
Efficiently Estimating Erdős-Rényi Graphs
with Node Differential Privacy

Adam Sealfon
MIT and UC Berkeley
asealfon@berkeley.edu

Jonathan Ullman
Northeastern University
jullman@ccs.neu.edu

Abstract

We give a simple, computationally efficient, and node-differentially-private algo-
rithm for estimating the parameter of an Erdős-Rényi graph—that is, estimating
p in a G(n, p)—with near-optimal accuracy. Our algorithm nearly matches the
information-theoretically optimal exponential-time algorithm for the same problem
due to Borgs et al. (FOCS 2018). More generally, we give an optimal, computa-
tionally efficient, private algorithm for estimating the edge-density of any graph
whose degree distribution is concentrated in a small interval.

1 Introduction

Network data modeling individuals and relationships between individuals are increasingly central in
data science. As some of the most interesting network datasets include sensitive information about
individuals, there is a need for private methods for analysis of these datasets, ideally satisfying strong
mathematical guarantees like differential privacy [9]. However, while there is a highly successful
literature on differentially private statistical estimation for traditional i.i.d. data, the literature on
estimating network statistics is far less developed.

Early work on private network data focused on edge differential privacy, in which the algorithm is
required to “hide” the presence or absence of a single edge in the graph (e.g. [20, 14, 16, 13, 1, 22, 17]
and many more). A more desirable notion of privacy, which is the focus of this work, is node
differential privacy (node-DP), which requires the algorithm to hide the presence or absence of a
single node and the (arbitrary) set of edges incident to that node.

However, node-DP is often difficult to achieve without compromising accuracy, because even very
simple graph statistics can be highly sensitive to adding or removing a single node. For example,
the count of edges in the graph, |E|, can change by ±n by adding or deleting a single node from an
n-node graph, which means that no node-DP algorithm can count the number of edges with error o(n)
on a worst-case graph. We emphasize that even these simple statistics like the edge count can disclose
sensitive information if no steps are taken to ensure privacy, especially when we release many such
statistics on related graphs. There has been an enormous body of work that has uncovered the privacy
risks of releasing simple statistics like counts in the i.i.d. setting (e.g. [8, 10, 12, 15, 19, 5, 11]) and
the additional graph structure only makes these risks more acute.

Although node-DP is difficult to achieve on worst-case graphs, the beautiful works of Blocki et
al. [2] and Kasiviswanathan et al. [18] showed how to design node-DP estimators that are highly
accurate on “nice” graphs that have additional properties observed in practice—for example, graphs
with small maximum degree—using the technique of Lipschitz extensions. However, many of the
known constructions of Lipschitz extensions require exponential running time, and constructions of
computationally efficient Lipschitz extensions [21, 7, 6] lag behind. As a result, even for estimating
very simple graph models, there are large gaps in accuracy between the best known computationally
efficient algorithms and the information theoretically optimal algorithms.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this work we focus on arguably the simplest graph statistic, the edge count, |E|, in undirected
unweighted graphs. We give improved estimators for this quantity on concentrated-degree graphs.
Intuitively, a concentrated-degree graph is one in which the degree of every node lies in some small
(but not publicly known) range [d̄−k, d̄+k], which generalizes the case of graphs with low maximum
degree. We give a simple, polynomial-time node-DP algorithm with optimal accuracy for estimating
the count of edges in concentrated-degree graphs. Our estimator is inspired by Lipschitz extensions,
but avoids directly constructing an efficient Lipschitz extension, and thus our approach may be useful
for computing other graph statistics in settings where efficient Lipschitz extensions are unknown or
unachievable.

The main application of this estimator is to estimate the parameter for the simplest possible network
model, the Erdős-Rényi graph. In this model, denoted G(n, p), we are given a number of nodes n
and a parameter p ∈ [0, 1], and we sample an n-node graph G by independently including each edge
(i, j) for 1 ≤ i < j ≤ n with probability p. The goal is to design a node-DP algorithm that takes as
input a graph G ∼ G(n, p) and outputs an estimate p̂ ≈ p. Surprisingly, until the elegant recent work
of Borgs et al. [3], the optimal accuracy for estimating the parameter p in a G(n, p) via node-DP
algorithms was unknown. Although that work essentially resolved the optimal accuracy of node-DP
algorithms, their construction is again based on generic Lipschitz extensions, and thus results in an
exponential-time algorithm, and, in our opinion, gives little insight for how to construct an efficient
estimator with similar accuracy. Erdős-Rényi graphs automatically satisfy the concentrated-degree
property with high probability, and thus we immediately obtain a computationally efficient, node-DP
estimator for Erdős-Rényi graphs. The error of our estimator nearly matches that of Borgs et al., and
indeed does match it for a wide range of parameters.

