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ABSTRACT

Most Automatic Differentiation (AD) tools lack a way to explicitly represent or differentiate
performance-critical and hardware-dependent constructs such as parallelism, vectorisation, or tiling.
Machine-learning frameworks work around this by hiding implementation details from the AD pro-
cess, but lack the generality of general-purpose programming languages. Instead, this talk discusses
the polyhedral model as a way for general-purpose AD tools to preserve performance tweaks through
the differentiation process.
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1 Introduction

Derivatives are an important ingredient for optimisation, inverse modelling, error analysis, and training in scientific
computing and machine learning. AD tools consume the implementation of a differentiable function, referred to as
primal, and produce a new program that computes the derivative of the primal. AD has been implemented in the past
using operator overloading [1, 2], source-to-source [3, 4, 5, 6], or just-in-time compilation [7, 8].

Machine learning applications rely on parallelism, vectorisation, and optimisations such as tiling to obtain high
performance on CPUs, GPUs, or TPUs. This is increasingly also true for scientific applications. Using automatic
differentiation (AD) or back-propagation for training is only practical if the derivatives are also computed efficiently on
these processors.

Machine learning frameworks encapsulate performance-critical implementation details inside operators that work on
large objects (e.g. Tensors). Users and AD tools alike can obtain high performance by writing programs in terms of
these highly efficient operators. The framework then assembles them into larger programs. Because each operation
handled by the AD tool is itself relatively costly, any additional overhead introduced by the AD process is amortised.

This model works very well when the number of operators allowed is small, and the code is optimised for a small set
of target hardware. As the number along both these dimensions (number of operators allowed, number of hardware
platforms targeted) increases, the development and maintenance of the underlying framework code becomes a major
effort. Hence, there is a need for the user of these frameworks to be able to create their own operators at a finer-grained
level of operations, while still being able to automatically differentiate and obtain good performance.

In contrast, AD tools for general-purpose programming languages are not restricted to a particular framework and
naturally offer full flexibility, but have to work on a lower level of abstraction where the computation is not cleanly
separated from hardware-specific implementation details. As a result, derivatives often run inefficiently or in some
cases even incorrectly on modern hardware.

Section 2 briefly outlines some challenges that AD tools need to overcome when dealing with performance-optimised
programs. Following this, section 3 discusses the role of the intermediate representation in an AD tool when differ-
entiating such programs. Section 4 then shows PerforAD, a tool that we have previously presented and that uses the
polyhedral model to overcome some of these challenges, before we conclude in section 5.
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2 Background

Preserving performance-optimisations during differentiation is challenging for many reasons, two of which are given in
this section.

The differentiation process creates auxiliary variables to store derivative values. The memory footprint of the derivative
program is therefore usually larger than that of the original program. Implementation choices such as cache block sizes
in the primal code are often not ideal for the derivative code.

Reverse-mode automatic differentiation or back-propagation works by accumulating derivatives backwards through
a program. This so-called data-flow reversal means that every time the original program performs a read access, the
derivative program will instead perform a write access at a corresponding location. This means that some thread-safe
primal programs that contain only concurrent read access to shared memory locations will not be thread-safe after
differentiation, as they contain concurrent write accesses [9, 10].

3 Internal Representation

AD tools commonly work with one of two internal representations of the original program – operator-overloading-
style tools create a tape at run-time, which contains an unrolled sequence of scalar numerical operations, while
source-transformation-style tools create at compile-time a control flow graph, which contains basic blocks of program
instructions that are individually differentiated. Both of these representations do not capture well shared-memory
parallelism, or SIMD/SIMT vectorisation that may have been present in the program. Moreover, the fact that basic
blocks are differentiated individually can preclude parallelisation of the derivative code. We will show the reasons for
these disadvantages in more detail during our talk.

A tool that can preserve parallelism, vectorisation and other performance optimisations will require a holistic view of
loop nests. The polyhedral model is an elegant way to represent loop nests and branches contained therein, by modelling
the loop body as a set of statements that are each applied to a subset of the iteration space, and by modelling the control
flow as a polyhedron. This works for loops whose bounds are given as affine functions.

4 Case study: PerforAD

In previous work we presented PerforAD [11], an AD tool that transforms input programs performing easily paral-
lelisable stencil operations, into output programs that compute the derivative of that stencil operation using the same
stencil-like data flow pattern. PerforAD uses a polyhedral model to capture and modify iteration spaces, and performs a
pre-programmed sequence of loop transformations to produce a parallelisable derivative program. This section explains
the transformations step by step using a one-dimensional example. This explanation is accompanied by the illustration
in Figure 1. In our previous paper, we demonstrated a full procedure for arbitrarily deep loop nests, as well as an
open-source implementation that executes the transformations.

