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Abstract

We examine techniques for combining generalized policies
with search algorithms to exploit the strengths and overcome
the weaknesses of each when solving probabilistic planning
problems. The Action Schema Network (ASNet) is a recent
contribution to planning that uses deep learning and neural
networks to learn generalized policies for probabilistic plan-
ning problems. ASNets are well suited to problems where lo-
cal knowledge of the environment can be exploited to im-
prove performance, but may fail to generalize to problems
they were not trained on. Monte-Carlo Tree Search (MCTS)
is a forward-chaining state space search algorithm for optimal
decision making which performs simulations to incremen-
tally build a search tree and estimate the values of each state.
Although MCTS can achieve state-of-the-art results when
paired with domain-specific knowledge, without this knowl-
edge, MCTS requires a large number of simulations in order
to obtain reliable estimates in the search tree. By combining
ASNets with MCTS, we are able to improve the capability of
an ASNet to generalize beyond the distribution of problems
it was trained on, as well as enhance the navigation of the
search space by MCTS.

1 Introduction
Planning is the essential ability of a rational agent to solve
the problem of choosing which actions to take in an envi-
ronment to achieve a certain goal. This paper is mainly con-
cerned with combining the advantages of forward-chaining
state space search through UCT (Kocsis and Szepesvári
2006), an instance of Monte-Carlo Tree Search (MCTS)
(Browne et al. 2012), with the domain-specific knowledge
learned by Action Schema Networks (ASNets) (Toyer et al.
2018), a domain-independent learning algorithm. By com-
bining UCT and ASNets, we hope to more effectively solve
planning problems, and achieve the best of both worlds.

The Action Schema Network (ASNet) is a recent contri-
bution in planning that uses deep learning and neural net-
works to learn generalized policies for planning problems.
A generalized policy is a policy that can be applied to any
problem from a given planning domain. Ideally, this gen-
eralized policy is able to reliably solve all problems in the
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given domain, although this is not always feasible. ASNets
are well suited to problems where “local knowledge of the
environment can help to avoid certain traps” (Toyer et al.
2018). In such problems, an ASNet can significantly out-
perform traditional planners that use heuristic search. More-
over, a significant advantage of ASNets is that a network can
be trained on a limited number of small problems, and gen-
eralize to problems of any size. However, an ASNet is not
guaranteed to reliably solve all problems of a given domain.
For example, an ASNet could fail to generalize to difficult
problems that it was not trained on – an issue often encoun-
tered with machine learning algorithms. Moreover, the pol-
icy learned by an ASNet could be suboptimal due to a poor
choice of hyperparameters that has led to an undertrained or
overtrained network. Although our discussion is closely tied
to ASNets, our contributions are more generally applicable
to any method of learning a (generalized) policy.

Monte-Carlo Tree Search (MCTS) is a state-space search
algorithm for optimal decision making which relies on per-
forming Monte-Carlo simulations to build a search tree and
estimate the values of each state (Browne et al. 2012). As we
perform more and more of these simulations, the state es-
timates become more accurate. MCTS-based game-playing
algorithms have often achieved state-of-the-art performance
when paired with domain-specific knowledge, the most no-
table being AlphaGo (Silver et al. 2016). One significant
limitation of vanilla MCTS is that we may require a large
number of simulations in order to obtain reliable estimates in
the search tree. Moreover, because simulations are random,
the search may not be able to sense that certain branches of
the tree will lead to sub-optimal outcomes. We are concerned
with UCT, a variant of MCTS that balances the trade-off be-
tween exploration and exploitation. However, our work can
be more generally used with other search algorithms.

Combining ASNets with UCT achieves three goals. (1)
Learn what we have not learned: improve the capability of
an ASNet to generalize beyond the distribution of problems
it was trained on, and of UCT to bias the exploration of ac-
tions to those that an ASNet wishes to exploit. (2) Improve
on sub-optimal learning: obtain reasonable evaluation-time
performance even when an ASNet was trained with sub-
optimal hyperparameters, and allow UCT to converge to the
optimal action in a smaller number of trials. (3) Be robust
to changes in the environment or domain: improve perfor-



mance when the test environment differs substantially from
the training environment.

The rest of the paper is organized as follows. Section 2
formalizes probabilistic planning as solving a Stochastic
Shortest Path problem and gives an overview of ASNets and
MCTS along with its variants. Section 3 defines a frame-
work for Dynamic Programming UCT (DP-UCT) (Keller
and Helmert 2013). Next, Section 4 examines techniques
for combining the policy learned by an ASNet with DP-
UCT. Section 5 then presents and analyzes our results. Fi-
nally, Section 6 summarizes our contributions and discusses
related and future work.

2 Background
A Stochastic Shortest Path problem (SSP) is a tuple
〈S, s0, G,A, P,C〉 (Bertsekas and Tsitsiklis 1991) where S
is the finite set of states, s0 ∈ S is the initial state, G ⊆ S
is the finite set of goal states, A is the finite set of actions,
P (s′ | a, s) is the probability that we transition into s′ after
applying action a in state s, and C(s, a) ∈ (0,∞) is the
cost of applying action a in state s. A solution to an SSP
is a stochastic policy π : A × S → [0, 1], where π(a | s)
represents the probability action a is applied in the current
state s. An optimal policy π∗, is a policy that selects actions
which minimize the expected cost of reaching a goal. For
SSPs, there always exists an optimal policy that is determin-
istic which may be obtained by finding the fixed-point of
the state-value function V ∗ known as the Bellman optimal-
ity equation (Bertsekas and Tsitsiklis 1991), and the action-
value function Q∗. That is, in the state s, we obtain π∗ by
finding the action a that minimizes Q∗(s, a).