1.1 Background: Node-Private Algorithms for Erdős-Rényi Graphs

Without privacy, the optimal estimator is simply to output the edge-density pG = |E|/
(
n
2

)
of the

realized graph G ∼ G(n, p), which guarantees that

E
G

[
(p− pG)2

]
=
p(1− p)(

n
2

) .

The simplest way to achieve ε-node-DP is to add zero-mean noise to the edge-density with standard-
deviation calibrated to its global-sensitivity, which is the amount that changing the neighborhood of a
single node in a graph can change its edge-density. The global sensitivity of pG is Θ(1/n), and thus
the resulting private algorithm Anaïve satisfies

E
G

[
(p−Anaïve(G))2

]
= Θ(1/ε2n2).

Note that this error is on the same order as or larger than the non-private error.

Borgs et al. [3] gave an improved ε-node-DP algorithm such that, when both p and ε are & logn
n ,

E
[
(p−Abcsz(G))2

]
=

p(1− p)(
n
2

)︸ ︷︷ ︸
non-private error

+ Õ
(p

ε2n3

)
︸ ︷︷ ︸

overhead due to privacy

What is remarkable about their algorithm is that, unless ε is quite small (roughly ε . n−1/2), the first
term dominates the error, in which case privacy comes essentially for free. That is, the error of the
private algorithm is only larger than that of the optimal non-private algorithm by a 1 + o(1) factor.
However, as we discussed above, this algorithm is not computationally efficient.

The only computationally efficient node-DP algorithms for computing the edge-density apply to
graphs with small maximum degree [2, 18, 21], and thus do not give optimal estimators for Erdős-
Rényi graphs unless p is very small.

1.2 Our Results

Our main result is a computationally efficient estimator for Erdős-Rényi graphs.

2

Theorem 1.1 (Erdős-Rényi Graphs, Informal). There is an O(n2)-time ε-node-DP algorithmA such
that for every n and every p & 1/n, if G ∼ G(n, p), then

E
G,A

[
(p−A(G))2

]
=

p(1− p)(
n
2

)︸ ︷︷ ︸
non-private error

+ Õ

(
p

ε2n3
+

1

ε4n4

)
︸ ︷︷ ︸

overhead due to privacy

The error of Theorem 1.1 matches that of the exponential-time estimator of Borgs et al. [3] up to the
additive Õ(1/ε4n4) term, which is often not the dominant term in the overall error. In particular, the
error of our estimator is still within a 1 + o(1) factor of the optimal non-private error unless ε or p is
quite small—for example, when p is a constant and ε & n−1/2.

Our estimator actually approximates the edge density for a significantly more general class of graphs
than merely Erdős-Rényi graphs. Specifically, Theorem 1.1 follows from a more general result for
the family of concentrated-degree graphs. For k ∈ N, define Gn,k to be the set of n-node graphs such
that the degree of every node is between d̄− k and d̄+ k, where d̄ = 2|E|/n is the average degree of
the graph.
Theorem 1.2 (Concentrated-Degree Graphs, Informal). For every k ∈ N, there is an O(n2)-time
ε-node-DP algorithm A such that for every n and every G ∈ Gn,k,

E
A

[
(pG −A(G))

2
]

= O

(
k2

ε2n4
+

1

ε4n4

)
where pG = |E|/

(
n
2

)
is the empirical edge density of G.

Theorem 1.1 follows from Theorem 1.2 by using the fact that for an Erdős-Rényi graph, with
overwhelming probability the degree of every node lies in an interval of width Õ(

√
pn) around the

average degree.

The main technical ingredient in Theorem 1.2 is to construct a low sensitivity estimator f(G) for
the number of edges. The first property we need is that when G satisfies the concentrated degree
property, f(G) equals the number of edges in G. The second property of the estimator we construct
is that its smooth sensitivity [20] is low on these graphs G. At a high level, the smooth sensitivity
of f at a graph G is the most that changing the neighborhood of a small number of nodes in G can
change the value of f(G). Once we have this property, it is sufficient to add noise to f(G) calibrated
to its smooth sensitivity. We construct f by carefully reweighting edges that are incident on nodes
that do not satisfy the concentrated-degree condition.

Finally, we are able to show that Theorem 1.2 is optimal for concentrated-degree graphs. In additional
to being a natural class of graphs in its own right, this lower bound demonstrates that in order to
improve Theorem 1.1, we will need techniques that are more specialized to Erdős-Rényi graphs.
Theorem 1.3 (Lower Bound, Informal). For every n and k, and every ε-node-DP algorithm A, there
is some G ∈ Gn,k such that E

A

[
(pG −A(G))

2
]

= Ω
(

k2

ε2n4 + 1
ε4n4

)
. The same bound applies to

(ε, δ)-node-DP algorithms with sufficiently small δ . ε.

