
Published as a conference paper at ICLR 2020

OPTION DISCOVERY USING DEEP SKILL CHAINING

Akhil Bagaria
Department of Computer Science
Brown University
Providence, RI, USA
akhil bagaria@brown.edu

George Konidaris
Department of Computer Science
Brown University
Providence, RI, USA
gdk@brown.edu

ABSTRACT

Autonomously discovering temporally extended actions, or skills, is a longstand-
ing goal of hierarchical reinforcement learning. We propose a new algorithm
that combines skill chaining with deep neural networks to autonomously discover
skills in high-dimensional, continuous domains. The resulting algorithm, deep
skill chaining, constructs skills with the property that executing one enables the
agent to execute another. We demonstrate that deep skill chaining significantly
outperforms both non-hierarchical agents and other state-of-the-art skill discov-
ery techniques in challenging continuous control tasks.1 2

1 INTRODUCTION

Hierarchical reinforcement learning (Barto & Mahadevan, 2003) is a promising approach for solving
long-horizon sequential decision making problems. Hierarchical methods lower the decision mak-
ing burden on the agent through the use of problem specific action abstractions (Konidaris, 2019).
While the use of temporally extended actions, or options (Sutton et al., 1999), has been shown
to accelerate learning (McGovern & Sutton, 1998), there remains the question of skill discovery:
how can agents autonomously construct useful skills via interaction with the environment? While a
large body of work has sought to answer this question in small discrete domains, skill discovery in
high-dimensional continuous spaces remains an open problem.

An early approach to skill discovery in continuous-state environments was skill chaining (Konidaris
& Barto, 2009b), where an agent constructs a sequence of options that target a salient event in the
MDP (for example, the goal state). The skills are constructed so that successful execution of each
option in the chain allows the agent to execute another option, which brings it closer still to its
eventual goal. While skill chaining was capable of discovering skills in continuous state spaces, it
could only be applied to relatively low-dimensional state-spaces with discrete actions.

We introduce a new algorithm that combines the core insights of skill chaining with recent advances
in using non-linear function approximation in reinforcement learning. The new algorithm, deep skill
chaining, scales to high-dimensional problems with continuous state and action spaces. Through a
series of experiments on five challenging domains in the MuJoCo physics simulator (Todorov et al.,
2012), we show that deep skill chaining can solve tasks that otherwise cannot be solved by non-
hierarchical agents in a reasonable amount of time. Furthermore, the new algorithm outperforms
state-of-the-art deep skill discovery algorithms (Bacon et al., 2017; Levy et al., 2019) in these tasks.

2 BACKGROUND AND RELATED WORK

Sequential decision making problems can be formalized as Markov Decision Processes (MDPs). We
consider goal-oriented episodic MDPs, where S denotes the state space, A is the action space, R is
the reward function, T is the transition function, γ is the discount factor and g ∈ S is the terminating
goal state (Sutton & Barto, 2018). Unlike goal-conditioned algorithms (Sutton et al., 2011; Schaul
et al., 2015), we do not require that g be known; instead we assume access to an indicator function
1g : s ∈ S −→ {0, 1} which the agent can query to determine if it has reached the MDP’s goal.

1Video of learned policies: https://youtu.be/MGvvPmm6JQg
2Code: https://github.com/deep-skill-chaining/deep-skill-chaining

1

https://youtu.be/MGvvPmm6JQg
https://github.com/deep-skill-chaining/deep-skill-chaining

Published as a conference paper at ICLR 2020

One way to learn a policy in an MDP is to first learn an action-value function. The action-value func-
tion Qπ(st, at) is defined as the expected sum of discounted future rewards if the agent takes action
at from st and then follows policy π thereafter: Qπ(st, at) = Eπ[rt + γmaxat+1

Qπ(st+1, at+1)].

Q-learning (Watkins & Dayan, 1992) is a commonly used off-policy algorithm that uses the action-
value function for control through a greedy policy π(st) = argmaxat Q(st, at). Inspired by recent
success in scaling Q-learning to high-dimensional spaces (Mnih et al., 2015; Van Hasselt et al., 2016;
Lillicrap et al., 2015; Tesauro, 1994), we learn the action-value functionQπφ(st, at) using non-linear
function approximators parameterized by φ, by minimizing the loss L(φ) = Eπ[(Qφ(st, at)− yt)2]
where the Q-learning target yt is given by the following equation (Van Hasselt et al., 2016):

yt = rt + γQφ′(st+1, argmax
at+1

Qφ(st+1, at+1)). (1)

Deep Q-Learning (DQN) (Mnih et al., 2015) casts minimizingL(φ) as a standard regression problem
by using target networks (parameterized by φ′) and experience replay (Lin, 1993).

2.1 THE OPTIONS FRAMEWORK

The options framework (Sutton et al., 1999) models skills as options. An option o consists of three
components: (a) its initiation condition, Io(s), which determines whether o can be executed in state
s, (b) its termination condition, βo(s), which determines whether option execution must terminate in
state s and (c) its closed-loop control policy, πo(s), which maps state s to a low level action a ∈ A.
Augmenting the set of available actions with options results in a Semi-Markov Decision Process
(SMDP) (Sutton et al., 1999) where the next state depends on the current state, action and time.

2.2 SKILL DISCOVERY ALGORITHMS

Skill discovery has been studied extensively in small discrete domains (McGovern & Sutton, 1998;
Şimşek & Barto, 2004; Şimşek et al., 2005; Bakker & Schmidhuber, 2004; Schmidhuber, 1991;
Pickett & Barto, 2002; Dietterich, 2000). Recently however, there has been a significant body of
work aimed at discovering skills in continuous spaces.

