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ABSTRACT

Distributed stochastic gradient descent (SGD) algorithms are widely deployed
in training large-scale deep learning models, while the communication overhead
among workers becomes the new system bottleneck. Recently proposed gradient
sparsification techniques, especially Top-k sparsification with error compensation
(TopK-SGD), can significantly reduce the communication traffic without obvious
impact on the model accuracy. Some theoretical studies have been carried out to
analyze the convergence property of TopK-SGD. However, existing studies do not
dive into the details of Top-k operator in gradient sparsification and use relaxed
bounds (e.g., exact bound of Random-k) for analysis; hence the derived results
cannot well describe the real convergence performance of TopK-SGD. To this
end, we first study the gradient distributions of TopK-SGD during training pro-
cess through extensive experiments. We then theoretically derive a tighter bound
for the Top-k operator. Finally, we exploit the property of gradient distribution to
propose an approximate top-k selection algorithm, which is computing-efficient
for GPUs, to improve the scaling efficiency of TopK-SGD by significantly reduc-
ing the computing overhead.

1 INTRODUCTION

Training large-scale deep neural networks (DNNs) generally exploits distributed synchronous
stochastic gradient descent (SGD) optimization algorithms to reduce the overall training time. Let
P be the number of workers in a distributed setting, and x ∈ Rd denotes the model parameters with
d dimensions. At the t-th iteration, distributed synchronous SGD updates the model parameters by

xt+1 = xt − ηt
1

P

P∑
p=1

gpt , (1)

where gpt ∈ Rd is the stochastic gradient with its locally selected data for the loss function fp(x) :
Rd → R and ηt is the learning rate. The aggregation of d-dimension gradients from P workers
requires a communication complexity of O(d) in terms of communication traffics1, which generally
limits the system scalability. Gradient sparsification (Strom, 2015; Dryden et al., 2016; Aji &
Heafield, 2017; Chen et al., 2018; Lin et al., 2018) is a promising technique for distributed SGD,
which can significantly reduce the communication traffic while reserving the model convergence. In
gradient sparsification, a compressor Compk is applied on each worker to locally select k, k ≤ d,
gradients for aggregation and Compk ∈ {Topk,Randk} (Stich et al., 2018). Compk(g

p
t ) ∈ Rd

zeros out (d− k) elements of gpt and keeps k elements unchanged. The zeroed-out d− k elements
are stored as residual εpt for the next iteration. Formally, the model parameters are updated by

xt+1 = xt − ηt
1

P

P∑
p=1

Compk(g
p
t + εpt ) and εpt+1 = gpt + εpt − Compk(g

p
t + εpt ), (2)

where εpt ∈ Rd and εp0 = 0. In theory, distributed SGD with gradient sparsification (e.g., Topk,
Randk and any other k-contraction operators) with error compensation has been proved to have the

1The ring-based AllReduce collective can achieve the bandwidth optimal performance that is not related to
the number of workers, but there exist latency terms that will increase with increased number of workers.
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same order of convergence rate as vanilla SGD for both convex and non-convex problems if the
number of iterations is large (Wangni et al., 2018; Stich et al., 2018; Alistarh et al., 2018; Jiang &
Agrawal, 2018; Karimireddy et al., 2019; Tang et al., 2019; Zheng et al., 2019). The convergence
rates are derived with a key contraction property of the sparsification operator Compk (Topk or
Randk) (Stich et al., 2018; Alistarh et al., 2018), that is

EC [‖x− Compk(x)‖2] ≤ (1− k/d)‖x‖2,∀x ∈ Rd, (3)

where EC is the expectation taking on the compressor and ‖ · ‖ is the `2-norm. For any x ∈
Rd, Topk(x) ∈ Rd selects the top k largest elements (in terms of the absolute value) of x with
corresponding indices and sets other d− k elements to zeros; while Randk(x) ∈ Rd randomly (in a
uniform distribution) selects k elements from xwith corresponding indices and other d−k elements
are zeros. It is obvious that

‖x− Topk(x)‖2 ≤ ‖x− Randk(x)‖2 and ER[‖x− Randk(x)‖2] = (1− k/d)‖x‖2. (4)