2 Preliminaries

Let Gn be the set of n-node graphs. We say that two graphs G,G′ ∈ Gn are node-adjacent, denoted
G ∼ G′, if G′ can be obtained by G modifying the neighborhood of a single node i. That is, there
exists a single node i such that for every edge e in the symmetric difference of G and G′, e is incident
on i. As is standard in the literature on differential privacy, we treat n as a fixed quantity and define
adjacency only for graphs with the same number of nodes. We could easily extend our definition of
adjacency to include adding or deleting a single node itself.
Definition 2.1 (Differential Privacy [9]). A randomized algorithm A : Gn → R is (ε, δ)-node-
differentially private if for every G ∼ G′ ∈ Gn and every R ⊆ R,

P[A(G) ∈ R] ≤ eε · P[A(G′) ∈ R] + δ.

If δ = 0 we will simply say that A is ε-node-differentially private. As we only consider node
differential privacy in this work, we will frequently simply say that A satisfies differential privacy.

3

The next lemma is the basic composition property of differential privacy.
Lemma 2.2 (Composition [9]). If A1,A2 : Gn → R are each (ε, δ)-node-differentially private
algorithms, then the mechanismA(G) = (A1(G),A2(G)) satisfies (2ε, 2δ)-node-differential privacy.
The same holds if A2 may depend on the output of A1.

We will say that two graphs G,G′ are at node distance c if there exists a sequence of graphs
G = G0 ∼ G1 ∼ · · · ∼ Gc = G′. The standard group privacy property of differential privacy yields
the following guarantees for graphs at node distance c > 1.
Lemma 2.3 (Group Privacy [9]). If A : Gn → R is (ε, δ)-node-differentially private and G,G′ are
at node-distance c, then for every R ⊆ R,

P[A(G) ∈ R] ≤ ecε · P[A(G′) ∈ R] + cecεδ.

Sensitivity and Basic DP Mechanisms. The main differentially private primitive we will use is
smooth sensitivity [20]. Let f : Gn → R be a real-valued function. For a graph G ∈ Gn, we can
define the local sensitivity of f at G and the global sensitivity of f to be

LS f (G) = max
G′:G′∼G

|f(G)− f(G′)| and GS f = max
G

LS f (G) = max
G′∼G

|f(G)− f(G′)|.

A basic result in differential privacy says that we can achieve privacy for any real-valued function f
by adding noise calibrated to the global sensitivity of f .
Theorem 2.4 (DP via Global Sensitivity [9]). Let f : Gn → R be any function. Then the algorithm
A(G) = f(G) +

GSf

ε · Z, where Z is sampled from a standard Laplace distribution,1 satisfies
(ε, 0)-differential privacy. Moreover, this mechanism satisfies E

A

[
(A(G)− f(G))2

]
= O(GS f/ε),

and for every t > 0, P
A

[|A(G)− f(G)| ≥ t ·GS f/ε] ≤ exp(−t).

In many cases the global sensitivity of f is too high, and we want to use a more refined mechanism
that adds instance-dependent noise that is more comparable to the local sensitivity. This can be
achieved via the smooth sensitivity framework of Nissim et al. [20].
Definition 2.5 (Smooth Upper Bound [20]). Let f : Gn → R be a real-valued function and β > 0
be a parameter. A function S : Gn → R is a β-smooth upper bound on LS f if

1. for all G ∈ Gn, S(G) ≥ LSf (G), and

2. for all neighboring G ∼ G′ ∈ Gn, S(G) ≤ eβ · S(G′).

The key result in smooth sensitivity is that we can achieve differential privacy by adding noise to
f(G) proportional to any smooth upper bound S(G).
Theorem 2.6 (DP via Smooth Sensitivity [20, 4]). Let f : Gn → R be any function and S be a
β-smooth upper bound on the local sensitivity of f for any β ≤ ε. Then the algorithm A(G) =

f(G) + S(G)
ε · Z, where Z is sampled from a Student’s t-distribution with 3 degrees of freedom,2

satisfies (O(ε), 0)-differential privacy.

Moreover, for any G ∈ Gn, this algorithm satisfies E
A

[
(A(G)− f(G))2

]
= O(S(G)2/ε2).

3 An Estimator for Concentrated-Degree Graphs

3.1 The Estimator

In order to describe the estimator we introduce some key notation. The input to the estimator is a
graph G = (V,E) and a parameter k∗. Intuitively, k∗ should be an upper bound on the concentration

1The standard Laplace distribution Z has E[Z] = 0,E
[
Z2
]
= 2, and density µ(z) ∝ e−|z|.