V ∗(s) =

{
0 if s ∈ G
mina∈AQ

∗(s, a) otherwise

Q∗(s, a) = C(s, a) +
∑
s′∈S

P (s′ | a, s) · V ∗(s′)

We handle dead ends using the finite-penalty approach
(Kolobov, Mausam, and Weld 2012). That is, we introduce
a fixed dead-end penalty D ∈ (0,∞) which acts as a limit
to bound the maximum expected cost to reach a goal, and
a give-up action which is selected if the expected cost is
greater than or equal to D.

2.1 Action Schema Networks (ASNets)
The ASNet is a neural network architecture that exploits
deep learning techniques in order to learn generalized poli-
cies for probabilistic planning problems (Toyer et al. 2018).
An ASNet consists of alternating action layers and proposi-
tion layers (Figure 1), where the first and last layer are al-
ways action layers. The output of the final layer is a stochas-
tic policy π : A× S → [0, 1].

An action layer is composed of a single action module
for each ground action in the planning problem. Similarly, a
proposition layer is composed of a single proposition mod-
ule for each ground proposition in the problem. These mod-
ules are sparsely connected, ensuring that only the relevant
action modules in one layer are connected to a proposition
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Figure 1: ASNet with 1 hidden layer (Toyer et al. 2018)

module in the next layer. An action module in one layer is
connected to a proposition module in the next layer only if
the ground proposition appears in the preconditions or ef-
fects of a ground action. Similarly, a proposition module in
one layer is connected to an action module in the next layer
only if the ground proposition appears in the preconditions
or effects of the relevant ground action. Since all ground ac-
tions instantiated from the same action schema will have
the same structure, we can share the same set of weights
between their corresponding action modules in a single ac-
tion layer. Similarly, weights are shared between proposition
modules in a single proposition layer that correspond to the
same predicate. It is easy to see that by learning a set of com-
mon weights θ for each action schema and predicate, we can
scale an ASNet to any problem of the same domain.

ASNets only have a fixed number of layers, and are thus
unable to solve all problems in domains that require arbitrar-
ily long chains of reasoning about action–proposition rela-
tionships. Moreover, like most machine learning algorithms,
an ASNet could fail to generalize to new problems if not
trained properly. This could be due to a poor choice of hy-
perparameters, overfitting to the problems the network was
trained on, or an unrepresentative training set.

2.2 Monte-Carlo Tree Search (MCTS)
MCTS is a state-space search algorithm that builds a search
tree in an incremental manner by performing trials until
we reach some computational budget (e.g. time, memory)
at each decision step (Browne et al. 2012), at which point
MCTS returns the action that gives the best estimated value.

A trial is composed of four phases. Firstly, in the selec-
tion phase, MCTS recursively selects nodes in the tree using
a child selection policy until it encounters an unexpanded
node, i.e. a node without any children. Next, in the expan-
sion phase, one or more child nodes of the leaf node are
created in the search tree according to the available actions.
Now, in the simulation phase, a simulation of the scenario is
played-out from one of the new child nodes until we reach
a goal or dead end, or exceed the computational budget. Fi-
nally, in the backpropagation phase, the result of this trial
is backpropagated through the selected nodes in the tree to
update their estimated values. The updated estimates affect
the child selection policy in future trials.

Upper Confidence Bounds applied to Trees (UCT)
(Kocsis and Szepesvári 2006) is a variant of MCTS that
addresses the trade-off between the exploration of nodes
that have not been visited often, and the exploitation of
nodes that currently have good state estimates. UCT treats



the choice of a child node as a multi-armed bandit problem
by selecting the node which maximizes the Upper Confi-
dence Bound 1 (UCB1) term, which we detail in the selec-
tion phase in Section 3.1.

Trial-Based Heuristic Tree Search (THTS) (Keller and
Helmert 2013) is an algorithmic framework that generalizes
MCTS, dynamic programming, and heuristic search plan-
ning algorithms. In a THTS algorithm, we must specify
five ingredients: action selection, backup function, heuristic
function, outcome selection and the trial length. We discuss
these ingredients and a modified version of THTS to addi-
tionally support UCT with ASNets in Section 3.

Using these ingredients, Keller and Helmert (2013) create
three new algorithms, all of which provide superior theoreti-
cal properties over UCT: MaxUCT, Dynamic Programming
UCT (DP-UCT) and UCT*. DP-UCT and its variant UCT*,
which use Bellman backups, were found to outperform orig-
inal UCT and MaxUCT. Because of this, we will focus on
DP-UCT, which we formally define in the next section.

3 DP-UCT Framework
Our framework is a modification of DP-UCT from THTS. It
is designed for SSPs with dead ends instead of finite horizon
MDPs and is focused on minimizing the cost to a goal rather
than maximizing rewards. It also introduces the simulation
function, a generalization of random rollouts used in MCTS.

We adopt the representation of alternating decision nodes
and chance nodes in our search tree, as seen in THTS. A de-
cision node nd is a tuple 〈s, Ck, V k, {n1, . . . , nm}〉, where
s ∈ S is the state, Ck ∈ Z+

0 is the number of visits to the
node in the first k trials, V k ∈ R+

0 is the state-value estimate
based on the first k trials, and {n1, . . . , nm} are the succes-
sor nodes (i.e. children) of nd. A chance node nc is a tuple
〈s, a, Ck, Qk, {n1, . . . , nm}〉, where additionally, a ∈ A is
the action, and Qk is the action-value estimate based on the
first k trials.