Existing studies use the same error estimate for both Topk and Randk in distributed SGD by ex-
ploiting the properties of (4), which cannot differentiate the convergence behavior of two operators.
In practice, however, TopK-SGD has a much faster convergence speed (in term of iterations) than
SGD with Randk (RandK-SGD) as empirically shown in (Stich et al., 2018). We also compare
the convergence performance between TopK-SGD and RandK-SGD on a 16-worker distributed set-
ting with three popular convolutional neural networks (VGG-16 (Simonyan & Zisserman, 2014),
ResNet-20 and ResNet-50 (He et al., 2016)). Our results are shown in Fig. 1. We observe that
TopK-SGD achieves very similar performance to the original distributed SGD (Dense-SGD), while
RandK-SGD has much slower convergence than TopK-SGD. RandK-SGD even cannot converge on
ImageNet. Therefore, though existing studies show that TopK-SGD and RandK-SGD have the same
convergence bound, their theoretical results cannot explain the performance gap between TopK-SGD
and RandK-SGD. Even some work (Karimireddy et al., 2019; Tang et al., 2019) exploits δ ≤ 1 to
replace k/d in (3), they also fail to identify exact δ to distinguish Topk and Randk.
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(a) VGG-16 on CIFAR10
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(b) ResNet-20 on CIFAR10
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(c) ResNet-50 on ImageNet

Figure 1: Convergence comparison between original distributed SGD (Dense-SGD), Topk spar-
sification (TopK-SGD) and Randk sparsification (RandK-SGD) at 16 distributed workers on the
CIFAR10 (Krizhevsky et al., 2010) and ImageNet (Deng et al., 2009) data sets. k = 0.001d for
TopK-SGD and RandK-SGD.

In this paper, we dive into the details of the Topk operator in distributed SGD when training DNNs
and provide a tighter bound than inequality (3) to explain the good convergence performance of
TopK-SGD. The observation of gradients with Topk sparsification further enables us to propose a
new computational-efficient selection algorithm for gradient which preserves the convergence prop-
erty. Our contributions are summarized as follows.

Contributions. (1) We empirically study the details of local stochastic gradients and observe that
the coordinates of gradient follow bell shaped distributions through extensive experiments. (2) The
bell shaped distribution enables us to intuitively explain that Topk should have a much tighter bound
than Randk, and we exploit the distribution property to formulate how Topk outperforms Randk. (3)
We design and implement an approximate top-k selection algorithm2, which is much more efficient
than existing top-k selection algorithms on GPUs. As compared with the existing sampling-based
approximate top-k selection algorithm, we improve the scaling efficiency by 12-50% on our 16-GPU
cluster.

2Our system implementation will be made open-source after the review process.
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2 RELATED WORK

Gradient Quantization. In distributed training of neural networks, the communicated gradients
can be quantized to low-bit precision (e.g., 16-bit (Micikevicius et al., 2018; Jia et al., 2018), 3-bit
(Wen et al., 2017), 2.8-bit (Alistarh et al., 2017; Karimireddy et al., 2019) and even 1-bit (Seide
et al., 2014; Strom, 2015)) while preserving nearly consistent convergence performance with the
full precision (32-bit) counterpart. Recently general frameworks of gradient quantization with error
compensation are proposed to generalize the theoretical results of low-bit communication (Wu et al.,
2018; Jiang & Agrawal, 2018; Karimireddy et al., 2019; Tang et al., 2019; Haddadpour et al., 2019).
However, the quantization method can only reduce the communication traffic in 32× (i.e., 1-bit vs.
32-bit), and it could not be enough for large-scale models or low-bandwidth network connections.

Gradient Sparsification. Compared to gradient quantization, gradient sparsification is a much
more promising communication traffic reduction technique as it can sparsify up to three orders of
magnitude gradients be zero with little impact on the model convergence (Strom, 2015; Dryden
et al., 2016; Aji & Heafield, 2017; Chen et al., 2018; Lin et al., 2018; Shi et al., 2019a). Due
to the much success of gradient sparsification (e.g., Top-k sparsification) in significantly reducing
the communication traffic (Lin et al., 2018; Sun et al., 2019), much recent work tries to build
theoretical guarantees for SGD with gradient specification (Wangni et al., 2018; Stich et al., 2018;
Alistarh et al., 2018; Jiang & Agrawal, 2018; Shi et al., 2019b; Karimireddy et al., 2019; Tang et al.,
2019). These theoretical frameworks try to generalize the sparsification operator with the bound of
inequality (3) to derive the convergence results for SGD with gradient sparsification. However, the
existing analysis fails to go insight into the details of gradient sparsification of Topk which could
have better convergence than other compression operators (e.g., Randk).