2The Student’s t-distribution with 3 degrees of freedom can be efficiently sampled by choosing
X,Y1, Y2, Y3 ∼ N (0, 1) independently from a standard normal and returning Z = X/

√
Y 2
1 + Y 2

2 + Y 2
3 .

This distribution has E[Z] = 0 and E
[
Z2
]
= 3, and its density is µ(z) ∝ 1/(1 + z2)2.

4

Algorithm 1: Estimating the edge density of a concentrated-degree graph.
Input: A graph G ∈ Gn and parameters ε > 0 and k∗ ≥ 0.
Output: A parameter 0 ≤ p̂ ≤ 1.

Let pG = 1

(n
2)

∑
e xe and d̄G = (n− 1)pG.

Let β = min(ε, 1/
√
k∗).

Let kG > 0 be the smallest positive integer such that at most kG vertices have degree outside
[d̄G − k∗ − 3kG, d̄G + k∗ + 3kG].

For v ∈ V , let tv = min{|t| : degG(v)± t ∈ [d̄G − k∗ − 3kG, d̄G + k∗ + 3kG]} and let
wtG(v) = max(0, 1− βtv).

For each u, v ∈ V , let wtG({u, v}) = min(wtG(u),wtG(v)) and let
valG(e) = wtG(e) · xe + (1− wtG(e))pG.

Let f(G) =
∑
u6=v

valG({u, v}), where the sum is over unordered pairs of vertices.

Let
s = max

`∈L
210 · e−β` · (kG + `+ k∗ + β(kG + `)(kG + `+ k∗) + 1/β),

where L = {0, b1/β − kG − k∗c, d1/β − kG − k∗e}.
Return 1

(n
2)
· (f(G) + (s/ε) · Z), where Z is sampled from a Student’s t-distribution with three

degrees of freedom.

parameter of the graph, although we obtain more general results when k∗ is not an upper bound, in
case the user does not have an a priori upper bound on this quantity.

For a graph G = (V,E), let pG = |E|/
(
n
2

)
be the empirical edge density of G, and let d̄G =

(n− 1)pG be the empirical average degree of G. Let kG be the smallest positive integer value such
that at most kG vertices of G have degree differing from d̄G by more than k′G := k∗ + 3kG. Define
IG = [d̄G − k′G, d̄G + k′G]. For each vertex v ∈ V , let tv = min{|t| : degG(v) ± t ∈ IG} be the
distance between degG(v) and the interval IG, and define the weight wtG(v) of v as follows. For a
parameter β > 0 to be specified later, let

wtG(v) =


1 if tv = 0

1− βtv if tv ∈ (0, 1/β]

0 otherwise.

That is, wtG(v) = max(0, 1− βtv). For each pair of vertices e = {u, v}, define the weight wtG(e)
and value valG(e) as follows. Let

wtG(e) = min(wtG(u),wtG(v)) and valG(e) = wtG(e) · xe + (1− wtG(e)) · pG,

where xe denotes the indicator variable on whether e ∈ E. Define the function f(G) =∑
u,v∈V valG({u, v}) to be the total value of all pairs of vertices in the graph, where the sum

is over unordered pairs of distinct vertices.

Once we construct this function f , we add noise to f proportional to a β-smooth upper bound on the
sensitivity of f , which we derive in this section. Pseudocode for our estimator is given in Algorithm 1.

3.2 Analysis Using Smooth Sensitivity

We begin by bounding the local sensitivity LSf (G) of the function f defined above.

Lemma 3.1. For β = Ω(1/n), we have that LSf (G) = O((kG + k∗)(1 +βkG) + 1
β). In particular,

for β ∈ [1/n, 1], we have LSf (G) < 210((kG + k∗)(1 + βkG) + 1/β).

5

Proof. Consider any pair of graphs G,G′ differing in only a single vertex v∗, and note that the
empirical edge densities pG and pG′ can differ by at most 2

n < 2
n−1 , so d̄G and d̄G′ can differ by

at most 2. Moreover, for any vertex v 6= v∗, the degree of v can differ by at most 1 between G
and G′. Consequently, by the Triangle Inequality, for any v 6= v∗, |d̄G − degG(v)| can differ from
|d̄G′ − degG′(v)| by at most 3 and |kG − kG′ | ≤ 1, so wtG(v) can differ from wtG′(v) by at most
6β.

Let FarG denote the set of at most kG vertices whose degree differs from d̄G by more than k′G =
k∗ + 3kG. For any vertices u, v /∈ FarG ∪ FarG′ ∪ {v∗}, we have wtG({u, v}) = wtG′({u, v}) = 1,
so valG({u, v}) = valG′({u, v}), since the edge {u, v} appears in G if and only if it appears in G′.