Suppose that a primal program contains the following parallel gather operation for an iteration space i ∈ [1, n− 1]:

#pragma omp parallel for private(i)
for ( i=1; i<=n - 1; i++ ) {

r[i] = c[i]*(2.0*u[i-1] -3.0*u[i]+4*u[i+1]);
}

A straightforward reverse-mode differentiation of this loop to compute the derivatives of r with respect to u would yield
the following scatter operation, where ub and rb represent the adjoint variables that correspond to u and r:
for ( i=1; i<=n-1; i++ ) {

ub[i-1] += 2.0 * c[i] * rb[i];
ub[i] -= 3.0 * c[i] * rb[i];
ub[i+1] += 4.0 * c[i] * rb[i];

}

If we assume that floating-point summation is associative, we can split this into three loops.
for ( i=1; i<=n-1; i++ ) {

ub[i-1] += 2.0 * c[i] * rb[i];
}
for ( i=1; i<=n-1; i++ ) {

ub[i] -= 3.0 * c[i] * rb[i];
}
for ( i=1; i<=n-1; i++ ) {

2
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Figure 1: Adjoint stencil transformation step by step, for a one-dimensional three-point stencil. This illustration does
not show the read accesses to the primal array u that may still be needed in the derivative code. Red arrows in the
primal and adjoint show a group of updates that is performed in the same loop iteration. Those same updates are
then highlighted in the split, shifted, and core loop. After regeneration, the red updates are distributed among several
iterations, and one iteration in the core loop performs a set of updates as shown by green arrows.

ub[i+1] += 4.0* c[i] * rb[i];
}

We can now substitute the loop counter i in the first, second, and third loop with j:=i-1, j:=i, and j:=i+1,
respectively, and obtain three loops that each use the loop counter j as write index and have iteration spaces j ∈ [0, n−2],
j ∈ [1, n− 1] and j ∈ [2, n].
for ( j=0; j<=n-2; j++ ) {

ub[j] += 2.0 * c[j+1] * rb[j+1];
}
for ( j=1; j<=n-1; j++ ) {

ub[j] -= 3.0 * c[j] * rb[j];
}
for ( j=2; j<=n; j++ ) {

ub[j] += 4.0 * c[j-1] * rb[j-1];
}

We observe that the iteration space of the three loops intersects for j ∈ [2, n− 2]. Only the iteration space of the first
loop contains j = 0, that of the first and second loops contain j = 1, that of the second and third contain j = n− 1,
and the iteration space of the third loop contains j = n. We can therefore compute the same result using the following
parallel loop and remainder statements.
ub[0] += 2.0 * c[1] * rb[1];
ub[1] += 2.0 * c[2] * rb[2];
ub[1] -= 3.0 * c[1] * rb[1];
ub[n-1] -= 3.0 * c[n-1] * rb[n-1];
ub[n-1] += 4.0 * c[n-2] * rb[n-2];
ub[n] += 4.0 * c[n-1] * rb[n-1];
#pragma omp parallel for private(j)
for ( j=2; j<=n-2; j++ ) {

ub[j] += 2.0 * c[j+1] * rb[j+1];
ub[j] -= 3.0 * c[j] * rb[j];
ub[j] += 4.0 * c[j-1] * rb[j-1];
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Figure 2: Example of obtained speedups when using PerforAD on a parallelised stencil loop, and executing the result
on a KNL processor.

}

Assuming that n is sufficiently large, the time spent executing the remainder statements will be insignificant compared
to that spent inside the loop, which contains only updates to ub[j] that can easily be merged into a single statement to
obtain
#pragma omp parallel for private(j) shared(rb,ub ,c)
for ( j=2; j<=n-2; j++ ) {

ub[j] += 4.0 * c[j-1] * rb[j-1]
- 3.0*c[j] * rb[j]
+ 2.0 * c[j+1] * rb[j+1];

}

This adjoint stencil loop has the same set of read and write indices and can be parallelised in the same way as the primal
stencil loop. Note that the constant factors 4.0 and 2.0 have swapped their position compared with the primal stencil.

5 Outlook

In this abstract we motivated the need for an AD tool that can handle performance-optimised programs, and outlined
some of the challenges. We then presented PerforAD as an example that successfully navigates this challenge for
a very specific kind of input program, namely stencil loops, by applying a predetermined sequence of polyhedral
transformations to the derivative program. In our talk we will also show other polyhedral transformations that may be
equally beneficial.

While the polyhedral model has advantages, polyhedral compilers are also known to have high compilation times, and
the polyhedral model does not naturally capture some things that are essential for AD, such as the dependency relation
between reduction variables. Using PerforAD as an example, our talk will illustrate how a polyhedral-like approach
that is tailored to AD can overcome these challenges, by creating a derivative program that resembles as closely as
possible the structure original program, without exploring the full space of polyhedral transformations.
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