Gradient Distribution3. Glorot & Bengio (2010) study the distribution of activation values of
DNNs and also their corresponding gradients. They empirically showed that back-propagated gra-
dients have Gaussian-like distributions, which helps understand the difficulty of training deep neural
networks. A similar plot is shown in (Micikevicius et al., 2018), where the distribution of gradients
helps analyze if the 16-bit representation of gradients would be overflow or underflow. These work
has demonstrated that the gradients during training are likely located near zeros. We extend the
similar studies on the gradient distribution for TopK-SGD.

3 STUDY ON STOCHASTIC GRADIENTS

3.1 GRADIENT DISTRIBUTION

In previous gradient sparsification studies (Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017;
Chen et al., 2018; Lin et al., 2018), the basic rule of sparsification is to select “significant” elements
of the gradients because they contribute more to the updates. The Topk operator selects the exact
local top-k elements of gradients so that it achieves nearly consistent convergence performance with
Dense-SGD. Therefore, we would like to understand what is the difference between “significant”
elements of the gradients and randomly selected ones. We conduct extensive experiments to study
the gradient distributions on three areas of deep learning applications, including image classification,
language modeling, and speech recognition. The selected models are: 1) Feed-forward Neural
Networks (FNNs). An FNN with three hidden fully connected layers (FNN-3) on the MNIST
(LeCun, 1998) data set. 2) Convolutional Neural Networks (CNNs). LeNet-5 (LeCun et al., 2015)
on MNIST, ResNet-20 (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014) on CIFAR10
(Krizhevsky et al., 2010). And 3) Recurrent Neural Networks (RNNs). Long Short Term Memory
networks (LSTMs) on the Penn Treebank (PTB) (Marcus et al., 1993) and the AN4 (Acero, 1990)
data sets. For PTB, we adopt a 2-layer LSTM model (LSTM-PTB) with 1500 hidden units per layer,
and for AN4, we use a 5-layer LSTM model (LSTM-AN4) with 800 hidden units per layer.

The details of the experimental settings are shown in Table 1. As the compression operator is ap-
plied on the gradients, we first measure the distributions of the gradient’s elements (histograms)
on Dense-SGD. The results demonstrate the similar shapes as (Glorot & Bengio, 2010), while
ours covers various applications (refer to Appendix A.2). Our interest is on TopK-SGD to check if

3The distribution we discussed in this paper is over coordinates on a particular vector (e.g., activation out-
puts, full gradients).
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Table 1: Experimental settings. All models are trained by SGD with a 0.9 momentum. “BS” is the
mini-batch size at each worker. “LR” is the initial learning rate which is decayed during training.
The hyper-parameters are set to cover various weight initialization methods, activation functions,
batch sizes and learning rates with proper convergence performance.

Type Model # Params Weight Init. Activation BS LR Data Set
FNN FNN-3 199,210 Xavier ReLU 128 0.01 MNIST

CNN
LeNet-5 61,706 Xavier ReLU 128 0.01

ResNet-20 269,722 Xavier, Kaiming ReLU 32 0.1 CIFAR10VGG-16 14,728,266 Kaiming ReLU 128 0.1

RNN LSTM-PTB 66,034,000 Uniform Tanh 20 22 PTB
LSTM-AN4 27,569,568 Xavier Tanh 4 0.0002 AN4

gradients distributions perverse the same properties as Dense-SGD. During the training process of
TopK-SGD (k = 0.001d for a d-dimension model), we measure the histograms of local gradients
accumulated with the residuals (i.e., up

t = gpt + εpt ). The histograms of u1
t with different t on

different models are shown in Fig. 2, where we only show the gradients from the first worker as
different workers have very close gradient distributions. The corresponding cumulative distributions
are presented in Appendix A.1. It is seen that different models have different shapes on the accumu-
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(c) ResNet-20
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Figure 2: The histograms of u1
t of TopK-SGD. For each model, the gradient histograms are plotted

every 200 iterations from iteration 200 to 1600 (other iterations have similar shapes).

lated gradients, but one common feature is that most coordinates of ut are close to zero. Compared
to the full gradient SGD (Appendix A.2), TopK-SGD shows wider distributions, which could be
mainly caused by residual accumulation. When selecting top-k largest values (in terms of absolute
values) from ut, the selected values should be located at the left and right sides on the histograms.
Therefore, performing Topk on ut should generate a vector whose `2-norm is very close to that of
ut, that is ‖Topk(ut)‖2 / ‖ut‖2. The intuitive result inspires us to formulate how much close of
‖Topk(ut)‖2 to ‖ut‖2. Specifically, we would like to derive a variable γ ≤ (1 − k/d) such that
‖ut − Topk(ut)‖2 ≤ γ‖ut‖2 holds.