We use V k(nd) to refer to the state-value estimate of a
decision node nd, a(nc) to refer to the action of a chance
node nc, and so on for all the elements of nd and nc. Ad-
ditionally, we use S(n) to represent the successor nodes
{n1, . . . , nm} of a search node n, and we also employ
the shorthand P (nd |nc) = P (s(nd) | a(nc), s(nc)) and
c(nc) = c(s(nc), a(nc)). Initially, the search tree contains
a single decision node nd with s(nd) = s0, representing the
initial state of our problem.

3.1 Algorithm
UCT is described as an online planning algorithm, as it inter-
leaves planning with execution. At each decision step, UCT
returns an action either when a time cutoff is reached, or a
maximum number of trials is performed. UCT then selects
the chance node nc from the children of the root decision
node that has the highest action-value estimate,Qk(nc), and
applies its action a(nc). We sample a decision node nd from
S(nc) based on the transition probabilities P (nd |nc) and
set nd to be the new root of the tree.

A single trial under our framework consists of the selec-
tion, expansion, simulation and backup phase.

Selection Phase. As described in THTS, in this phase we
traverse the explicit nodes in the search tree by alternating
between action selection for decision nodes, and outcome
selection for chance nodes until we reach an unexpanded
decision node nd, which we call the tip node of the trial.

Action selection is concerned with selecting a child
chance node nc from the successors S(nd) of a decision
node nd. UCT selects the child chance node that maximizes
the UCB1 term, i.e. arg maxnc∈S(nd) UCB1(nd, nc), where

UCB1(nd, nc) = B ·

√
logCk(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

.

B is the bias term which allows us to adjust the
trade-off between exploration and exploitation. We set
UCB1(nd, nc) =∞ if Ck(nc) = 0 to force the exploration
of chance nodes that have not been visited.

In outcome selection, we randomly sample an outcome
of an action, i.e. sample a child decision node nd from the
successors S(nc) of a chance node nc based on the transition
probabilities P (nd |nc).

Expansion Phase. In this phase, we expand the tip node
nd and optionally initialize the Q-values of its child chance
nodes, S(nd). Calculating an estimated Q-value requires
calculating a weighted sum of the form:

Qk(nc) = c(nc) +
∑

nd∈S(nc)

P (nd |nc) ·H(s(nd)) ,

where H is some domain-independent SSP heuristic func-
tion such as hadd, hmax, hpom, or hroc (Teichteil-Königsbuch,
Vidal, and Infantes 2011; Trevizan, Thiébaux, and Haslum
2017). This can be expensive when nc has many successor
decision nodes.

Simulation Phase. Immediately after the expansion
phase, we transition to the simulation phase. Here we per-
form a simulation (also known as a rollout) of the planning
problem from the tip node’s state s(nd), until we reach a
goal or dead-end state, or exceed the trial length. This stands
in contrast to the behaviour of THTS, which lacks a simu-
lation phase and would continuously switch between the se-
lection and expansion phases until the trial length is reached.

We use the simulation function to choose which action to
take in a given state, and sample the next state according
to the transition probabilities. If we complete a simulation
without reaching a goal or dead end, we add a heuristic es-
timate H(s′) to the rollout cost, where s′ is the final rollout
state. If s′ is a dead end, then we set the rollout cost to be the
dead-end penalty D.

The trial length bounds how many steps can be applied
in the simulation phase, and hence allows us to adjust the
lookahead capability of DP-UCT. By setting the trial length
to be very small, we can focus the search on nodes closer
to the root of the tree, much like breadth-first search (Keller
and Helmert 2013). Following the steps above, if the trial
length is 0, we do not perform any simulations and simply
take a heuristic estimate for the tip node of the trial, or D if
the tip node represents a dead-end.



Traditional MCTS-based algorithms use a random simu-
lation function, where each available action in the state has
the same probability of being selected. However, this is not
very suitable for SSPs as we can continuously loop around
a set of states and never reach a goal state. Moreover, using
a random simulation function requires an extremely large
number of simulations to obtain good estimates for state-
values and action-values within the search tree. Because of
this, the simulation phase in MCTS-based algorithms for
planning is often neglected and replaced by a heuristic es-
timate. This is equivalent to setting the trial length to be 0,
where we backup a heuristic estimate once we expand the
tip node of the trial.

However, there can be situations where the heuristic func-
tion is misleading or uninformative and thus misguides the
search. In such a scenario, it could be more productive to
use a random simulation function, or a simulation function
influenced by domain-specific knowledge (i.e., the knowl-
edge learned by an ASNet) to calculate estimates.

Backup Phase. After the simulation phase, we must prop-
agate the information we have gained from the current trial
back up the search tree. We use the backup function to up-
date the state-value estimate V k(nd) for decision nodes and
the action-value estimate Qk(nc) for chance nodes. We do
this by propagating the information we gained during the
simulation in reverse order through the nodes in the trial
path, by continuously applying the backup function for each
node until we reach the root node of the search tree.

Original UCT is defined with Monte-Carlo backups, in
which the transition model is unknown and hence estimated
based on the number of visits to nodes. However, in our
work we consider the transition model to be known a pri-
ori. For that reason, DP-UCT only considers Bellman back-
ups (Keller and Helmert 2013), which additionally take the
probabilities of outcomes into consideration when backing
up action value estimates Qk(nc):

V k(nd) =


0 if s(nd) is a goal
D if s(nd) is a dead end

min
nc∈S(nd)

Qk(nc) otherwise,

Qk(nc) = min

D, c(nc) +
∑

nd∈Υk(nc)

P̂ (nd |nc) · V k(nd)

 ,

where Υk(nc) =
{
nd |nd ∈ S(nc), C

k(nd) > 0
}
,

and P̂ (nd |nc) =
P (nd |nc)∑

n′
d∈Υk(nc) P (n′d |nc)

.