Option-critic methods: Option-Critic (Bacon et al., 2017) uses an end-to-end gradient based algo-
rithm to learn options in high-dimensional continuous spaces. Option-Critic was a substantial step
forward in skill discovery and led to a family of related methods (Klissarov et al., 2017; Tiwari &
Thomas, 2019; Riemer et al., 2018; Liu et al., 2017; Jain et al., 2018). Proximal Policy Option Critic
(PPOC) (Klissarov et al., 2017) extends Option-Critic to continuous action spaces and is the version
of Option-Critic that we compare against in this paper. Our method bypasses two fundamental short-
comings of the Option-Critic framework: (a) unlike Option-Critic, we explicitly learn initiation sets
of options and thus do not assume that all options are executable from everywhere, and (b) we do
not treat the number of skills required to solve a task as a fixed and costly hyperparameter. Instead,
our algorithm flexibly discovers as many skills as it needs to solve the given problem.

Feudal methods: An alternative to the options framework is Feudal RL (Dayan & Hinton, 1993),
which creates a hierarchy in which managers learn to assign subgoals to workers; workers take a
subgoal state as input and learn to reach it. Feudal Networks (FuN) (Vezhnevets et al., 2017) used
neural networks to scale the Feudal-RL framework to high-dimensional continuous spaces; it was
extended and outperformed by HIRO (Nachum et al., 2018) in a series of control tasks in the MuJoCo
simulator. More recently, Hierarchical Actor-Critic (HAC) (Levy et al., 2019) outperformed HIRO
in a similar suite of continuous control problems. While HIRO relies on having a dense “distance-
to-goal” based reward function to train both levels of their feudal hierarchy, HAC’s use of Hindsight
Experience Replay (HER) (Andrychowicz et al., 2017) allows it to work in the more general sparse-
reward setting. Given its strong performance in continuous control problems and its ability to learn
effectively in sparse-reward settings, we compare against HAC as a representative feudal method.

Learning backward from the goal: The idea of sequencing locally applicable controllers is well es-
tablished in robotics and control theory in the form of pre-image backchaining (Kaelbling & Lozano-
Pérez, 2017) and LQR-Trees (Tedrake, 2009). Such methods either require individually engineered
control loops or a model of the system dynamics. Our work fits in the model-free RL setting and

2

Published as a conference paper at ICLR 2020

thus requires neither. More recently, reverse curriculum learning (Florensa et al., 2017) also learns
backward from the goal. However, they define a curriculum of start states to learn a single policy,
rather than learning skills. Relay Networks (Kumar et al., 2018) segment the value function back-
ward from the goal using a thresholding scheme, which makes their method reliant on the accurate
estimation of the value function. By contrast, our algorithm is agnostic to errors in value estimation,
which are unavoidable when using function approximation in high-dimensional spaces.

Planning with learned skills: Options have been shown to empirically speed up planning in several
domains (Silver & Ciosek, 2012; Jinnai et al., 2019; James et al., 2018; Francis & Ram, 1993;
Konidaris, 2016; Sharma et al., 2019). However, Konidaris et al. (2018) show that for resulting
plans to be provably feasible, skills must be executable sequentially. While they assume that such
skills are given, we show that they can be autonomously discovered in high-dimensional spaces.

3 DEEP SKILL CHAINING

Deep skill chaining (DSC) is based on the intuition that it is easier to solve a long-horizon task from
states in the local neighborhood of the goal. This intuition informs the first step of the algorithm:
create an option that initiates near the goal and reliably takes the agent to the goal. Once such an
option is learned, we create another option whose goal is to take the agent to a state from which
it can successfully execute the first option. Skills are chained backward in this fashion until the
start state of the MDP lies inside the initiation set of some option. The inductive bias of creating
sequentially executable skills guarantees that as long as the agent successfully executes each skill in
its chain, it will solve the original task. More formally, skill chaining amounts to learning options
such that the termination condition βoi(st) of an option oi is the initiation condition Ioi−1(st) of the
option that precedes it in its chain.

Our algorithm proceeds as follows: at time t, the policy over options πO : st ∈ S −→ o ∈ O
determines which option to execute (Section 3.2). Control is then handed over to the selected option
oi’s internal policy πoi : s ∈ S −→ at ∈ R|A|. πoi outputs joint torques until it either reaches its goal
(βoi := Ioi−1

) or times out at its predetermined budget T (Section 3.1). At this point, πO chooses
another option to execute. If at any point the agent reaches the goal state of the MDP or the initiation
condition of a previously learned option, it creates a new option to target such a salient event. The
machinery for learning the initiation condition of this new option is described in Section 3.3. We
now detail the components of our architecture and how they are learned. Readers may also refer to
Figures 4 & 7 and the pseudo-code in Appendix A.5 to gain greater intuition about our algorithm.

3.1 INTRA-OPTION POLICY

Each option o maintains its own policy πo : s −→ at ∈ R|A|, which is parameterized by its own
neural networks θo. To train πo(s; θo), we must define o’s internal reward function. In sparse reward
problems, o is given a subgoal reward when it triggers βo; otherwise it is given a step penalty. In the
dense reward setting, we can compute the distance to the parent option’s initiation set classifier and
use that to define o’s internal reward function. We can now treat learning the intra-option policy (πo)
as a standard RL problem and use an off-the-shelf algorithm to learn this policy. Since in this work
we solve tasks with continuous action spaces, we use Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2015) to learn option policies over real-valued actions.

3.2 POLICY OVER OPTIONS

Initially, the policy over options (πO) only possesses one option that operates over a single time step
(T = 1). We call this option the global option (oG) since its initiation condition is true everywhere
in the state space and its termination condition is true only at the goal state of the MDP (i.e, IoG(s) =
1∀s and βoG = 1g). Using oG, πO can select primitive actions. At first the agent continually calls
upon oG, which uses its internal option policy πoG to output exactly one primitive action. Once oG
triggers the MDP’s goal state N times, DSC creates its first temporally extended option, the goal
option (og), whose termination condition is also set to be the goal state of the MDP, i.e, βog = 1g .

As the agent discovers new skills, it adds them to its option repertoire and relies on πO to deter-
mine which option (including oG) it must execute at each state. Unlike oG, learned options will be

3

Published as a conference paper at ICLR 2020

temporally extended, i.e, they will operate over T > 1 time steps. If in state st the agent chooses
to execute option oi, then oi will execute its own closed-loop control policy (for τ steps) until its
termination condition is met (τ < T) or it has timed out at τ = T time steps. At this point, control
is handed back to πO, which must now choose a new option at state st+τ .