3.2 THEORETICAL ANALYSIS AND RESULTS

We investigate the Topk operator on up
t = gpt +ε

p
t (for ease of presentation, we use u to denote up

t ).

Error estimation of Topk. Let π denote a sorted vector of |u|/‖u‖∞ in a descending order. That
is π(i) ≥ π(i+1) ≥ 0 for i = 1, 2, ..., d− 1, where π(i) is the ith element of π ∈ Rd. Then we have

‖u− Topk(u)‖2

‖u‖2
=
‖u− Topk(u)‖2/‖u‖2∞

‖u‖2/‖u‖2∞
=
‖ũ− Topk(ũ)‖2

‖ũ‖2
=

∑d
i=k+1 π

2
(i)∑d

i=1 π
2
(i)

, (5)
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where ũ = u/‖u‖∞. Assume that u(i) follows a bell shaped distribution (e.g., Fig. 3(a)), and π2

is a decreasing function w.r.t. i as shown in Fig. 3(b). In order to evaluate Eq. (5), it is essential
to calculate the area under the curve of π2. As illustrated in Fig. 2, one can empirically prove that
π2 is convex and it is always less than the reference line (y = −i/d + 1) if u follows bell shaped
distributions. Considering the areas of A1, A2, A3, and A4 shown in Fig. 3(c), we have∑d

i=k+1 π
2
(i)∑d

i=1 π
2
(i)

=
A1

A1 +A2 +A3
≤ A1 +A4

A1 +A2 +A4
. (6)

Due to the space limit, the proof of the inequality is put in Appendix A.4. Then we have

A1

A1 +A2 +A3
≤ A1 +A4

A1 +A2 +A4
=

Area of MDB

Area of OCB
=

Area of EBD
Area of OAB

=

(
1− k

d

)2

, (7)

where the second equality can be obtained from the similarity of triangle 4MDB ∼ 4COB and
4EDB ∼ 4AOB, i.e.,

Area of MDB

Area of OCB
=
MD

CO
=
DB

OB
=
ED

AO
=

Area of EBD
Area of OAB

. (8)

Putting altogether, we have

‖u− Topk(u)‖2/‖u‖2 ≤ (1− k/d)2 =: γ (9)

and eventually
‖u− Topk(u)‖2 ≤ γ‖u‖2 ≤ (1− k/d) ‖u‖2, (10)

where γ = (1 − k/d)2. The last inequality is always true as |1 − k/d| ≤ 1. Our results can be
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Figure 3: The shape of π2
(i) with different i with d = 100, 000 and σ = 1.

summarized as the following theorem.
Theorem 1. Assume that u ∈ Rd follows a bell shaped distribution and π2 is convex and less than
the line y = −i/d+ 1, then we have

‖u− Topk(u)‖2 ≤ (1− k/d)2‖u‖2. (11)

Furthermore, it can be rearranged into the form that

‖u− Topk(u)‖2 ≤ (1− δ) ‖u‖2, where δ = (2kd− k2)/d2. (12)

Convergence Bound of TopK-SGD. We use the same assumptions on the objective function f :
Rd → R as (Karimireddy et al., 2019). The assumptions are: 1) f is L-smooth and 2) f has a
moment bound (i.e., E[g] = ∇f(x) and E[‖g‖2] ≤ G2 for some G > 0, where g is a stochastic
gradient and x is the model parameter). Therefore, we can directly use the the bound formulation of
convergence rate with δ from (Karimireddy et al., 2019) in Remark 4.
Theorem 2. If we set ηt = 1√

T+1
for running TopK-SGD and under the assumptions of f , we have

min
t∈[T ]

E[‖∇f(xt)‖2] ≤
4(f(x0)− f∗) + LG2

2
√
T + 1

+
4L2G2(1− δ)
δ2(T + 1)