Υk(nc) represents the child decision nodes of nc that have
already been visited in the first k trials and hence have state-
value estimates. Thus, P̂ (nd |nc) allows us to weigh the
state-value estimate V k(nd) of each visited child decision
node nd proportionally by its probability P (nd |nc) and that
of the unvisited child decision nodes.

It should be obvious that Bellman backups are derived di-
rectly from the Bellman optimality equations we presented
in Section 2. Thus a flavor of UCT using Bellman backups is

asymptotically optimal given a correct selection of ingredi-
ents that will ensure all nodes are explored infinitely often.

4 Combining DP-UCT with ASNets
4.1 Using ASNets as a Simulation Function
Recall that an ASNet learns a stochastic policy π : A×S →
[0, 1], where π(a | s) represents the probability action a is
applied in state s. We introduce two simulation functions
which make use of a trained ASNet: STOCHASTIC AS-
NETS which simply samples from the probability distribu-
tion given by π to select an action, and MAXIMUM ASNETS
which selects the action with the highest probability – i.e.
arg maxa∈A(s) π(a | s).

Since the navigation of the search space is heavily influ-
enced by the state-value and action-value estimates we ob-
tain from performing simulations, DP-UCT with an ASNet-
based simulation function would ideally converge to the op-
timal policy in a smaller number of simulations compared
to if we used the random simulation function. Of course, we
expect this to be the case if an ASNet has learned some use-
ful features or tricks about the environment or domain of the
problem we are tackling.

However, using ASNets as a simulation function may not
be very robust if the learned policy is misleading and un-
informative. Here, robustness indicates how well UCT can
recover from the misleading information it has been pro-
vided. In this situation, DP-UCT with ASNets as a simula-
tion function would require a significantly larger number of
simulations in order to converge to the optimal policy than
DP-UCT with a random simulation function. Regardless the
quality of the learned policy, DP-UCT remains asymptoti-
cally optimal when using an ASNet-based simulation func-
tion if the selection of ingredients guarantees that our search
algorithm will explore all nodes infinitely often. Nonethe-
less, an ASNet-based simulation function should only be
used if its simulation from the tip node nd better approxi-
mates V ∗(nd) than a heuristic estimate H(s(nd)).

Choosing between STOCHASTIC ASNETS and MAXI-
MUM ASNETS. We can perceive the probability distri-
bution given by the policy π of an ASNet to represent the
‘confidence’ the network has in applying each action. Obvi-
ously, MAXIMUM ASNETS will completely bias the simu-
lations towards what an ASNet believes is the best action
for a given state. If the probability distribution is highly
skewed towards a single action, then MAXIMUM ASNETS
would be the better choice, as the ASNet is very ‘confident’
in its decision to choose the corresponding action. On the
other hand, if the probability distribution is relatively uni-
form, then STOCHASTIC ASNETS would likely be the bet-
ter choice. In this situation, the ASNet may be uncertain and
not very ‘confident’ in its decision to choose among a set of
actions. Thus, to determine which ASNet-based simulation
function to use, we should carefully consider to what extent
an ASNet is able to solve the given problem reliably.

4.2 Using ASNets in UCB1
The UCB1 term allows us to balance the trade-off between
exploration of actions in the search tree that have not been



applied often, and exploitation of actions that we already
know have good action-value estimates based on previ-
ous trials. By including an ASNet’s influence within UCB1
through its policy π, we hope to maintain this fundamen-
tal trade-off yet further bias the action selection to what the
ASNet believes are promising actions.

Simple ASNet Action Selection. We select the child
chance node nc of a decision node nd that maximizes:

SIMPLE-ASNET(nd, nc) =
M · π(nc)

Ck(nc)
+ UCB1(nd, nc)

=
M · π(nc)

Ck(nc)
+B ·

√
logCk(nd)

Ck(nc)︸ ︷︷ ︸
exploration

− Qk(nc)︸ ︷︷ ︸
exploitation

where M ∈ R+ and π(nc) = π(a(nc) | s(nc)) for the
stochastic policy π learned by ASNet. Similar to UCB1,
if a child chance node nc has not been visited before (i.e.,
Ck(nc) = 0), we set SIMPLE-ASNET(nd, nc) = ∞ to
force its exploration. The new parameter M , called the in-
fluence constant, allows us to control the exploitation of an
ASNet’s policy π for exploration and, the higher M is, the
higher the influence of the ASNet in the action selection.

Notice that the influence of the ASNet diminishes
as we apply the action a(nc) more often because
M ·π(nc)/C

k(nc) decreases as the number of visits to the
chance node nc increases. Moreover, since the bias provided
byM ·π(nc)/C

k(nc) diminishes to 0 asCk(nc)→∞ faster
than B ·

√
logCk(nd)/Ck(nc) (i.e., the original UCB1 bias

term), SIMPLE-ASNET preserves the asymptotic optimal-
ity of UCB1: as Ck(nc) → ∞, SIMPLE-ASNET(nd, nc)
equals UCB1(nd, nc) and both converge to the optimal
action-value Q∗(nc) (Kocsis and Szepesvári 2006).

Because of this similarity with UCB1 and their same ini-
tial condition (i.e., treating divisions by Ck(nc) = 0 as∞),
we expect that SIMPLE-ASNET action selection will be ro-
bust to any misleading information provided by the policy
of a trained ASNet. Nonetheless, the higher the value of the
influence constant M , the more trials we require to combat
any uninformative information.

Ranked ASNet Action Selection. One pitfall of the in-
finite exploration bonus in SIMPLE-ASNET action selec-
tion when Ck(nc) = 0 is that all child chance nodes
must be visited at least once before we actually exploit
the policy learned by an ASNet. Ideally, we should use
the knowledge learned by an ASNet to select the order in
which unvisited chance nodes are explored. Thus, we in-
troduce RANKED-ASNET action selection, an extension to
SIMPLE-ASNET action selection.