Option selection: To select an option in state st, πO first constructs a set of admissible options given
by Equation 2. πO then chooses the admissible option that maximizes its option-value function, as
shown in Equation 3. Since the agent must choose from a discrete set of options at any time, we
learn its option-value function using Deep Q-learning (DQN) (Mnih et al., 2015).

O′(st) = {oi|Ioi(st) = 1 ∩ βoi(st) = 0,∀oi ∈ O} (2)

ot = argmax
oiεO′(st)

Qφ(st, oi). (3)

Learning the option-value function: Given an SMDP transition (st, ot, rt:t+τ , st+τ), we update
the value of taking option ot in state st according to SMDP Q-learning update (Bradtke & Duff,
1995). Since the agent learns Q-values for different state-option pairs, it may choose to ignore
learned options in favor of primitive actions in certain parts of the state-space (in the interest of
maximizing its expected future sum of discounted rewards). The Q-value target for learning the
weights φ of the DQN is given by:

yt =

τ∑
t′=t

γt
′−trt′ + γτ−tQφ′(st+τ , argmax

o′εO′(st+τ)
Qφ(st+τ , o

′)). (4)

Adding new options to the policy over options: Equations 2, 3 and 4 show how we can learn the
option-value function and use it for selecting options. However, we must still incrementally add
new skills to the network during the agent’s lifetime. After the agent has learned a new option o’s
initiation set classifier Io (we will discuss how this happens in Section 3.3), it performs the following
steps before it can add o to its option repertoire:

• To initialize o’s internal policy πo, the parameters of its DDPG (θo) are set to the parameters of the
global agent’s DDPG (θoG). Subsequently, their neural networks are trained independently. This
provides a good starting point for optimizing πo, while allowing it to learn sub-problem specific
abstractions.

• To begin predicting Q-values for o, we add a new output node to final layer of the DQN parame-
terizing πO.

• We must assign appropriate initial values to Qφ(s, o). We follow Konidaris & Barto (2009b) and
collect all the transitions that triggered βo and use the max over these Q-values to optimistically
initialize the new output node of our DQN.3 This is done by setting the bias of this new node,
which ensures that the Q-value predictions corresponding to the other options remain unchanged.

3.3 INITIATION SET CLASSIFIER

Central to the idea of learning skills is the ability to learn the set of states from which they can
be executed. First, we must learn the initiation set classifier for og , the option used to trigger the
MDP’s goal state. While acting in the environment, the agent’s global DDPG will trigger the goal
state N times (also referred to as the gestation period of the option by Konidaris & Barto (2009b)
and Niekum & Barto (2011)). We collect these N successful trajectories, segment the last K states
from each trajectory and learn a one-class classifier around the segmented states. Once initialized,
it may be necessary to refine the option’s initiation set based on its policy. We do so by executing
the option and collecting data to train a two-class classifier. States from which option execution
was successful are labeled as positive examples. States from which option execution timed out
are labeled as negative examples. We continue this process of refining the option’s initiation set
classifier for a fixed number of episodes, which we call the initiation period of the option.

3Using the mean Q-value is equivalent to performing Monte Carlo rollouts. Instead, we follow the principle
of optimism under uncertainty (Brafman & Tennenholtz, 2002) to select the max over the Q-values.

4

Published as a conference paper at ICLR 2020

At the end of the initiation period, we fix the option’s initiation set classifier and add it to the list
of salient events in the MDP. We then construct a new option whose termination condition is the
initiation classifier of the option we just learned. We continue adding to our chain of options in this
fashion until a learned initiation set classifier contains the start state of the MDP.

3.4 GENERALIZING TO SKILL TREES

Our discussion so far has been focused on learning skill chains that extend from the goal to the start
state of the MDP. However, such a chain is not sufficient if the agent has multiple start states or if
we want the agent to learn multiple ways of solving the same problem. To permit such behavior,
our algorithm can be used to learn skills that organize more generally in the form of trees (Konidaris
& Barto, 2009b; Konidaris et al., 2012). This generalization requires some additional care while
learning initiation set classifiers, the details of which can be found in Section A.1 of the Appendix.
To demonstrate our ability to construct such skill trees (and their usefulness), we consider a maze
navigation task, E-Maze, with distinct start states in Section 4.

3.5 OPTIMALITY OF DISCOVERED SOLUTIONS

Each option o’s internal policy πo is is given a subgoal reward only when it triggers its termination
condition βo. As a result, πo is trained to find the optimal trajectory for entering its own goal region.
Naively executing learned skills would thus yield a recursively optimal solution to the MDP (Barto
& Mahadevan, 2003). However, since the policy over options πO does not see subgoal rewards and
is trained using extrinsic rewards only, it can combine learned skills and primitive actions to discover
a flat optimal solution π∗ to the MDP (Barto & Mahadevan, 2003). Indeed, our algorithm allows πO
to employ discovered skills to quickly and reliably find feasible paths to the goal, which over time
can be refined into optimal solutions. It is worth noting that our ability to recover π∗ in the limit is in
contrast to feudal methods such as HAC (Levy et al., 2019) in which higher levels of the hierarchy
are rewarded for choosing feasible subgoals, not optimal ones.

To summarize, our algorithm proceeds as follows: (1) Collect trajectories that trigger new option
ok’s termination condition βok . (2) Train ok’s option policy πok . (3) Learn ok’s initiation set clas-
sifier Iok . (4) Add ok to the agent’s option repertoire. (5) Create a new option ok+1 such that
βok+1

= Iok . (6) Train policy over options πO. Steps 1, 3, 4 and 5 continue until the MDP’s start
state is inside some option’s initiation set. Continue steps 2 and 6 indefinitely.