, (13)

where f∗ is the optimal solution.
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The theorem indicates that after T ≥ O(1/δ2) iterations, the first term of the right-hand side of
inequality (13) will dominate the bound so that the convergence rate becomes O(1/

√
T ) which

matches the rate of vanilla SGD. Note that our derived bound of δ = (2kd− k2)/d2 is much tighter
than k/d in previous studies (Stich et al., 2018; Alistarh et al., 2018; Jiang & Agrawal, 2018; Shi
et al., 2019b; Karimireddy et al., 2019). Let c = d/k denote the compression ratio of gradients.
Previous results (δ = 1/c) indicate that RandK-SGD or TopK-SGD should run after T ≥ O(c2)
iterations to make it catch up the convergence rate of Dense-SGD. Using inequality (10) for TopK-
SGD, it just requires T ≥ O(c4/(2c−1)2) iterations to have the full gradient convergence rate. The
result gives the explanation to why TopK-SGD can easily achieve nearly consistent convergence
performance to Dense-SGD, while RandK-SGD could not (as shown in Fig. 1).

3.3 GAUSSIANk : AN APPROXIMATE TOPk OPERATOR

Though TopK-SGD has a good convergence property with a significantly reduced communication
size in distributed SGD, the exact top-k selection is not friendly to many-core processors like GPUs
(Shanbhag et al., 2018). Inefficient Topk could make the overall wall-clock time worse. For exam-
ple, training a ResNet-50 (He et al., 2016) model on ImageNet (Deng et al., 2009) on an Nvidia
Tesla V100 GPU with a mini-batch size of 128 requires around 0.46 seconds per iteration4. When
we distribute the training to 16 Tesla V100 GPUs connected with 10 Gbps Ethernet (10GbE), the
communication time of full gradients (d = 25, 557, 032) is around 0.2 seconds. However, the Topk
operator with k = 0.001d on ResNet-50 with the Tesla V100 GPU consumes 0.4 seconds. The 0.2-
second communication overhead is saved, but it introduces another 0.4 seconds, which makes the
training efficiency even worse. In DGC-SGD (Lin et al., 2018), the authors proposed to sample only
0.1% to 1% of the gradients to estimate the threshold hierarchically, which requires to invoke top-k
selection twice on the subsets of the original vector. For ease of reference, we use DGCk to denote
the hierarchical sampling method in selecting the largest top-k gradients. In RedSync-SGD (Fang
et al., 2019), the authors proposed a trimmed top-k selection algorithm (Trimmedk) to select top
gradients for CNNs by heuristically searching the threshold with moving the ratio between the max-
imum value and the average value. However, Trimmedk could use a threshold that is much smaller
than the exact top-k threshold so that the number of selected gradients is much higher than k.

Algorithm 1 Gaussiank

Input: Stochastic gradients with residuals up
t

Input: k and dimension d
1: Initialize û as a zero vector with d dimensions;
2: µ,σ = mean and std of vector up

t ;
3: p = 1− k/d;
4: thres = ppf(up

t , p, µ, σ);
5: for i = 0→ 3 do
6: masks = |up

t | > thres;
7: estimatedk= # of True values in masks;
8: if estimatedk < 2k/3 then
9: thres = 0.5× thres;

10: else if estimatedk > 4k/3 then
11: thres = 1.5× thres;
12: else
13: break;
14: û[masks] = up

t [masks];
15: Return û;
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Figure 4: The GPU computation time (lower is
better) of Topk, DGCk and Gaussiank. We use the
PyTorch tensor API, “tensor.topk()”, for the Topk
operator.

We propose an approximate Topk operator named Gaussiank by exploiting the Gaussian-like dis-
tribution property of gradients. The key ideas of Gaussiank are: 1) We regard the d-dimensional
gradients (i.e., up

t ) at each iteration as a normal distribution with the mean (µ) and standard vari-
ance (σ) which can be directly calculated in an O(d) complexity and the calculations are friendly to
GPUs. 2) We estimate the threshold by exploiting the percent point function (ppf) of up

t with three
parameters: p = 1 − k/d, µ and σ. 3) As the distribution is not exactly normal, the ppf estimation
could result in a threshold that could be slightly smaller or larger than the true threshold. We move

4The model is trained with the 32-bit floating point without using Tensor Cores of the Tesla V100 GPU.
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to the estimated threshold to the left or right side several times such that we can have very close
top-k largest absolute values. The algorithm of Gaussiank is shown in Algorithm 1.

