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Abstract

Designing learning agents that gain broad competence in a self-motivated manner
is a longstanding goal of reinforcement learning. Empowerment is a task-agnostic
information-theoretic quantity that has recently been used to intrinsically motivate
reinforcement learning agents. Leibfried et al. 2019 [1] showed how to combine
empowerment with traditional task-specific reward maximization. In this work,
we replicate the main empirical results of their paper. In particular, we reproduce
the main algorithm of the paper, empowered actor-critic (EAC) and compare
its performance with state-of-the-art baselines: soft actor-critic (SAC), proximal
policy optimization (PPO), and deep deterministic policy gradients (DDPG) on
a series of continuous control tasks in the MuJoCo simulator. We find that the
performance of our implementation of EAC closely follows that of the original
paper. However, our empirical findings also suggest that EAC is unable to improve
upon baseline actor-critic algorithms . We share our code, raw learning curves and
the scripts used to produce the figures in this paper 1.

1 Introduction

Reinforcement Learning (RL) has been used to learn complex behaviors in challenging tasks [2–7].
In most cases, the RL agent learns behaviors that maximize a task-specific reward function. While
agents trained using such extrinsic rewards may perform well on the task in which they were trained,
they must usually be trained from scratch in a different, albeit related task. Intrinsic motivation
(IM) augments the classical RL paradigm so that agents may develop broad competence even in
the absence of such extrinsic rewards [8–11]. In the multi-task setting, IM allows RL agents to
generalize their learning across a series of related problems [12–15]. In the single-task setting, IM
allows RL agents to discover solutions with better asymptotic performance [16–18].

Several mathematical formulations have been proposed to capture the notion of intrinsic motivation
as a computable quantity [19–23]. One such formalism of IM is known as empowerment.
Maximizing empowerment amounts to maximizing the agent’s potential to force the world into states
that it can reliably distinguish [24]. In other words, empowerment describes an embodied agent’s
ability to control perceivable elements of its environment. Slightly more formally, empowerment is
the maximum amount of information [25] that an agent can send from its actuators to its sensors
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through its environment [26]. In the reinforcement learning literature, empowerment has been
computed as the mutual information [27] between an action sequence and the state achieved after
executing that action sequence. Klyubin et al. [24] showed that this mutual information term is
maximized at states where the number of reachable states is largest.

While others have employed empowerment driven exploration [28–30], Leibfried et al. 2019
[1] develop a unified RL objective that combines both empowerment and explicit reward signals.
First, they derive a Bellman backup operator that jointly maximizes both empowerment and
extrinsic rewards. Then, they outline how the combined objective can be used in model-free RL
settings to solve continuous control problems. In this paper, we re-implement their described
algorithm, provide clarifications on implementation details, and finally attempt to reproduce their
main empirical results. In doing so, we compare our implementation of Empowered Actor-Critic
(EAC) to popular model-free deep RL algorithms [31–33] in benchmark continuous control tasks in
the MuJoCo physics simulator [34, 35].

2 Background

Sequential decision making problems may be modeled as Markov Decision Processes (MDPs). An
MDP is defined as a tuple (S,A, T , R, γ), where S denotes the state space, A denotes the action
space, T (s, a, s′) represents the probability of next state s′ given that the agent takes action a in
state s; R(s, a) yields the expected reward for taking action a from state s; and γ ∈ (0, 1) is the
discount factor, which indicates how much an agent should prioritize immediate rewards.

Given a state s ∈ S , the agent follows the policy π if it takes an action a ∈ A according to a
conditional distribution π(a|s). In reinforcement learning, the goal is to find a policy that maximizes
the expected future cumulative reward, i.e. argmaxπEπ,T [

∑∞
t=0 γ

trt], where rt is the reward
obtained at time step t. By using Bellman’s optimality principle [36], we have that the optimal
expected future cumulative reward, starting from a states s ∈ S, is given by:

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S
T (s, a, s′)V ∗(s′)

)
= max

a
Q∗(s, a) (1)

where V ∗ and Q∗ are referred to as the optimal value and optimal action-value functions,
respectively. The value of following a policy π is given by:

V π(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S
T (s, a, s′)V π(s′)

)
(2)

A policy π∗ is optimal if it holds that V π
∗
(s) = V ∗(s) for any s ∈ S.