Now consider edges {u, v} such that u, v 6= v∗ but u ∈ FarG ∪ FarG′ (and v may or may not be as
well). If degG(u) /∈ [d̄G − k′′G, d̄G + k′′G] for k′′G = k′G + 1/β + 3, then wtG(u) = wtG′(u) = 0 and
so |valG({u, v})− valG′({u, v})| = |pG− pG′ | ≤ 2/n. Otherwise, degG(u) ∈ [d̄G− k′′G, d̄G + k′′G].
We can break up the sum

fu(G) :=
∑
v 6=u

valG({u, v}) =
∑
v 6=u

wtG({u, v}) · x{u,v} +
∑
v 6=u

(1− wtG({u, v}))pG.

Since at most kG other vertices can have weight less than that of u, we can bound the first term by∑
v 6=u

wtG(u)x{u,v} ± kGwtG(u) = degG(u)wtG(u)± kGwtG(u)

and the second term by

pG ·

(n− 1)−
∑
v 6=u

wtG({u, v})

 = d̄G − d̄GwtG(u)± pGkGwtG(u)

so the total sum is bounded by fu(G) = d̄G + (degG(u) − d̄G)wtG(u) ± 2kGwtG(u). Since
|wtG(u)− wtG′(u)| ≤ 6β, it follows that

|fu(G)− fu(G′)| ≤ 7 + 6β(k′′G + 3) + 9β + 6βkG
= 13 + 45β + 6β(k∗ + 4kG)

= O(1 + β(kG + k∗)).

Since there are at most kG + k′G ≤ 2kG + 1 vertices in u ∈ FarG ∪ FarG′ \ {v∗}, the total difference
in the terms of f(G) and f(G′) corresponding to such vertices is at most 2kG + 1 times this, which
is O(kG + βkG(kG + k∗)). However, we are double-counting any edges between two vertices in
u ∈ FarG ∪ FarG′ ; the number of such edges is at most 2k2G + kG = O(k2G), and for any such
edge e, |valG(e)− valG′(e)| ≤ 12β + 2/n = O(β + 1/n). Consequently the error induced by this
double-counting is at most (2k2G+kG)(12β+2/n), which isO(βk2G+k2G/n), so the total difference
between the terms of f(G) and f(G′) corresponding to such vertices is at most

13 + 26kG + 45β + 126βkG + 6βk∗ + 12βk∗kG + 72βk2G + 6k2G/n,

which is still O(kG + βkG(kG + k∗)) for β = Ω(1/n).

Finally, consider the edges {u, v∗} involving vertex v∗. If wtG(v∗) = 0 then

fv∗(G) =
∑
v 6=v∗

valG({v∗, v}) = (n− 1)pG = d̄G.

If wtG(v∗) = 1 then degG(v∗) ∈ [d̄G − k′G, d̄G + k′G], so

fv∗(G) =
∑
v 6=v∗

valG({v∗, v}) = degG(v∗)± kG = d̄G ± k′G ± kG.

Otherwise, degG(v∗) ∈ [d̄G − k′G − 1/β, d̄G + k′G + 1/β]. Then we have that

fv∗(G) =
∑
v 6=v∗

valG({v∗, v})

= d̄G + (degG(v∗)− d̄G)wtG(v∗)± kGwtG(v∗)

= d̄G ± (degG(v∗)− d̄G)± kG,

6

so in either case we have that fv∗(G) ∈ [d̄G−(k′G+kG+1/β), d̄G+(k′G+kG+1/β)]. Consequently
|fv∗(G)− fv∗(G′)| ≤ 3 + 8kG + 2k∗ + 2/β = O(kG + k∗ + 1/β).

Putting everything together, we have that
LSf (G) ≤ 16 + 34kG + 2k∗ + 45β + 126βkG + 6βk∗ + 12βk∗kG + 72βk2G + 6k2G/n+ 2/β,

which is O((kG + k∗)(1 + βkG) + 1/β) for β = Ω(1/n). In particular, for β ∈ [1/n, 1], we have
that LSf (G) ≤ 210((kG + k∗)(1 + βkG) + 1

β).

We now compute a smooth upper bound on LSf (G). Let

g(kG, k
∗, β) = 210((kG + k∗)(1 + βkG) + 1

β)

be the upper bound on LSf (G) from Lemma 3.1, and let

S(G) = max
`≥0

e−`βg(kG + `, k∗, β).

Lemma 3.2. S(G) is a β-smooth upper bound on the local sensitivity of f . Moreover, we have the
bound S(G) = O((kG + k∗)(1 + βkG) + 1

β).