4 EXPERIMENTS

As we mainly focus on gradient sparsification, we use the fp32 operations instead of exploiting
lower precision for training models. The related software libraries are CUDA-10.1, cuDNN-7.5.0,
NCCL-2.3.7, PyTorch-1.1.0, OpenMPI-4.0.1, and Horovod-0.16.4 (Sergeev & Balso, 2018), which
are kept the same for all evaluated algorithms.

4.1 NUMERICAL RESULTS OF THE TOPk OPERATOR

To validate the bound of inequality (10), we randomly (in Gaussian distribution) generate a 100, 000
dimension vector and compare the exact value of ‖u − Topk(u)‖2/‖u‖2 and 1 − k/d with ours
derived (1 − k/d)2. We also compare the three bounds in the real-world model training process.
The results are shown in Fig. 5. It is seen that both ours and the previous result are in the upper
side of the exact value, which indicates the derived bounds hold. With increased k, ours becomes
better and better than the previous result. However, the exact value is still much lower than ours.
The reason is that our bound is derived by the reference line (Fig. 3(b)) but not the original function.
Therefore, if the shape of π2

(i) can be exactly formulated, one can derive a tighter bound for the Topk
operator than (1− k/d)2 and we will leave this as our future work.
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(b) FNN-3
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Figure 5: The comparison of bounds with a range of k.

4.2 GPU COMPUTATION EFFICIENCY OF SPARSIFICATION

To evaluate the computing efficiency of different top-k selection algorithms on GPUs, we conduct
experiments on an Nvidia Tesla V100 GPU with d ranging from 20 million to 400 million and k =
0.001d. The GPU computation speed comparison between Topk, DGCk and Gaussiank operators is
shown in Fig. 4. For DGCk, we use 1% as suggested in (Lin et al., 2018) to estimate the threshold.
Note that tensor operations (e.g., top-k selection, mean and std calculations etc.) are from PyTorch’s
tensor APIs5. The experimental results show that the Topk operator becomes very slow with a
large number of parameters, while Gaussiank only generates slight overheads. DGCk also becomes
inefficient if d is large. It is crucial for the end-to-end training to have a computing-efficient operator
on GPUs such that the extra computation overhead would not limit the system scalability.

4.3 CONVERGENCE PERFORMANCE OF GAUSSIANK-SGD.

To demonstrate the convergence performance of GaussianK-SGD, we run 120 epochs on CIFAR10
and 70 epochs on ImageNet with 16 workers. On CIFAR10, the hyper-parameters are listed in Table
1, and on ImageNet, we use a mini-batch size of 32 per GPU and a initial learning rate 0.01. The
top-1 validation accuracy of the evaluated models is shown in Fig. 6. Note that for each model,
we use the same hyper-parameters for the three SGD algorithms. We can see that our GaussianK-
SGD has nearly consistent validation accuracy with TopK-SGD, which indicates that our proposed
Gaussiank operator can select close elements with Topk. The gradient distributions in GaussianK-
SGD are similar to TopK-SGD (Appendix A.2). In the evaluated three models, GaussianK-SGD and
TopK-SGD have slight accuracy loss (around 0.6%-0.8%) compared to Dense-SGD. As suggested
in (Lin et al., 2018), the small residuals could have staleness compared to the current gradients

5https://pytorch.org/docs/stable/tensors.html
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so that it could cause the slight accuracy loss. Some optimization tricks in (Lin et al., 2018) like
momentum correction would address this problem.

0 20 40 60 80 100 120
epochs

20

40

60

80
va

l a
cc

ur
ac

y

Dense-SGD
TopK-SGD
GaussianK-SGD

90 100 110 120
91

92

(a) VGG-16 on CIFAR10

0 20 40 60 80 100 120
epochs

30
40
50
60
70
80
90

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
GaussianK-SGD

90 100 110 120
90

91

(b) ResNet-20 on CIFAR10

0 10 20 30 40 50 60 70
epochs

0
10
20
30
40
50
60
70

va
l a

cc
ur

ac
y

Dense-SGD
TopK-SGD
GaussianK-SGD

55 60 65 70

70

72

(c) ResNet-50 on ImageNet

Figure 6: The convergence performance (top-1 validation accuracy) of distributed SGD with
GaussianK-SGD using k = 0.001d compared to TopK-SGD and Dense-SGD on 16 workers.