RANKED-ASNET(nd, nc) =
SIMPLE-ASNET(nd, nc) if ∀n′c ∈ S(nd), C

k(n′c) > 0

π(nc) if Ck(nc) = 0

−∞ otherwise

The first condition stipulates that all chance nodes are se-
lected and visited at least once before SIMPLE-ASNET ac-

tion selection is used. Otherwise, chance nodes that have al-
ready been visited are given a value of −∞, while the val-
ues of unvisited nodes correspond to their probability in the
policy π. Thus, unvisited child chance nodes are visited in
decreasing order of their probability within the policy π.

RANKED-ASNET action selection will allow DP-UCT to
focus the initial stages of its search on what an ASNet be-
lieves are the most promising parts of the state space. Given
that the ASNet has learned some useful knowledge of which
action to apply at each step, we expect RANKED-ASNET
action selection to require a smaller number of trials to con-
verge to the optimal action in comparison with SIMPLE-
ASNET action selection. However, RANKED-ASNET may
not be as robust as SIMPLE-ASNET when the policy learned
by an ASNet is misleading or uninformative. For example,
if the optimal action has the lowest probability among all
actions in the ASNet policy and is hence explored last, then
we would require an increased number of trials to converge
to this optimum.

Comparison with ASNet-based Simulation Functions.
DP-UCT with ASNet-influenced action selection is more
robust to misleading information than DP-UCT with an
ASNet-based simulation function. Since SIMPLE-ASNET
and RANKED-ASNET action selection decreases the influ-
ence of a network as we apply an action it has suggested
more frequently, we will eventually explore actions that may
have a small probability in the policy learned by the AS-
Net but are in fact optimal. We would require a much larger
number of trials to achieve this when using an ASNet-based
simulation function, as the state-value and action-value es-
timates in the search tree would be directly derived from
ASNet-based simulations.

5 Empirical Evaluation
5.1 Experimental Setup
All experiments were performed on an Amazon Web Ser-
vices EC2 c5.4x large instance with 16 CPUs and 32GB of
memory. Each experiment was limited to one CPU core with
a maximum turbo clock speed of 3.5 GHz. No restrictions
were placed on the amount of memory an experiment used.

Considered Planners. For our experiments, we consider
two baseline planners: the original ASNets algorithm and
UCT*. The latter is a variation of DP-UCT where the trial
length is 0 while still using UCB1 to select actions, Bellman
backups as the backup function, and no simulation function.
UCT* was chosen as a baseline because it outperforms origi-
nal DP-UCT due to its stronger theoretical properties (Keller
and Helmert 2013). We consider four parametrizations of
our algorithms – namely, (i) Simple ASNets, (ii) Ranked
ASNets, (iii) Stochastic ASNets, and (iv) Maximum AS-
Nets – where: parametrizations (i) and (ii) are UCT* us-
ing SIMPLE and RANKED-ASNET action selection, respec-
tively; and parametrizations (iii) and (iv) are DP-UCT with
a problem-dependent trial length using STOCHASTIC and
MAXIMUM ASNETS as the simulation function, respec-
tively.



ASNet Configuration. We use the same ASNet hyperpa-
rameters as described by Toyer et al. to train each network.
Unless otherwise specified, we imposed a strict two hour
time limit to train the network, though in most situations, the
network finished training within one hour. All ASNets were
trained using an LRTDP-based (Bonet and Geffner 2003)
teacher that used LM-cut (Helmert and Domshlak 2009) as
the heuristic to compute optimal policies. We only report the
time taken to solve each problem for the final results for an
ASNet, and hence do not include the training time.

DP-UCT Configuration. For all DP-UCT configurations
we used hadd (Bonet and Geffner 2001) as the heuristic func-
tion because it allowed DP-UCT to converge to a good so-
lution in a reasonable time in our experiments, and set the
UCB1 bias parameter B to

√
2. For all problems with dead

ends, we enabled Q-value initialization, as it helps us avoid
selecting a chance node for exploration that may lead to a
dead end. We did not enable this for problems without dead
ends because estimating Q-values is computationally expen-
sive, and not beneficial in comparison to the number of trials
that could have been performed in the same time frame.

We gave all configurations a 10 second time cutoff to do
trials and limited the maximum number of trials to 10,000 at
each decision step to ensure fairness. Moreover, we set the
dead-end penalty to be 500. We gave each planning round a
maximum time of 1 hour, and a maximum of 100 execution
steps. We ran 30 rounds per planner for each experiment.

5.2 Domains
Stack Blocksworld. Stack Blocksworld is a special case
of the deterministic Blocksworld domain in which the goal
is to stack n blocks initially on the table into a single tower.
We train an ASNet to unstack n blocks from a single tower
and put them all down on the table. Since the network has
never learned how to stack blocks, it completely fails at
stacking the n blocks on the table into a single tower. A set-
ting like this one—where the distributions of training and
testing problems have non-overlapping support—represents
a near-worst-case scenario for inductive learners like AS-
Nets. In contrast, stacking blocks into a single tower is a
relatively easy problem for UCT*. Our aim in this experi-
ment is to show that DP-UCT can overcome the misleading
information learned by ASNet policy. We train an ASNet on
unstack problems with 2 to 10 blocks, and evaluate DP-UCT
and ASNets on stack problems with 5 to 20 blocks.