4 EXPERIMENTS

We test our algorithm in five tasks that exhibit a strong hierarchical structure: (1) Point-Maze (Duan
et al., 2016), (2) Four Rooms with Lock and Key, (3) Reacher (Brockman et al., 2016), (4) Point
E-Maze and (5) Ant-Maze (Duan et al., 2016; Brockman et al., 2016). Since tasks 1, 3 and 5 appear
frequently in the literature, details of their setup can be found in Appendix A.3.

Four Rooms with Lock and Key: In this task, a point agent (Duan et al., 2016) is placed in the Four
Rooms environment (Sutton et al., 1999). It must pick up the key (blue sphere in the top-right room
in Figure 1(c), row 2) and then navigate to the lock (red sphere in the top-left room). The agent’s
state space consists of its position, orientation, linear velocity, rotational velocity and a has key
indicator variable. If it reaches the lock with the key in its possession, its episode terminates with
a sparse reward of 0; otherwise it gets a step penalty of −1. If we wish to autonomously discover
the importance of the key, (i.e, without any corresponding extrinsic rewards) a distance-based dense
reward such as that used in related work (Nachum et al., 2018) would be infeasible.

Point E-Maze: This task extends the benchmark U-shaped Point-Maze task (Duan et al., 2016) so
that the agent has two possible start locations - on the top and bottom rungs of the E-shaped maze
respectively. We include this task to demonstrate our algorithm’s ability to construct skill trees.

4.1 COMPARATIVE ANALYSES

We compared the performance of our algorithm to DDPG, Option-Critic and Hierarchical Actor-
Critic (HAC), in the conditions most similar to those in which they were originally evaluated. For

5

Published as a conference paper at ICLR 2020

(a) (b) (c)

Figure 1: (a) Learning curves comparing deep skill chaining (DSC), a flat agent (DDPG) and Option-
Critic. (b) Comparison with Hierarchical Actor Critic (HAC). (c) the continuous control tasks cor-
responding to the learning curves in (a) and (b). Solid lines represent median reward per episode,
with error bands denoting one standard deviation. Our algorithm remains the same between (a) and
(b). All curves are averaged over 20 runs, except for Ant Maze which was averaged over 5 runs.

6

Published as a conference paper at ICLR 2020

(a) (b) (c) (d)

Figure 2: Initiation sets of options learned in the Lock and Key task. Blue sphere in top-right room
represents the key, red sphere in top-left room represents the lock. Red regions represent states
inside the initiation classifier of learned skills, whereas blue/gray regions represent states outside of
it. Each column represents an option - the top row corresponding to the initiation set when has key
is false and the bottom row corresponding to the initiation set when has key is true.

instance, in the Ant-Maze task we compare against Option-Critic under a dense-reward formulation
of the problem while comparing to HAC under a sparse-reward version of the same task. As a
result, we show the learning curves comparing against them on different plots (columns (a) and (b)
in Figure 1 respectively) to emphasize the difference between the algorithms, the settings in which
they are applicable, and the way they are evaluated.

Comparison with DDPG and Option-Critic: Figure 1(a) shows the results of comparing our pro-
posed algorithm (DSC) with a flat RL agent (DDPG) and the version of Option-Critic designed
for continuous action spaces (PPOC).4 Deep skill chaining comfortably outperforms both base-
lines. Both DSC and DDPG use the same exploration strategy in which at = πθ(st) + ηt where
ηt ∼ N(0, εt). Option-Critic, on the other hand, learns a stochastic policy πθ(at|st) and thus has
baked-in exploration (Sutton & Barto, 2018, Ch. 13), precluding the need for additive noise during
action selection. We hypothesize that this difference in exploration strategies is the reason Option-
Critic initially performs better than both DDPG and DSC in the Reacher and Point E-Maze tasks.

Comparison with Hierarchical Actor-Critic: We compare our algorithm to Hierarchical Actor-
Critic (HAC) (Levy et al., 2019), which has recently outperformed other hierarchical reinforcement
learning methods (Nachum et al., 2018; Vezhnevets et al., 2017) on a wide variety of tasks. 5 A
noteworthy property of the HAC agent is that it may prematurely terminate its training episodes to
prevent flooding its replay buffer with uninformative transitions. The length of each training episode
in DSC however, is fixed and determined by the test environment. Unless the agent reaches the goal
state, its episode lasts for the entirety of its episodic budget (e.g, this would be 1000 timesteps in the
Point-Maze environment). Thus, to compare the two algorithms, we perform periodic test rollouts
wherein all networks are frozen and both algorithms have the same time budget to solve the given
task. Furthermore, since both DSC and HAC learn deterministic policies, we set εt = 0 during these
test rollouts. When comparing to HAC, we perform 1 test rollout after each training episode in all
tasks except for Ant-Maze, where we average performance over 5 test rollouts every 10 episodes.

Figure 1(b) shows that DSC outperforms HAC in all environments except for Four Rooms with
a Lock and Key, where their performance is similar, even though DSC does not use Hindsight
Experience Replay (Andrychowicz et al., 2017) to deal with the sparse reward nature of this task.

4.2 INTERPRETING LEARNED SKILLS

Figure 2 visualizes the initiation set classifiers of options discovered by DSC in Four Rooms with
a Lock and Key. Despite not getting any extrinsic reward for picking up the key, DSC discovers

4PPOC author’s implementation: https://github.com/mklissa/PPOC
5HAC author’s implementation: https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-

7

Published as a conference paper at ICLR 2020

(a) Point-Maze (b) Four-Rooms (c) Ant-Maze (d) E-Maze

Figure 3: Solution trajectories found by deep skill chaining. Sub-figure (d) shows two trajectories
corresponding to the two possible initial locations in this task. Black points denote states in which
πO chose primitive actions, other colors denote temporally extended option executions.

the following skill chain: the options shown in Figure 2 columns (c) and (d) bring the agent to
the room with the key. The option shown in column (b) then picks up the key (top row) and then
takes the agent to the room with the lock (bottom row). Finally, the option in column (a) solves the
overall problem by navigating to the lock with the key. Similar visualizations of learned initiation
set classifiers in the E-Maze task can be found in the Figure 6 in the Appendix.