2.1 Policy-Search Algorithms

Recent work in reinforcement learning has successfully used non-linear function approximation to
solve problems with high dimensional state and action spaces. Deep Q-Networks (DQN) [4] learn
impressive behaviors in problems with continuous states and discrete actions. Deep Deterministic
Policy Gradients (DDPG) [37] is a model-free actor-critic algorithm that extends deep Q-learning
to continuous action spaces. Twin Delayed DDPG (TD3) [32] mitigates the overestimation problem
in deep Q-learning [38, 39] by maintaining two independent copies of the Q-function. They showed
superior performance to vanilla DDPG on benchmark continuous control tasks in the MuJoCo
simulator.

Another line of work has focused on addressing the challenges of extending policy gradient
methods [40, 41] to high dimensional problems. Trust-Region Policy Optimization (TRPO) [42], a
policy-search algorithm addresses the problems of high variance policy gradients and large policy
changes between learning updates. Proximal Policy Optimization (PPO) improves upon TRPO by
augmenting their objective function with clipped probability ratios [33].

Soft actor-critic (SAC) [31] shows how the actor-critic formulation can be used to learn policies
in the entropy-regularized deep RL setting. Intuitively, SAC encourages exploration by explicitly
encoding the exploration-exploitation dilemma into the RL objective. It does so by solving for
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a policy that maximizes extrinsic rewards as well as its entropy, thus having a more generalized
version of utility:

E(st,at)∼ρπ [R(st, at) + αH (π(·|st))] , (3)

where H is the entropy function [27] and ρπ(s) is the transition dynamics induced by the policy
π(a|s). The SAC algorithm uses function approximators to learn value function V (parametrized by
ψ), action-value function Q (parametrized by θ), and policy function π (parametrized by φ). This is
done by minimizing the following loss functions:

JV (ψ) = Est∼D
[
1

2
(Vψ(st)− Eat∼πφ [Qθ(st, at)− log πφ(at|st)])2

]
(4)

JQ(θ) = E(st,at)∼D

[
1

2
(Qθ(st, at)− Q̂ (st, at))

2

]
(5)

Jπ(φ) = Est∼D,εt∼N [log πφ(fφ(εt; st)|st)−Qθ(st, fφ(εt; st))] (6)

where D is the replay buffer [43] and Q̂(st, at) is the target Q value (see [31] for a more detailed
definition). In particular, Equation 6 defines loss function for learning the policy πφ using the
“reparametrization trick”, where fφ transforms the noise εt from a standard normal N (0, 1) to the
normal distribution predicted by πφ.

2.2 Empowerment and Intrinsic Motivation

Consider an agent which starting from state s takes a sequence of actions a = (a1, ..., ak) to finally
reach state s′. The mutual information I[a, s′|s] describes the conditional dependence between the
agent’s action sequence a and its final state s′. Maximizing empowerment in RL is equivalent to
maximizing this mutual information term. In other words, the empowerment policy πk : S ×Ak →
[0, 1] is defined as a conditional distribution πk(a|s) that maximizes I[a, s′|s].

Let T (k)(s,a, s′) be the k-step transition probability, that is the probability to reach state s′

performing the sequence of k actions a starting from state s. Then, for every s ∈ S , and a policy
πk, we can define the following quantity:

Eπk(s) = I[a, s′|s] = Eπk(a|s)T (k)(s,a,s)

[
log

p(a|s′, s)
πk(a|s)

]
(7)

The quantity Eπk(s) is the expected empowerment value of an agent following the policy πk
starting from state s. The function p is the inverse dynamics model of πk and is defined as
p(a|s′, s) = T (k)(s,a,s′)πk(a|s)∑

a T (k)(s,a,s′)πk(a|s)
. The optimal empowerment values are obtained by the policy

π∗ that maximizes Eπ
∗
.

The core idea of Leibfried et al’s work [1] is to add the empowerment term (with k = 1, i.e. using
one-step policy) as an additional contribution to the reward. In particular, we seek a policy that
maximizes the following quantity:

max
π

Eπ,T

[ ∞∑
t=0

γt
(
α ·R(st, at) + β · log p(at|st+1, st)

π(at|s)

)]
(8)

where α and β are two non-negative hyperparameters that are used to scale the reward and the
empowerment term. The equation above extends the normal definition of the MDP by adding an
additional term to the reward, for which the authors [1] show the existence of unique values for the
value function and the convergence of value iteration.

