that optimizes for visual assessment.
Fig 8 shows a flattened hierarchical arrangement produced by GraphViz. This can be used
to visually separate subtree segments as arteries or veins or to visualize the flow of our
moving patch algorithm, and hence model the directional flow of blood in lumens.

5. Conclusions

We propose a novel methodology to extract tree structures from images in an end-to-end
fashion. We show how this algorithm works for both synthetic and real datasets. We observe
that sequence-less models like deep convolutional neural network and U-Net show superior
performance than sequence-based models like LSTMs and ConvLSTMs. For real images,
we show performance of these networks on a digital retinopathy dataset (DRIVE). We also
show how vessel thickness estimation can be incorporated into this image-to-tree approach.
While results are preliminary, our exploration of visualization teachniques demonstrate the
potential of our approach for novel ways of analysis.
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Figure 9: U-Net model used for training on real and synthetic patch data

Appendix A. Additional figures and results
A.1. U-Net

U-Net used for tree construction is shown in Figure A.1. All convolution filters have size

3 x 3 and have sigmoid activation. Zero padding of input filter maps is applied wherever
required.

A.2. Reconstruction results for three levels
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Figure 10: Reconstruction results
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