Exploding Blocksworld. This domain is an extension of
deterministic Blocksworld, and is featured in the Interna-
tional Probabilistic Planning Competitions (IPPC). In Ex-
ploding Blocksworld, putting down a block can detonate and
destroy the block or the table it was put down on. Once a
block or the table is exploded, we can no longer use it; there-
fore, this domain contains unavoidable dead ends. A good
policy avoids placing a block down on the table or down on
another block that is required for the goal state (if possible).
It is very difficult for an ASNet to reliably solve Exploding
Blocksworld problems as each problem could have its own
‘trick’ in order to avoid dead ends and reach the goal with
minimal cost.

Toll 1 ... Toll nShop Customer

Figure 2: The CosaNostra Pizza Domain

We train an ASNet for 5 hours on a selected set of 16
problems (including those with avoidable and unavoidable
dead ends) that were optimally solved by LRTDP within
2 minutes.1 We evaluate ASNets and DP-UCT on the first
eight problems from IPPC 2008 (Bryce and Buffet 2008).
By combining DP-UCT and ASNets, we hope to exploit the
limited knowledge and ‘tricks’ learned by an ASNet on the
problems it was trained on to navigate the search space. That
is, we aim to learn what we have not learned, and improve
suboptimal learning.

CosaNostra Pizza (Toyer et al. 2018). The objective in
CosaNostra Pizza is to safely deliver a pizza from the pizza
shop to the waiting customer and then return to the shop.
There is a series of toll booths on the two-way road be-
tween the pizza shop and the customer (Figure 2). At each
toll booth, you can choose to either pay the toll operator or
drive straight through without paying. We save a time step
by driving straight through without paying but the operator
becomes angry. Angry operators drop their toll gate on you
and crush your car (leading to a dead end) with a probability
of 50% when you next pass through their booth. Hence, the
optimal policy is to only pay the toll operators on the trip
to the customer, but not on the trip back to the pizza shop
(as we will not revisit the booth). This ensures a safe return,
as there will be no chance of a toll operator crushing your
car at any stage. Thus, CosaNostra Pizza is an example of a
problem with avoidable dead ends.

An ASNet is able to learn the trick of paying the toll oper-
ators only on the trip to the customer, and scales up to large
instances while heuristic search planners based on determin-
isation (either for search or for heuristic computation) do not
scale up (Toyer et al. 2018). The reason for the underperfor-
mance of determinisation-based techniques (e.g., using hadd

as heuristic) is the presence of avoidable dead ends in the
CosaNostra domain. Moreover, heuristics based on delete
relaxation (e.g., hadd) also underperform in the CosaNostra
domain because they consider that the agent crosses each
toll booth only once, i.e., this relaxation ignores the return
path since it uses the same propositions as the path to the
customer. Thus, we expect UCT* to not scale up to larger in-
stances since it will require extremely long reasoning chains
in order to always pay the toll operator on the trip to the
customer; however, by combining DP-UCT with the opti-
mal policy learned by an ASNet, we expect to scale up to
much larger instances than UCT* alone.

For the CosaNostra Pizza problems, we train an ASNet on
problems with 1 to 5 toll-booths, and evaluate DP-UCT and
ASNets on problems with 2 to 15 toll booths.

1The training problems are available here:
https://s3.amazonaws.com/ex-blocksworld/problems.zip
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Figure 3: Coverage results for Stack Blocksworld.

5.3 Results
Stack Blocksworld. We allocate to each execution step
n/2 seconds for all runs of DP-UCT, where n is the num-
ber of blocks in the problem. We use Simple ASNets with
the influence constant M set to 10, 50 and 100 to demon-
strate how DP-UCT can overcome the misleading informa-
tion provided by the ASNet. We do not run experiments that
use ASNets as a simulation function, as that would result
in completely misleading state-value and action-value esti-
mates in the search tree, meaning DP-UCT would achieve
near-zero coverage.

Figure 3 depicts our results. ASNets achieves zero cov-
erage, while UCT* is able to reliably achieve near-full cov-
erage for all problems up to 20 blocks. In general, as we
increase M , the coverage of Simple ASNets decays earlier
as the number of blocks increases. This is not unexpected,
as by increasing M , we increasingly ‘push’ the UCB1 term
to select actions that the ASNet wishes to exploit, and hence
misguide the navigation of the search space. Nevertheless,
Simple ASNets is able to achieve near-full coverage for
problems with up to 17 blocks for M = 10, 15 blocks for
M = 50, and approximately 11 blocks for M = 100. We
also observed a general increase in the time taken to reach a
goal as we increasedM , though this was not always the case
due to the noise of DP-UCT.

This experiment shows that Simple ASNets is capable of
learning what ASNet has not learned and being robust to
changes in the environment by correcting the bad actions the
ASNet suggests through search and eventually converging
to the optimal solution.

Exploding Blocksworld. For all DP-UCT flavors, we in-
creased the UCB1 bias parameter B to 4 and set the maxi-
mum number of trials to 30,000 in order to promote more
exploration. To combine DP-UCT with ASNets, we use
Ranked ASNets with the influence constant M set to 10, 50
and 100. Note, that the coverage for Exploding Blocksworld
is an approximation of the true probability of reaching the
goal. Since we only run each algorithm 30 times, the results
are susceptible to chance.

Table 1 shows our results.2 Since the training set used by
ASNets was likely not representative of the evaluation prob-
lems (i.e., the IPPC 2008 problems), the policy learned by
ASNets is suboptimal and failed to to reach the goal for the

2Since the difficulty of Exploding Blocksworld instances does
not increase monotonically with problem size, presenting the re-
sults as a plot can be misleading.
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Figure 4: Coverage results for CosaNostra Pizza. Both AS-
Nets and Maximum ASNets obtained perfect coverage.

relatively easy problems (e.g., p04 and p07) while UCT*
was able to more reliably solve these problems.