3 Empowered Actor-Critic

Empowered Actor-Critic (EAC) algorithm combines the concept of empowerment with reward
maximization. EAC is built upon the SAC algorithm baseline, with slightly modified versions
of JV , JQ, Jπ objectives in SAC. It also additionally learns inverse dynamics model p(a|s′, s)
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Figure 1: Computational graph needed to learn the policy πφ and the inverse dynamics model pχ.
s denotes the current state, a is an action sampled from the current policy πφ and s′ denotes the
next state sampled from the learned transition model Pξ. f represents the empowerment term
from section 3. Black lines denote computations involved in the forward-pass through the network
architecture; the red lines represent the backward pass.

and transition dynamics model T (s, a, s′) by optimizing inverse dynamics objective Jp and
transition dynamics objective JP . EAC uses the same objective function JQ(θ) as in SAC. As
for the value objective JV , we add a new quantity βf(s, a), which is defined as f(s, a) =
EPξ(s′|s,a)[log pχ(a|s′, s) − log πφ(a|s)]. This term replaces the negative log policy term in the
JV of SAC. Similarly in the policy objective Jπ , the log probability distribution of policy term is
replaced with βf(s, a) term. The modified form of JV and Jπ in EAC are described below:

JV (ψ) =
1

B

B∑
b=1

[
1

2

(
Vψ(sb)− Eπφ(a|sb) [Qθ(sb, a) + βf(sb, a)]

)2]
(9)

Jπ(φ) = −
1

B

B∑
b=1

Eπφ(a|sb) [Qθ(sb, a) + βf(sb, a)] , (10)

where B is the size of batch tuples of (s, a, r, s′) that we sample from replay buffer. Additionally,
EAC employs two new objectives for inverse dynamics and transition dynamics model as below:

Jp(χ) = −
1

B

B∑
b=1

Eπφ(a|sb)Pξ(s′|sb,a) [log pχ(a|s
′, sb)] (11)

JP (ξ) = −
1

B

B∑
b=1

log(Pξ(s
′
b|sb, ab)) (12)

At every iteration, EAC draws batches from its replay buffer, and updates Q-critic, V-critic, policy
π, inverse dynamics, and transition model, using the five objective functions, JQ, JV , Jπ, Jp, JP .

4 Reproducibility

4.1 Model Architecture

In addition to the quantities approximated by SAC, EAC seeks to learn the quantities f , Pξ and pχ.
While implementing the EAC algorithm, we found it challenging to set up the loss functions Jπ and
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Jp. As a result, we include a brief description of how these quantities were computed. We hope that
this discussion will aid others in the community seeking to replicate EAC.

Figure 1 suggests that the policy loss Jπ contributes to gradients that are used for learning all
functions in our computation graph. By contrast, the gradient of the inverse dynamics loss Jp
only backpropagating through the inverse dynamics model pχ. This is apparent from the following
expressions for the gradient of the two loss functions:

∇φJπ(φ) = −
1

B

B∑
b=1

∇φEπφ(a|sb) [Qθ(sb, a) + βf(sb, a)] (13)

∇χJp(χ) = −
1

B

B∑
b=1

∇χEπφ(a|sb)Pξ(s′|sb,a) [log pχ(a|s
′, sb)]

= − 1

B

B∑
b=1

Eπφ(a|sb)Pξ(s′|sb,a)∇χ [log pχ(a|s
′, sb)] (14)

Equation 13 shows that the gradient of Jπ with respect to the model parameters cannot be taken
inside the expectation without using the re-parameterization trick [31]. Even after using the
re-parameterization trick, one has to backpropagate through all functions in the computational graph.
However, Equation 14 shows that the gradient with respect to the model parameters can be taken
inside the expectation. This difference in gradient computation informs an important implementation
detail: when computing the loss function Jp(χ), all other parts of the computational graph must be
detached 2.

4.2 Learning the transition model

In Figure 2, we report the loss of the transition model for the environment Ant-v2. We observe that
the loss is very large with values in the order of 109—results in similar order of magnitude are also
obtained for the other domains. In Equation 12, we see that this loss represents an average negative
log-likelihood of our prediction which means that our transition model assigns an incredibly small
probability to the next state s′ from the experience tuples. The difficulty of learning a transition
model in MuJoCo is well supported in the RL literature. For example, Nagabandi et al. [44] argue
that learning a function hθ(st, at) that predicts the next state st+1 in an MDP with complicated
dynamics is difficult using a feed-forward neural network—as is attempted in the EAC experiments.