Proof. For neighboring graphs G,G′, we have that

S(G′) = max
`≥0

e−`βg(kG′ + `, k∗, β)

≤ max
`≥0

e−`βg(kG + `+ 1, k∗, β)

= eβ max
`≥1

e−`βg(kG + `, k∗, β)

≤ eβ max
`≥0

e−`βg(kG + `, k∗, β)

= eβS(G).

Moreover, for fixed kG, k∗, β, consider the function h(`) = e−`βg(kG + `, k∗, β), and consider the
derivative h′(`). We have that h′(`) = 210 · βe−`β(kG + `)(1− β(kG + `+ k∗)). Consequently the
only possible local maximum for ` > 0 would occur for ` = 1/β − kG − k∗; note that the function h
decreases as `→∞. Consequently the maximum value of h occurs for some ` ≤ 1/β, and so we
can show by calculation that S(G) < 630 · ((kG + k∗)(1 + βkG) + 1

β) as desired.

Remark. Note that S(G) can be computed efficiently, since ` can be restricted to the nonnegative
integers and so the only candidate values for ` are 0, b1/β − kG − k∗c, and d1/β − kG − k∗e.
Theorem 3.3. Algorithm 1 is (O(ε), 0)-differentially private for ε ≥ 1/n. Moreover, for any
k-concentrated n-vertex graph G = (V,E) with k ≥ 1, we have that Algorithm 1 satisfies

E
A

(|E|(
n
2

) −Aε,k(G)

)2
 = O

(
k2

ε2n4
+

1

ε4n4

)

Proof. Algorithm 1 computes function f and releases it with noise proportional to a β-smooth
upper bound on the local sensitivity for β ≤ ε. Consequently (O(ε), 0)-differential privacy follows
immediately from Theorem 2.6.

We now analyze its accuracy on k-concentrated graphs G. If G is k-concentrated and k∗ ≥ k, then
wtG(v) = 1 for all vertices v ∈ V and valG({u, v}) = x{u,v} for all u, v ∈ V , and so f(G) = |E|.
Consequently Algorithm 1 computes the edge density of a k-concentrated graph with noise distributed
according to the Student’s t-distribution scaled by a factor of S(G)/(ε

(
n
2

)
).

Since G is k-concentrated, we also have that kG = 1, and so S(G) = O(k + β(k + 1) + 1/β) ≤
O(k+1/ε) by Lemma 3.2. The variance of the Student’s t-distribution with three degrees of freedom
is O(1), so the expected squared error of the algorithm is

O

(
(k + 1/ε)2

ε2n4

)
= O

(
k2

ε2n2
+

1

ε4n4

)
as desired.

7

4 Application to Erdős-Rényi Graphs

In this section we show how to apply Algorithm 1 to estimate the parameter of an Erdős-Rényi graph.

Algorithm 2: Estimating the parameter of an Erdős-Rényi graph.
Input: A graph G ∈ Gn and parameters ε, α > 0.
Output: A parameter 0 ≤ p̂ ≤ 1.

Let p̃′ ← 1

(n
2)

∑
e xe + (2/εn) · Z where Z is a standard Laplace

Let p̃← p̃′ + 4 log(1/α)/εn and k̃ ←
√
p̃n log(n/α)

Return p̂← Ak̃,ε(G) where Ak̃,ε is Algorithm 1 with parameters k̃ and ε

It is straightforward to prove that this mechanism satisfies differential privacy.

Theorem 4.1. Algorithm 2 satisfies (O(ε), 0)-node-differential privacy for ε ≥ 1/n.

Proof. The first line computes the empirical edge density of the graph G, which is a function with
global sensitivity (n− 1)/

(
n
2

)
= 2/n. Therefore by Theorem 2.4 this step satisfies (ε, 0)-differential

privacy. The third line runs an algorithm that satisfies (O(ε), 0)-differential privacy for every fixed
parameter k̃. By Lemma 2.2, the composition satisfies (O(ε), 0)-differential privacy.

Next, we argue that this algorithm satisfies the desired accuracy guarantee.

Theorem 4.2. For every n ∈ N and 1
2 ≥ p ≥ 0, and an appropriate parameter α > 0, Algorithm 2

satisfies

E
G∼G(n,p),A

[
(p−A(G))2

]
=
p(1− p)(

n
2

) + Õ

(
max{p, 1

n}
ε2n3

+
1

ε4n4

)

Proof. We will prove the result in the case where p ≥ logn
n . The case where p is smaller will

follow immediately by using logn
n as an upper bound on p. The first term in the bound is simply the

variance of the empirical edge-density p̄. For the remainder of the proof we will focus on bounding
E
[
(p̄− p̂)2

]
.