Figure 3 shows that DSC is able to learn options that induce simple, efficient policies along different
segments of the state-space. Furthermore, it illustrates that in some states, the policy over options
prefers primitive actions (shown in black) over learned skills. This suggests that DSC is robust to
situations in which it constructs poor options or is unable to learn a good option policy in certain
portions of the state-space. In particular, Figure 3 (d) shows how DSC constructs a skill tree to solve
a problem with two distinct start states. It learns a common option near the goal (shown in blue),
which then branches off into two different chains leading to its two different start states respectively.

5 DISCUSSION AND CONCLUSION

Deep skill chaining breaks complex long-horizon problems into a series of sub-problems and learns
policies that solve those sub-problems. By doing so, it provides a significant performance boost
when compared to a flat learning agent in all of the tasks considered in Section 4.

We show superior performance when compared to Option-Critic, the leading framework for option
discovery in continuous domains. A significant drawback of Option-Critic is that it assumes that all
options are executable from everywhere in the state-space. By contrast, deep skill chaining explicitly
learns initiation set classifiers. As a result, learned skills specialize in different regions of the state-
space and do not have to bear the burden of learning representations for states that lie far outside
of their initiation region. Furthermore, each option in the Option-Critic architecture leverages the
same state-abstraction to learn option-specific value functions and policies, while deep skill chaining
permits each skill to construct its own skill-specific state-abstraction (Konidaris & Barto, 2009a). An
advantage of using Option-Critic over DSC is that it is not confined to goal-oriented tasks and can
work in tasks which require continually maximizing non-sparse rewards.

Section 4 also shows that deep skill chaining outperforms HAC in four out of five domains, while
achieving comparable performance in one. We note that even though HAC was designed to work in
the multi-goal setting, we test it here in the more constrained single-goal setting. Consequently, we
argue that in problems which permit a stationary set of target events (like the ones considered here),
deep skill chaining provides a favorable alternative to HAC. Furthermore, HAC depends on Hind-
sight Experience Replay (HER) to train the different layers of their hierarchy. Deep skill chaining
shows the benefits of using hierarchies even in the absence of such data augmentation techniques
but including them should yield additional performance benefits in sparse-reward tasks.

A drawback of deep skill chaining is that, because it builds skills backward from the goal, its per-
formance in large state-spaces is dependent on a good exploration algorithm. We used the naive
exploration strategy of adding Gaussian noise to chosen actions (Lillicrap et al., 2015; Fujimoto
et al., 2018) since the exploration question is orthogonal to the ideas presented here. The lack of a
sophisticated exploration algorithm also explains the higher variance in performance in the Point-
Maze task in Figure 1. Combining effective exploration (Machado et al., 2018; Jinnai et al., 2020)
with DSC’s high reliability of triggering target events is a promising avenue for future work.

We presented a new skill discovery algorithm that can solve high-dimensional goal-oriented tasks
far more reliably than flat RL agents and other popular hierarchical methods. To our knowledge,

8

Published as a conference paper at ICLR 2020

DSC is the first deep option discovery algorithm that does not treat the number of options as a
fixed and costly hyperparameter. Furthermore, where other deep option discovery techniques have
struggled to show consistent improvements over baseline flat agents in the single task setting (Zhang
& Whiteson, 2019; Smith et al., 2018; Harb et al., 2018; Klissarov et al., 2017), we unequivocally
show the necessity for hierarchies for solving challenging problems.

6 ACKNOWLEDGEMENTS

We thank Andrew Levy, Nakul Gopalan, Sam Lobel, Theresa Barton and other members of the
Brown bigAI group for their inputs. This research was supported in part by DARPA under agree-
ment number W911NF1820268, AFOSR Young Investigator Grant agreement number FA9550-17-
1-0124 and the ONR under the PERISCOPE MURI Contract N00014-17-1-2699. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The content is solely the responsibility of the authors and does not
necessarily represent the official views of DARPA, the ONR, or the AFOSR.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Bram Bakker and Jürgen Schmidhuber. Hierarchical reinforcement learning with subpolicies spe-
cializing for learned subgoals. In Neural Networks and Computational Intelligence, pp. 125–130.
Citeseer, 2004.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1-2):41–77, 2003.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Steven J Bradtke and Michael O Duff. Reinforcement learning methods for continuous-time markov
decision problems. In Advances in neural information processing systems, pp. 393–400, 1995.

Ronen I Brafman and Moshe Tennenholtz. R-Max - a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural infor-
mation processing systems, pp. 271–278, 1993.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decompo-
sition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338, 2016.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on Robot Learning, pp. 482–495,
2017.

9

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Published as a conference paper at ICLR 2020

Anthony G Francis and Ashwin Ram. The utility problem in case-based reasoning. In Case-Based
Reasoning: Papers from the 1993 Workshop, pp. 160–161, 1993.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1582–1591, 2018.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an op-
tion: Learning options with a deliberation cost. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Arushi Jain, Khimya Khetarpal, and Doina Precup. Safe option-critic: Learning safety in the option-
critic architecture. CoRR, abs/1807.08060, 2018. URL http://arxiv.org/abs/1807.
08060.

Steven James, Benjamin Rosman, and George Konidaris. Learning to plan with portable symbols.
the ICML/IJCAI/AAMAS 2018 Workshop on Planning and Learning, 2018.

Yuu Jinnai, David Abel, David Hershkowitz, Michael Littman, and George Konidaris. Finding
options that minimize planning time. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 3120–3129, Long Beach, California, USA, 09–15 Jun
2019. PMLR. URL http://proceedings.mlr.press/v97/jinnai19a.html.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeIyaVtwB.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Pre-image backchaining in belief space for mobile
manipulation. In Robotics Research, pp. 383–400. Springer, 2017.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. Hierarchical Reinforcement Learning Workshop (NeurIPS), 2017.

George Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. In IJCAI: pro-
ceedings of the conference, volume 2016, pp. 1648. NIH Public Access, 2016.