4.4 END-TO-END TRAINING SCALING EFFICIENCY OF GAUSSIANK-SGD.

We evaluate the average iteration time of GaussianK-SGD on the ImageNet (Deng et al., 2009) data
set with four popular models (AlexNet (Krizhevsky et al., 2012), VGG-16 (Simonyan & Zisser-
man, 2014), ResNet-50 (He et al., 2016) and Inception-V4 (Szegedy et al., 2017)) on a 16-GPU
cluster compared to Dense-SGD with full gradients, TopK-SGD with the original top-k selection,
DGC-SGD (Lin et al., 2018) with hierarchical sampling and RedSync-SGD (Fang et al., 2019) with
trimmed top-k selection. The cluster has four nodes connected with 10GbE, and each node contains
four Nvidia Tesla V100 GPUs (the PCIe version with 32GB memory). k = 0.001d for all the sparsi-
fied algorithms. The results are shown in Table 2, which shows that TopK-SGD and RedSync-SGD
are even slower than Dense-SGD on the 16-GPU cluster, while our GaussianK-SGD runs much
faster than other algorithms. Specifically, GaussianK-SGD is 1.19×-2.33× faster than Dense-SGD,
1.36×-3.63× faster than TopK-SGD, and 1.11×-1.51× faster than DGC-SGD, respectively. Even
on the VGG-16 model, which has several large-size fully connected layers, GaussianK-SGD can
achieve 85.5% scaling efficiency on the 16-GPU cluster with low-bandwidth Ethernet.

Table 2: Wall-clock time of end-to-end training with ImageNet on 16 Tesla V100 GPUs. The batch
size for each GPU is 128, and the input image resolution is 224×224. Scaling efficiency is defined
by T16

16T1
, where T1 is the throughput of single GPU training, and T16 is the overall system throughput

of distributed training on 16 GPUs with weak-scaling.

Model Iteration Time (s) Scaling Efficiency (%)
Dense TopK DGC RedSync GaussianK Dense TopK DGC RedSync GaussianK

AlexNet 0.571 0.891 0.369 7.203 0.245 14.1 9.0 21.8 1.11 32.8
VGG-16 2.068 3.010 1.540 14.670 1.311 54.2 37.2 72.8 7.6 85.5

ResNet-50 0.699 0.810 0.655 2.588 0.586 65.8 56.8 70.2 17.9 78.5
Inception-V4 1.022 1.268 0.916 3.953 0.787 67.5 54.4 75.3 17.4 87.7

5 CONCLUSION

In this paper, we first identified that existing theoretical results fail to explain the convergence per-
formance of distributed SGD algorithms with Top-k gradient sparsification (TopK-SGD). Then we
empirically studied gradient distributions during training with TopK-SGD through extensive experi-
ments, and observe that the elements of stochastic gradients are mostly located near zero (Gaussian-
like distribution). The observation enables us to build a tighter bound for the Topk operator based
on the empirical assumption of bell shaped distributions of gradients, which makes the convergence
property of TopK-SGD explainable. According to the distribution of gradients, we propose an ap-
proximate top-k selection algorithm named Gaussiank which is much efficient than the existing
top-k selection algorithms on GPUs. We finally conduct extensive experiments to verify our derived
bound for the Topk operator and the convergence performance of distributed SGD with Gaussiank
(GaussianK-SGD). In terms of the scaling efficiency, GaussianK-SGD achieves up to 2.33×, 3.63×
and 1.51× faster training speed than full gradient SGD, TopK-SGD and DGC-SGD on a 16-GPU
cluster connected with 10 Gbps Ethernet, respectively.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Alejandro Acero. Acoustical and environmental robustness in automatic speech recognition. In
Proc. of ICASSP, 1990.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
440–445, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, pp. 5977–5987, 2018.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakr-
ishnan. AdaComp: Adaptive residual gradient compression for data-parallel distributed training.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In 2016 2nd Workshop on Machine Learning
in HPC Environments (MLHPC), pp. 1–8. IEEE, 2016.