A basic fact about G(n, p) for p ≥ logn
n is that with probability at least 1 − 2α: (1) |p̄ − p| ≤

2 log(1/α)/n, and (2) the degree of every node i lies in the interval [d̄±
√
pn log(n/α)] where d̄ is

the average degree of G. We will assume for the remainder that these events hold.

Using Theorem 2.4, we also have that with probability at least 1 − α, the estimate p̃′ satisfies
|p̄ − p̃′| ≤ 4 log(1/α)/εn. We will also assume for the remainder that this latter event holds.
Therefore, we have p ≤ p̃ and p ≥ p̃− 8 log(1/α)/εn.

Assuming this condition holds, the graph will have k̃ concentrated degrees for k̃ as specified on line 2
of the algorithm. Since this assumption holds, we have

E
[
(p̄−Ak̃,ε(G))2

]
= Õ

(
k̃2

ε2n4
+

1

ε4n4

)
= Õ

(
pn+ 1

εn

ε2n4
+

1

ε4n4

)
= Õ

(
pn

ε2n4
+

1

ε4n4

)

To complete the proof, we can plug in a suitably small α = 1/poly(n) so that the O(α) probability
of failure will not affect the overall mean-squared error in a significant way.

5 Lower Bounds for Concentrated-Degree Graphs

In this section we prove a lower bound for estimating the number of edges in concentrated-degree
graphs. Theorem 5.1, which lower bounds the mean squared error, follows from Jensen’s Inequality.

8

Theorem 5.1. For every n, k ∈ N, every ε ∈ [2n ,
1
4] and δ ≤ ε

32 , and every (ε, δ)-node-DP algorithm
A, there exists G ∈ Gn,k such that E

A
[|pG −A(G)|] = Ω

(
k
εn2 + 1

ε2n2

)
.

The proof relies only on the following standard fact about differentially private algorithms.
Lemma 5.2. Suppose there are two graphs G0, G1 ∈ Gn,k at node distance at most 1

ε from
one another. Then for every (ε, ε32)-node-DP algorithm A, there exists b ∈ {0, 1} such that
E
A

[|pGb
−A(Gb)|] = Ω(|pG0

− pG1
|).

We will construct two simple pairs of graphs to which we can apply Lemma 5.2.
Lemma 5.3 (Lower bound for large k). For every n, k ∈ N and ε ≥ 2/n, there is a pair of graphs
G0, G1 ∈ Gn,k at node distance 1/ε such that |pG0 − pG1 | = Ω(k

εn2).

Proof. Let G0 be the empty graph on n nodes. Note that pG0
= 0, d̄G0

= 0, and G0 is in Gn,k.

We construct G1 as follows. Start with the empty bipartite graph with 1
ε nodes on the left and n− 1

ε
nodes on the right. We connect the first node on the left to each of the first k nodes on the right, then
the second node on the left to each of the next k nodes on the right and so on, wrapping around to
the first node on the right when we run out of nodes. By construction, pG1 = k/ε

(
n
2

)
, d̄G1 = 2k/εn.

Moreover, each of the first 1
ε nodes has degree exactly k and each of the nodes on the right has degree

k/ε
n−1/ε ± 1 = k

εn−1 ± 1 Thus, for n larger than some absolute constant, every degree lies in the
interval [d̄G1 ± k] so we have G1 ∈ Gn,k.

Lemma 5.4 (Lower bound for small k). For every n ≥ 4 and ε ∈ [2/n, 1/4], there is a pair of
graphs G0, G1 ∈ Gn,1 at node distance 1/ε such that |pG0 − pG1 | = Ω(1

ε2n2).

Proof. Let i = dnεe, and let G0 be the graph consisting of i disjoint cliques each of size bn/ic or
dn/ie. LetG1 be the graph consisting of i+1 disjoint cliques each of size bn/(i+1)c or dn/(i+1)e.
We can obtain G0 from G1 by taking one of the cliques and redistributing its vertices among the i
remaining cliques, so G0 and G1 have node distance ` := bn/(i+ 1)c ≤ 1/ε. For 1/4 ≥ ε ≥ 2/n
we have that ` ≥ b1/2εc > 1/4ε. Transforming G1 into G0 involves removing a clique of size `,
containing

(
`
2

)
edges, and then inserting these ` vertices into cliques that already have size `, adding

at least `2 new edges. Consequently G0 contains at least `2 − `(`− 1)/2 = `(`+ 1)/2 more edges
than G1, so

|pG1
− pG0

| ≥
(
`+1
2

)(
n
2

) ≥ `2

n2
≥ Ω(1/ε2n2),

as desired.

Theorem 5.1 now follows by combining Lemmas 5.2, 5.3, and 5.4.