George Konidaris. On the necessity of abstraction. Current Opinion in Behavioral Sciences, 29:
1–7, 2019.

George Konidaris and Andrew Barto. Efficient skill learning using abstraction selection. In Twenty-
First International Joint Conference on Artificial Intelligence, 2009a.

George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems, pp. 1015–1023,
2009b.

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learning from
demonstration by constructing skill trees. The International Journal of Robotics Research, 31(3):
360–375, 2012.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning. Journal of Artificial Intelligence
Research, 61:215–289, 2018.

Visak CV Kumar, Sehoon Ha, and C Karen Liu. Expanding motor skills using relay networks. In
Conference on Robot Learning, pp. 744–756, 2018.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning with hindsight. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryzECoAcY7.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

10

http://arxiv.org/abs/1807.08060
http://arxiv.org/abs/1807.08060
http://proceedings.mlr.press/v97/jinnai19a.html
https://openreview.net/forum?id=SkeIyaVtwB
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7

Published as a conference paper at ICLR 2020

Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993.

Miao Liu, Marlos C Machado, Gerald Tesauro, and Murray Campbell. The eigenoption-critic frame-
work. arXiv preprint arXiv:1712.04065, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=Bk8ZcAxR-.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. Computer Science Department Faculty Publication Series, pp. 15, 1998.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 3303–3313,
2018.

Scott Niekum and Andrew G. Barto. Clustering via dirichlet process mixture models for portable
skill discovery. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 24, pp. 1818–1826. Curran Asso-
ciates, Inc., 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful macro-actions in
reinforcement learning. In ICML, volume 19, pp. 506–513, 2002.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In Advances in Neural
Information Processing Systems, pp. 10424–10434, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320, 2015.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, pp. 967–972, 1991.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

David Silver and Kamil Ciosek. Compositional planning using optimal option models. In ICML,
2012.

Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In Proceedings of the twenty-first international conference on Machine
learning, pp. 95. ACM, 2004.

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd international conference on
Machine learning, pp. 816–823. ACM, 2005.

Matthew Smith, Herke van Hoof, and Joelle Pineau. An inference-based policy gradient method for
learning options. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 4703–4712, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/smith18a.html.

11

https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
http://proceedings.mlr.press/v80/smith18a.html
http://proceedings.mlr.press/v80/smith18a.html

Published as a conference paper at ICLR 2020

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning about temporally
abstract actions. In ICML, volume 98, pp. 556–564, 1998.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 761–768. International Foundation for Autonomous Agents
and Multiagent Systems, 2011.

R.S. Sutton, , D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

Russ Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees. 2009.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural computation, 6(2):215–219, 1994.

Saket Tiwari and Philip S Thomas. Natural option critic. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 5175–5182, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3540–
3549. JMLR. org, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Shangtong Zhang and Shimon Whiteson. DAC: The double actor-critic architecture for learning
options. In Advances in neural information processing systems, pp. To appear, 2019. URL
https://arxiv.org/abs/1904.12691.

12

https://arxiv.org/abs/1904.12691

Published as a conference paper at ICLR 2020

Figure 4: An illustration of the deep skill chaining algorithm. ? represents the goal state, × repre-
sents the two start states. (a) Before the agent has discovered its first skill/option, it acts according
to its global DDPG policy. Having encountered the goal state N times, the agent creates an option
to trigger the goal from its local neighborhood. (b) Now, when the agent enters the initiation set of
the first option, it begins to learn another option to trigger the first option. (c) Because the agent has
two different start states, it learns two qualitatively different options to trigger the option learned in
(b). (d) Finally, the agent has learned a skill tree which it can follow to consistently reach the goal.

A APPENDIX

A.1 CREATING SKILL TREES

In Section 3.4, we introduced the idea of generalizing skill chains to skill trees to incorporate quali-
tatively different solution trajectories. In this section, we provide some of the implementation details
required to learn initiation set classifiers that organize in the form of trees.

When creating skill chains, the goal of each option is to trigger the initiation condition of the option
that precedes it in its chain (i.e, its parent option). When creating a skill tree of branching factor
B, we allow at most B options to target each salient event in the MDP (i.e, the goal state and the
initiation set classifiers of preexisting options). To further control the branching factor of the skill
tree, we impose two more conditions on option creation:

1. Consider an option o1 which already has one child option o2 targeting it. Now suppose that
we want to learn another option o3 that also targets o1. We only consider state st to be a
positive example for training Io3 if Io2(st) = 0.

2. To prevent significant overlap between options that target the same event, we treat the pos-
itive examples used to train the initiation set classifier of one as negative training examples
of all its sibling options. This allows for multiple options that trigger the same target event,
while encouraging them to specialize in different parts of the state-space.

In the Point E-Maze task considered in Section 4, we learn a skill tree with B = 2.

A.2 INTRA-OPTION Q-LEARNING

In principle, the methodology outlined in Section 3.2 is sufficient to learn an effective policy over
options πO. However, when O is a set of Markov options (Sutton et al., 1999), which is the setting
considered in this paper, we can use intra-option Q-learning (Sutton et al., 1998) to improve the
sample efficiency associated with learning πO.

More specifically, given a transition (st, o, rt:t+τ , st+τ), SMDP Q-learning treats option o as a black
box and uses Equation 4 to determine the Q-value target yt for updating πO. Intra-option Q-learning
leverages the fact that option o is Markov to point out that all the transitions experienced during the
execution of o are also valid experiences for training πO. As long as a state st+i,∀i ∈ [0, τ] is inside
the initiation set of the option o, we can pretend that option execution really began in state st+i and
add the transition (st+i, o, rt+i:t+τ , st+τ) to the πO’s replay buffer.

13

Published as a conference paper at ICLR 2020

Furthermore, intra-option Q-learning also provides a way to improve the sample efficiency asso-
ciated with learning option policies πo,∀o ∈ O. This can be done by making off-policy updates
to each option’s internal policy. In other words, regardless of which option is actually executed in
the MDP, as long as a state experienced during execution is inside the initiation set of some other
option, we can add the associated experience tuple to that (un-executed) option’s replay buffer. Note
that this is possible because we use an off-policy learning algorithm (DDPG) to learn intra-option
policies.