Jiarui Fang, Haohuan Fu, Guangwen Yang, and Cho-Jui Hsieh. RedSync: Reducing synchronization
bandwidth for distributed deep learning training system. Journal of Parallel and Distributed
Computing, 133:30–39, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Trading
redundancy for communication: Speeding up distributed SGD for non-convex optimization. In
International Conference on Machine Learning, pp. 2545–2554, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning training system with
mixed-precision: Training ImageNet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse
and quantized communication. In Advances in Neural Information Processing Systems, pp. 2530–
2541, 2018.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/kriz/cifar. html, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

9



Under review as a conference paper at ICLR 2020

Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.lecun.com/exdb/lenet,
20:5, 2015.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. In International Conference on
Learning Representations, 2018.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2):313–330, 1993.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. International Conference on Learning Representations, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in Ten-
sorFlow. arXiv preprint arXiv:1802.05799, 2018.

Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing on massively
parallel hardware. In Proceedings of the 2018 International Conference on Management of Data,
pp. 1557–1570. ACM, 2018.

Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang, Yuxin Wang, Xiang Huang, and Xi-
aowen Chu. A distributed synchronous SGD algorithm with global Top-k sparsification for low
bandwidth networks. In The 39th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2019), pp. 2238–2247, 2019a.

Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, and Xiaowen Chu. A convergence
analysis of distributed SGD with communication-efficient gradient sparsification. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp.
3411–3417, 2019b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
Advances in Neural Information Processing Systems, pp. 4452–4463, 2018.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In Six-
teenth Annual Conference of the International Speech Communication Association, 2015.

Peng Sun, Wansen Feng, Ruobing Han, Shengen Yan, and Yonggang Wen. Optimizing network
performance for distributed DNN training on GPU clusters: ImageNet/AlexNet training in 1.5
minutes. arXiv preprint arXiv:1902.06855, 2019.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Conference
on Machine Learning, pp. 6155–6165, 2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pp.
1306–1316, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

10



Under review as a conference paper at ICLR 2020

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD
and its applications to large-scale distributed optimization. International Conference on Machine
Learning, 2018.

Shuai Zheng, Ziyue Huang, and James T Kwok. Communication-efficient distributed blockwise
momentum SGD with error-feedback. In Advances in neural information processing systems,
2019.

11



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 CUMULATIVE DISTRIBUTION OF GRADIENTS IN TOPK-SGD
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Figure 7: The cumulative distribution of u1
t during the TopK-SGD training process.

A.2 GRADIENT DISTRIBUTION ON DENSE-SGD
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Figure 8: The histograms of u1
t during the Dense-SGD training process.
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A.3 GRADIENT DISTRIBUTION ON GAUSSIANK-SGD
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Figure 9: The histograms of u1
t during the GaussianK-SGD training process.

A.4 PROOF OF INEQUALITY (6)

A1

A1 +A2 +A3
≤ A1 +A4

A1 +A2 +A4

⇔A1(A1 +A2 +A4) ≤ (A1 +A4)(A1 +A2 +A3)

⇔A2
1 +A1A2 +A1A4 ≤ A2

1 +A1A2 +A1A3 +A4A1 +A4A2 +A4A3

⇔0 ≤ A1A3 +A4A2 +A4A3.

A.5 SENSITIVITY STUDY OF GAUSSIANK-SGD
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Figure 10: Number of communicated gradients vs. accuracy. k = 0.001d

Our proposed Gaussiank operator could under- or over- sparsify the gradients, which makes the num-
ber of selected gradients is larger or smaller than k. To demonstrate the sensitivity of GaussianK-
SGD to the configured k, we first evaluate the accumulated number of communicated gradients
over the training process, which is shown in Fig. 10. It is seen that at the first several epochs,
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our GaussianK-SGD under-sparsifies the gradients (requires higher communication overheads), and
after that, GaussianK-SGD over-sparsifies the gradients (requires lower communication overheads)
with little loss of accuracy.

To study the impact of different k on the convergence, we further evaluate the accuracy of
GaussianK-SGD by setting k = 0.01d and k = 0.005d on VGG-16 and ResNet-20 models with
the same hyper-parameters as Fig. 6. The validation accuracy with different k is shown in Fig. 11.
It can be seen that even Gaussiank would under- or over- sparsify the gradients, GaussianK-SGD
performs well on the convergence.
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Figure 11: Sensitivity of GaussianK-SGD using k = 0.001d, k = 0.005d and k = 0.01d compared
to Dense-SGD on 16 workers.
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