Acknowledgments

Part of this work was done while the authors were visiting the Simons Institute for the Theory of
Computing. AS is supported by NSF MACS CNS-1413920, DARPA/NJIT Palisade 491512803,
Sloan/NJIT 996698, and MIT/IBM W1771646. JU is supported by NSF grants CCF-1718088,
CCF-1750640, and CNS-1816028. The authors are grateful to Adam Smith for helpful discussions.

References
[1] J. Blocki, A. Blum, A. Datta, and O. Sheffet. The johnson-lindenstrauss transform itself

preserves differential privacy. In 53rd IEEE Symposium on Foundations of Computer Science,
FOCS’12, pages 410–419, New Brunswick, NJ, USA, 2012.

[2] J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of social
networks via restricted sensitivity. In 4th ACM Conference on Innovations in Theoretical
Computer Science, ITCS ’13, pages 87–96, Berkeley, CA, USA, 2013. ACM.

9

[3] C. Borgs, J. T. Chayes, A. D. Smith, and I. Zadik. Revealing network structure, confidentially:
Improved rates for node-private graphon estimation. In 59th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’18, pages 533–543, Paris, France, 2018.

[4] M. Bun and T. Steinke. Smooth sensitivity, revisited. Manuscript, 2019.

[5] M. Bun, J. Ullman, and S. Vadhan. Fingerprinting codes and the price of approximate differential
privacy. In 46th Annual ACM Symposium on the Theory of Computing, STOC ’14, pages 1–10,
New York, NY, USA, 2014.

[6] C. L. Canonne, G. Kamath, A. McMillan, J. Ullman, and L. Zakynthinou. Private identity
testing for high dimensional distributions. arXiv preprint arXiv:1905.11947, 2019.

[7] R. Cummings and D. Durfee. Individual sensitivity preprocessing for data privacy. arXiv
preprint arXiv:1804.08645, 2018.

[8] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of the
22nd ACM Symposium on Principles of Database Systems, PODS ’03, pages 202–210. ACM,
2003.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In Proceedings of the 3rd Conference on Theory of Cryptography, TCC ’06, pages
265–284, Berlin, Heidelberg, 2006. Springer.

[10] C. Dwork, F. McSherry, and K. Talwar. The price of privacy and the limits of lp decoding. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 85–94.
ACM, 2007.

[11] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability from trace
amounts. In 56th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’15,
pages 650–669, Berkeley, CA, 2015.

[12] C. Dwork and S. Yekhanin. New efficient attacks on statistical disclosure control mechanisms.
In Annual International Cryptology Conference, pages 469–480. Springer, 2008.

[13] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. In 9th IACR
Theory of Cryptography Conference, TCC ’12, pages 339–356, Taormina, Italy, 2012. Springer.

[14] M. Hay, C. Li, G. Mikalu, and D. D. Jensen. Accurate estimation of the degree distribution of
private networks. In Proceedings of the 9th IEEE International Confernece on Data Mining,
ICDM’09, pages 169–178, Miami, FL, USA, 2009.

[15] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A.
Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts
of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS
genetics, 4(8):e1000167, 2008.

[16] V. Karwa, S. Raskhodnikova, A. D. Smith, and G. Yaroslavtsev. Private analysis of graph
structure. ACM Transactions on Database Systems, 39(3):22:1–22:33, 2014.

[17] V. Karwa and A. Slavković. Inference using noisy degrees: Differentially private β-model and
synthetic graphs. Annals of Statistics, 44(1):87–112, 2016.

[18] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. D. Smith. Analyzing graphs with
node differential privacy. In 10th IACR Theory of Cryptography Conference, TCC ’13, pages
457–476, Tokyo, Japan, 2013. Springer.

[19] S. P. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The price of privately releasing
contingency tables and the spectra of random matrices with correlated rows. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC ’10, pages 775–784. ACM, 2010.

[20] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In Proceedings of the 30th annual ACM Symposium on Theory of Computing, STOC,
pages 75–84, 2007.

10

[21] S. Raskhodnikova and A. D. Smith. Lipschitz extensions for node-private graph statistics and
the generalized exponential mechanism. In 57th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’16, pages 495–504, New Brunswick, NJ, USA, 2016.

[22] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private network data release via structural
inference. In 20th ACM International Conference on Knowledge Discovery and Data Mining,
KDD’14, pages 911–920, 2014.

11

	Introduction
	Background: Node-Private Algorithms for Erdos-Rényi Graphs
	Our Results

	Preliminaries
	An Estimator for Concentrated-Degree Graphs
	The Estimator
	Analysis Using Smooth Sensitivity

	Application to Erdos-Rényi Graphs
	Lower Bounds for Concentrated-Degree Graphs