A.3 TEST ENVIRONMENTS

A description of the Four Rooms and the Point E-Maze tasks was provided in Section 4. Here we
describe the remaining tasks considered in this paper:

Point Maze: In this task, the same point agent as in the four rooms task must navigate around a
U-shaped maze to reach its goal. The agent receives a reward of −1 for every step it lives, and
a sparse terminating reward of 0 when it reaches its goal location. This is an interesting task for
hierarchical agents because in order to reach the goal, the agent must first move away from it. It is
clear that a dense distance-based reward formulation of this problem would only serve to deceive
non-hierarchical agents such as DDPG.

Ant Maze: The ant (Duan et al., 2016) is a challenging agent to control due to its non-linear and
highly unstable dynamics. In this task, the ant must now navigate around the same U-shaped maze
as in the Point Maze task. Getting the ant to cover significant distances along the x, y plane with-
out falling over, is a benchmark control task itself (Brockman et al., 2016). As a result, constructing
options backward from the goal could require prohibitively large training episodes or the use of a so-
phisticated exploration algorithms (Burda et al., 2019; Bellemare et al., 2016; Tang et al., 2017). To
avoid conflating our results with the orthogonal investigation of effective exploration in RL, we fol-
low the experimental design of other state-of-the-art hierarchical reinforcement learning algorithms
(Levy et al., 2019; Nachum et al., 2018) and sample the initial state of the ant uniformly across
the maze for the first 30 episodes. For fair comparison, all baseline algorithms use this exploration
strategy.

Fixed Reacher: We use the Reacher task (Brockman et al., 2016) with two modifications. First,
rather than randomly sampling a new goal at the start of each episode, we fix the target across all
episodes. We do this because if the goal moves, following a learned skill chain will no longer solve
the MDP. Note that the same modification was made in the DDPG paper (Lillicrap et al., 2015).
Second, to increase the difficulty of the resulting task, we use a sparse reward function rather than
the dense distance-based one used in the original formulation.

Task Number of steps per episode
Point-Maze 1000
Four Rooms with Lock and Key 5000
Point E-Maze 1500
Reacher 500
Ant-Maze 2000

Table 1: Maximum number of time steps per episode in each of the experimental domains

14

Published as a conference paper at ICLR 2020

(a) (b) (c) (d)

Figure 5: Analysis of performance (as measured by mean cumulative reward) of DSC agent as it
is allowed to learn more skills in (a) Point-Maze, (b) Four Rooms with Lock and Key, (c) E-Maze
and (d) Ant-Maze. Note that in general, DSC discovers as many skills as it needs to solve the given
problem. For this experiment alone, we restrict the number of skills that the DSC agent can learn.
All experiments averaged over 5 runs. Error bars denote 1 standard deviation. Higher is better.

Figure 6: Initiation set classifiers learned in the Point E-Maze domain. Discovered skills organize
in the form of a tree with a branching factor of 2. The option on the extreme left initiates in the
proximity of the goal. Options learned after the goal option branch off into two separate skill chains.
The chain on top extends backward to the start state in the top rung of the E-Maze. The chain shown
in the bottom row extends backward to the start state in the bottom rung of the E-Maze.

15

Published as a conference paper at ICLR 2020

A.4 ABLATION STUDY

A.4.1 PERFORMANCE AS A FUNCTION OF NUMBER OF SKILLS

Deep skill chaining generally discovers and learns as many skills as it needs to solve a given problem.
In this experiment however, we restrict the number of skills DSC can learn to examine its impact on
overall agent performance (as measured by cumulative reward during training). Figure 5 shows that
the performance of the agent increases monotonically (with diminishing marginal improvements) as
it is allowed to learn more skills.

A.4.2 NUMBER OF SKILLS OVER TIME

Figures 7 (a) and 7 (b) illustrate how deep skill chaining incrementally discovers options and adds
it to the agent’s option repertoire. Figure 7(c) shows how the number of skills empirically increases
over time, plateaus and has low variance between runs. Since the agent has to learn the importance of
the key in the Four Rooms task, learning initiation set classifiers takes longer than in the Point-Maze
task.

A.4.3 HYPERPARAMETER SENSITIVITY

In this section, we analyze DSC’s sensitivity to some of the hyperparameters specific to the algo-
rithm. In Figure 8, we show that even under a fairly large range of values for the buffer length K
and the gestation period N , DSC is able to retain its strong performance.

16

Published as a conference paper at ICLR 2020

(a) (b)

(c)

Figure 7: (a) Initially, the policy over options πO can only choose the global option oG as a proxy
for selecting primitive actions. (b) Over time, the agent learns temporally extended skills and adds
output nodes to the final layer of the DQN parameterizing πO. This continues until the start state s0
lies inside the initiation set of a learned option. (c) Empirical evaluation of how the number of skills
in the agent’s option repertoire changes over time in Point-Maze and Four-Rooms with a Lock and
Key.

17

Published as a conference paper at ICLR 2020

Figure 8: Variation in DSC performance (as measured by mean cumulative reward) as a function of
two hyperparameters: (left) the buffer lengthK and (right) the gestation period N of the option. For
a qualitative description of both hyperparameters, refer to Section 3.3. This experiment shows that
DSC is fairly robust to most reasonable choices of these parameters. All experiments averaged over
5 runs. Error bars denote 1 standard deviation. Higher is better.