By combining DP-UCT with ASNets through Ranked
ASNets, we were able to either match the performance of
UCT* or outperform it, even when ASNet achieved zero
coverage for the given problem. However, for certain con-
figurations, we were able to improve upon all other config-
urations. For p08, Ranked ASNets with M = 50 achieves
a coverage of 10/30, while all other configurations of DP-
UCT are only able to achieve a coverage of around 4/30.
Despite the fact that the ASNet achieved zero coverage in
this experiment, the general knowledge learned by the AS-
Net helped us navigate the search tree more effectively and
efficiently, even if the suggestions provided by the ASNet
are not optimal. The same reasoning applies to the results
for p04, where Ranked ASNets with M = 50 achieves a
higher coverage than all other configurations.

We have demonstrated that we can exploit the policy
learned by an ASNet to achieve more promising results than
UCT* and the network itself, even if this policy is subopti-
mal. Thus, we have shown that Ranked ASNets is capable
of learning what the ASNet has not learned and improving
the suboptimal policy learned by the network.

CosaNostra Pizza. For this experiment, we considered
ASNets as both a simulation function (Stochastic and Max-
imum ASNets), and in the UCB1 term for action selection
(Simple and Ranked ASNets with M = 100) to improve
upon UCT*. The optimal policy for CosaNostra Pizza takes
3n + 4 steps, where n is the number of toll booths in the
problem. We set the trial length when using ASNets as a
simulation function to be b1.25 · (3n + 4)c, where the 25%
increase gives some leeway for Stochastic ASNets.

Figure 4 shows our results – the curves for ASNets and
Maximum ASNets overlap, as well as the curves for Sim-
ple and Ranked ASNets. ASNets achieves full coverage for
all problems, while UCT* alone is only able to achieve full
coverage for the problems with 2 and 3 toll booths. Using
ASNets in the action selection ingredient through Simple or
Ranked ASNets with the influence constant M = 100 only
allows us to additionally achieve full coverage for the prob-
lem with 4 toll booths. This is because Simple and Ranked
ASNets guide the action selection towards the optimal ac-
tion, but UCT still forces the exploration of other parts of
the state space.

We are able to more reliably solve CosaNostra Pizza prob-



Planner/Prob. p01 p02 p03 p04 p05 p06 p07 p08

ASNets
16/30

8.0 ± 0.0
0.18 ± 0.14s

10/30
12.0 ± 0.0

0.17 ± 0.01s

6/30
10.0 ± 0.0
0.2 ± 0.04s

-
30/30

6.0 ± 0.0
0.19 ± 0.07s

19/30
12.0 ± 0.0

0.42 ± 0.12s
- -

UCT*
26/30

10.92 ± 0.52
102.51 ± 5.24s

9/30
18.22 ± 1.62

175.01 ± 16.24s

13/30
25.23 ± 8.86

222.27 ± 88.77s

11/30
14.55 ± 0.63

136.46 ± 6.75s

30/30
6.13 ± 0.19
36.51 ± 2.4s

28/30
13.93 ± 0.8

132.36 ± 8.11s

30/30
13.0 ± 0.73

107.11 ± 6.95s

5/30
36.4 ± 5.09

335.87 ± 54.56s

Ranked ASNets
M = 10

25/30
10.96 ± 0.48

100.21 ± 6.01s

6/30
17.0 ± 3.45

164.77 ± 34.89s

11/30
30.0 ± 13.64

280.25 ± 135.07s

10/30
14.4 ± 0.6

125.74 ± 11.93s

30/30
6.0 ± 0.0

38.11 ± 1.17s

25/30
13.6 ± 0.83

113.56 ± 8.11s

30/30
12.07 ± 0.14
116.36 ± 1.4s

4/30
35.0 ± 7.58

340.82 ± 75.18s

Ranked ASNets
M = 50

23/30
11.04 ± 0.58
94.17 ± 6.51s

10/30
17.6 ± 2.85

166.29 ± 27.91s

14/30
35.71 ± 7.87

352.14 ± 78.66s

15/30
14.4 ± 0.46

123.06 ± 5.75s

30/30
6.0 ± 0.0

38.85 ± 1.15s

27/30
13.33 ± 0.76

127.69 ± 7.59s

30/30
12.07 ± 0.14

102.57 ± 1.38s

10/30
38.6 ± 0.97

374.93 ± 12.01s

Ranked ASNets
M = 100

25/30
11.04 ± 0.48

105.26 ± 4.83s

12/30
17.33 ± 2.44

167.75 ± 24.5s

14/30
28.43 ± 6.54

259.18 ± 65.16s

10/30
14.6 ± 0.69

126.61 ± 6.41s

30/30
6.0 ± 0.0

39.41 ± 1.08s

29/30
13.38 ± 0.74

111.66 ± 7.15s

30/30
12.33 ± 0.28

103.56 ± 3.16s

4/30
36.5 ± 9.14

344.06 ± 93.88s

Table 1: Results for Exploding Blocksworld. The coverage (i.e., the number of runs that successfully reached the goal) is
presented in the 1st line of each cell. The 2nd and 3rd lines of each cell show the mean cost and mean time to reach a goal,
respectively, and their associated 95% confidence interval.

lems when using ASNets as a simulation function. Since the
ASNet learns the optimal policy, an ASNet-based simula-
tion function allow us to obtain much better state-value es-
timates for nodes in the search tree than those provided by
a domain-independent heuristic. It is easy to see that when
we use Maximum ASNets, the state-value V ∗(nd) for the
tip node of a trial nd obtained from the simulation is optimal
(assuming a sufficiently large trial length). Thus, Maximum
ASNets achieves full coverage for all problems as Maximum
ASNets will always provide DP-UCT with a path directly to
the goal which it will eventually fall back to. For Stochastic
ASNets, we see an exponential decay in the coverage as the
problem size increases above 10 toll booths. The reason for
this is because as the problem size increases, the probability
of obtaining a path that leads directly to the goal decreases
as the state space increases exponentially. Hence, DP-UCT
cannot fall back to the path the ASNet has provided it, as
this path may not have been taken before.