18

Published as a conference paper at ICLR 2020

A.5 ALGORITHM PSEUDO-CODE

Algorithm 1: Deep Skill Chaining
s0 is the start state of the MDP
1g(s) := 1 if s is a target state in the MDP, 0 otherwise
Given hyperparameter T0, the time budget for discovered, temporally extended options
Global option: oG = (IoG , πoG , βoG = 1g, T = 1)
Goal option: og = (Iog , πog , βog = 1g, T = T0)
Agent’s option repertoire: O = {oG}
Untrained Option: oU = og // option whose initiation classifier is yet unlearned
Policy over options: πO: st −→ ot
st = s0
while not st.is terminal() do

1. Pick new option and execute in environment
Choose ot according to πO(st) using Equations 2 and 3
rt:τ , st+τ = execute option(ot)
πO.update(st, ot, rt:t+τ , st+τ) using Equation 4
2. Learn initiation set of new option
// Collect trajectories that trigger oU ’s termination region unless we have finished chaining
if βoU (st+τ) & (s0�∈Ioi∀oi ∈ O) then

oU .learn initiation classifier() using procedure described in Section 3.3
if oU .initiation classifier is trained() then

πO.add(oU) using procedure described in Section 3.2
O.append(oU)
oU = create child option(oU)

end
end

end
Function create child option(o):

””” Create a new option whose β is the parent’s I. ”””
o∗ = Option() // Create a new option
Io∗ = None
βo∗ = Io
return o∗

Function execute option(ot):
””” Option control loop. ”””
t0 = t
T is the option’s episodic time budget
πot is the option’s internal policy
while not βot(st) & t < T do

at = πot(st; θot)
rt, st+1 = env.step(at)
st = st+1

t = t+ 1
end
τ = t // duration of option execution
return rt0:t0+τ , st0+τ

A.6 MORE DETAILS ON IMPLEMENTING OPTION REWARD FUNCTIONS

Section 3.1 explains that to learn an option’s intra-option policy, we must define its internal reward
function. While most of our experiments are conducted in the sparse-reward setting, deep skill
chaining can be used without much modification in dense reward tasks as well. All that remains is a
clear description of how each option’s internal reward function would be defined in such a setting.

Consider an option oi with parent option oi−1 such that βoi = Ioi−1
. In the dense reward setting,

we use the negative distance from the state to the parent option’s initiation classifier as the reward
function. Since initiation classifiers are represented using parametric classifiers, computing the dis-

19

Published as a conference paper at ICLR 2020

tance to the classifier’s decision boundary is straightforward and can be done using most popular
machine learning frameworks. For instance, when using scikit-learn (Pedregosa et al., 2011), this is
implemented as follows:

Ro(s, a, s
′) =

{
0, if βo(s′) = 1

−Ioi−1 .decision function(s′), otherwise
(5)

Where in Equation 5, decision function(x) returns the distance in feature space between
point x ∈ RN and the decision boundary learned by the classifier Ioi−1

.

A.7 LEARNING INITIATION SET CLASSIFIERS

To learn initiation set classifiers as described in Section 3.3, we used scikit-learn’s One-Class SVM
and Two-Class SVM packages (Pedregosa et al., 2011). Initiation set classifiers were learned on a
subset of the state variables available in the domain. For instance, in the Lock and Key domain,
the initiation set classifier was learned over the x, y position and the has key indicator variable.
This is similar to other methods like HAC (Levy et al., 2019) which require the user to specify the
dimensions of the state variable necessary to achieve the overall goal of the MDP. Incorporating the
entire state variable to learn initiation set classifiers or using neural networks for automatic feature
extraction should be straightforward and is left as future work.

A.8 HYPERPARAMETER SETTINGS

We divide the full set of hyperparameters that our algorithm depends on into two groups: those
that are common to all algorithms that use DDPG (Table 2), and those that are specific to skill
chaining (Table 3). We did not try to optimize over the space of DDPG hyperparameters, and used
the ones used in previous work (Lillicrap et al., 2015; Fujimoto et al., 2018). Table 3 shows the
hyperparameters that we chose on the different tasks considered in this paper. Most of them are
concerned with learning initiation set classifiers, the difficulty of which varies based on domain. To
determine the correct setting of these parameters, we usually visualized the learned initiation set
classifiers during the course of training (like Figures 2 and 6), and made adjustments accordingly.

Parameter Value
Replay buffer size 1e6
Batch size 64
γ 0.99
τ 0.01
Number of hidden layers 2
Hidden size 1 400
Hidden size 2 300
Critic learning rate 1e− 3
Actor learning rate 1e− 4

Table 2: DDPG Hyperparameters

Parameter Point Maze Four Rooms Reacher Ant Maze E-Maze
Gestation Period (N) 5 10 5 1 5
Initiation Period 1 10 3 0 1
Buffer Length (K) 20 20 20 750 20
Option Max Time Steps (T) 100 150 150 100 100

Table 3: Deep Skill Chaining Hyperparameters

20

Published as a conference paper at ICLR 2020

A.9 COMPUTE INFRASTRUCTURE

We used 1 NVIDIA GeForce 2080 Ti, 2 NVIDIA GeForce 2070 Ti and 2 Tesla K80s on the Google
Cloud compute infrastructure to perform all experiments reported in this paper.

A.10 NOTE ON COMPUTATION TIME

Each option is parameterized by its own neural networks, which are only updated when the agent is
inside that option’s initiation set. For a given transition, this leads to at most two or three updates. In
Point-Maze, updating all options on a transition took 0.004 ± 0.0003 s more than just updating the
global DDPG agent (averaged over 300 episodes using 1 NVIDIA 2080 Ti GPU) - a trivial amount
of extra computation time.

21

	Introduction
	Background and Related Work
	The Options Framework
	Skill Discovery Algorithms

	Deep Skill Chaining
	Intra-Option Policy
	Policy Over Options
	Initiation Set Classifier
	Generalizing to Skill Trees
	Optimality of Discovered Solutions

	Experiments
	Comparative Analyses
	Interpreting Learned Skills

	Discussion and Conclusion
	Acknowledgements
	Appendix
	Creating Skill Trees
	Intra-Option Q-learning
	Test Environments
	Ablation Study
	Performance as a Function of Number of Skills
	Number of Skills over Time
	Hyperparameter Sensitivity

	Algorithm Pseudo-Code
	More Details on Implementing Option Reward Functions
	Learning Initiation Set Classifiers
	Hyperparameter Settings
	Compute Infrastructure
	Note on Computation Time