The explanations above also justify why Maximum AS-
Nets took less time to reach a goal than all other configura-
tions of DP-UCT. For this same reason, Maximum ASNets
took less time to reach a goal than all other configurations of
DP-UCT, e.g., for n= 4, the mean time to reach a goal and
the 95% confidence interval for the considered planners are:
ASNets (0.15 ± 0.05s), UCT* (64.95 ± 7.16s), Maximum
ASNets (54.51± 0.19s), Stochastic ASNets (64.7± 3.17s),
Simple ASNets with M = 100 (104.45 ± 2.38s), Ranked
ASNets with M = 100 (124.41± 7.27s).

In this experiment, we have shown how using ASNets in
UCB1 through SIMPLE-ASNET or RANKED-ASNET ac-
tion selection can only provide marginal improvements over
UCT* when the number of reachable states increases ex-
ponentially with the problem size, and the heuristic esti-
mates are misleading. We also demonstrated how we can
combat this sub-optimal performance of DP-UCT by using
ASNets as a simulation function, as it allows us to more ef-
ficiently explore the search space and find the optimal ac-
tions. Thus, an ASNet-based simulation function may help
DP-UCT learn what it has not learned.

Triangle Tireworld (Little and Thiébaux 2007). Triangle
Tireworld is a domain with avoidable dead ends. ASNets is
trivially able to find the optimal policy which always avoids
dead ends. The results of our new algorithms on Triangle
Tireworld are very similar to the results in the CosaNostra
experiments, as the algorithms leverage the fact that ASNets
finds the optimal generalized policy for both domains.

6 Conclusion, Related and Future Work
In this paper, we have investigated techniques to improve
search using generalized policies. We discussed a frame-
work for DP-UCT, extended from THTS, that allowed us
to generate different flavors of DP-UCT including those that
exploited the generalized policy learned by an ASNet. We
then introduced methods of using this generalized policy
in the simulation function, through STOCHASTIC ASNETS
and MAXIMUM ASNETS. These allowed us to obtain more
accurate state-value estimates and action-value estimates in
the search tree. We also extended UCB1 to bias the naviga-
tion of the search space to the actions that an ASNet wants
to exploit whilst maintaining the fundamental balance be-
tween exploration and exploitation, by introducing SIMPLE-
ASNET and RANKED-ASNET action selection.

We have demonstrated through our experiments that our
algorithms are capable of improving the capability of an
ASNet to generalize beyond the distribution of problems it
was trained on, as well as improve sub-optimal learning. By
combining DP-UCT with ASNets, we are able to bias the ex-
ploration of actions to those that an ASNet wishes to exploit,
and allow DP-UCT to converge to the optimal action in a
smaller number of trials. Our experiments have also demon-
strated that by harnessing the power of search, we may over-
come any misleading information provided by an ASNet due
to a change in the environment. Hence, we achieved the three
following goals: (1) Learn what we have not learned, (2) Im-
prove on sub-optimal learning, and (3) Be robust to changes
in the environment or domain.

It is important to observe that our contributions are more
generally applicable to any method of learning a (general-
ized) policy (not just ASNets), and potentially to other trial-



based search algorithms including (L)RTDP.
In the deterministic setting, there has been a long tra-

dition of learning generalized policies and using them to
guide heuristic Best First Search (BFS). For instance, Yoon
et al. (Yoon, Fern, and Givan 2007) add the states result-
ing from selecting actions prescribed by the learned gen-
eralized policy to the the queue of a BFS guided by a
relaxed-plan heuristic, and de la Rosa et al. (2011) learn
and use generalized policies to generate lookahead states
within a BFS guided by the FF heuristic. These authors
observe that generalized policies provide effective search
guidance, and that search helps correcting deficiencies in
the learned policy. Search control knowledge à la TLPlan,
Talplanner or SHOP2 has been successfully used to prune
the search of probabilistic planners (Kuter and Nau 2005;
Thiébaux et al. 2006). More recently, Steinmetz et al. (2016)
have also experimented with the use of preferred actions in
variants of RTDP (Barto, Bradtke, and Singh 1995) and AO*
(Nilsson 1980), albeit with limited success. Our work dif-
fers from these approaches by focusing explicitly on MCTS
as the search algorithm and, unlike existing work combin-
ing deep learning and MCTS (e.g. AlphaGo (Silver et al.
2016)), looks not only at using neural network policies as a
simulation function for rollouts, but also as a means to bias
the UCB1 action selection rule.

There are still many potential avenues for future work. We
may investigate how to automatically learn the influence pa-
rameter M for SIMPLE-ASNET and RANKED-ASNET ac-
tion selection, or how to combat bad information provided
by an ASNet in a simulation function by mixing ASNet
simulations with random simulations. We may also inves-
tigate techniques to interleave planning with learning by us-
ing UCT with ASNets as a ‘teacher’ for training an AS-
Net, similar to the ‘leapfrogging’ idea presented by Gro-
shev et al. (2018). ASNets may also be replaced by Deep
Reactive Policies (Issakkimuthu, Fern, and Tadepalli 2018;
Bajpai, Garg, and Mausam 2018), which learn reactive poli-
cies for RDDL problems. We hope that such work would
bridge the gap between symbolic AI and deep learning, and
improve the state-of-the-art in probabilistic planning.
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