4.3 Learning the Inverse Dynamics Model

Figure 1 shows that training the inverse dynamics function pχ depends on the state s′ sampled from
Pξ. If the current state s and the sampled state s′ have little to do with each other, we cannot
hope to derive a useful learning signal for training the inverse dynamics model pχ. In other words,
the difficulty of learning a good transition model Pξ leads to an under-performing inverse dynamic
model pχ. In practice, this leads to pχ predicting actions that uniformly have a very low likelihood
under the learned model. This further leads to numerical approximation problems when computing
the log-likelihood in the objective function Jp(χ) in Equation 12. While this problem is somewhat
mitigated by bounding the log standard deviation [1, 45], it highlights the difficulty of learning pχ
and Pξ in complex dynamical systems such as those considered in this paper.

5 Experimental Setup

Following the experimental setup of Leibfried et al. 2019 [1], we compare our implementation of
EAC with SAC, PPO, and TD3 in different environments of the robotics simulator MuJoCo: Ant-v2,
HalfCheetah-v2, Hopper-v2, Humanoid-v2, and Walker2d-v2. Throughout this section, assume that
the the experimental details are the same as in the original paper [1], unless otherwise stated.

2https://pytorch.org/docs/stable/autograd.html
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Figure 2: Loss function (cross-entropy) for the Transition Dynamic model learned by EAC in the
Ant-v2 environment. This curve is averaged over 5 runs of EAC and the shaded area is the standard
error. Note the high scaling factor on the vertical axis.

5.1 Baseline Implementations

Through extensive experimentation, Henderson et al show that different popular implementations of
common deep RL baselines lead to dramatically different results [46]. Consequently, we argue that
while comparing against other algorithms, it is important to pay close attention to (a) the choice of
codebase used to reproduce baseline results and (b) the hyperparameters for all baseline algorithms.
In some cases, our choice of baseline implementation differs from the ones reported by the Leibfried
et al because these optimized choices allow for fairer comparison. In this section, we describe the
design decisions we made for each of the baselines that EAC was compared to.

Comparison with DDPG: Leibfried et al compare their EAC algorithm with DDPG. However, in
Appendix C.2 of their paper, they state that they use the hyperparameters outlined in the TD3 paper
[32]. Moreover, they used the same model architecture as EAC and SAC. Given the sensitivity of
deep RL models to the particular choice of network architecture and hyperparameter settings [46],
we argue that this design decision made by Leibfried et al leads to an unfair comparison. By using
the author implementation of the baseline being compared against, we observe significantly stronger
performance in the tasks considered here.

Furthermore, we chose to compare the proposed algorithm against TD3 3 as opposed to a vanilla
DDPG. We made this experimental decision because of the following reasons:

• In Appendix C.2, Leibfried et al state that they compared against a DDPG model which
used the hyperparameters from the TD3 paper. Since TD3 is often seen as a variant of
the DDPG algorithm, this could be taken to mean that they compared against TD3, which
they called DDPG in their main paper to refer to the general class of algorithms that learn
deterministic policies in high dimensional continuous state and action spaces.

• TD3 addresses function approximation errors introduced by the vanilla implementation
of DDPG and shows superior performance in continuous control problems in MuJoCo
environments [32]. Since TD3 outperformed DDPG, we argue that TD3 represents a more
suitable actor-critic baseline than DDPG in MuJoCo environments.

• Much like SAC and EAC, TD3 implements the double Q-learning idea by learning two
copies of the critic. As a result, it makes more sense to compare EAC with TD3 than DDPG
as it eliminates the possibility that the difference in performance between the algorithms
could be because of the over-estimation bias when learning Q-functions in the function
approximation setting [39].

3Author implementation of TD3: https://github.com/sfujim/TD3
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Figure 3: Learning curves comparing our implementation of Empowered Actor-Critic [1] (EAC),
Soft Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy Gradients (TD3) and Proximal
Policy Optimization (PPO) on benchmark continuous control tasks in the MuJoCo simulator. All
curves are averaged over 5 runs, with shaded areas denoting standard error.

Ant Walker HalfCheetah Humanoid Hopper

Our EAC 1670.6 1032.8 4999.2 2112.1 1009.7
Their EAC (approximate) 1600 1500 3000 2200 1000

Table 1: Comparison between our EAC results and the original EAC results [1] (reported). Bold
values represent similarity with the original paper.

Comparison with SAC: We use the implementation of SAC in rlpyt [47] with the same network
architecture and hyperparameters reported by Leibfried et al. As we show in Figure 3, our baseline
implementation of SAC significantly outperforms the results reported in the original EAC paper.

Comparison with PPO: Leibfried et al use the same network architecture as their EAC algorithm,
while using the same hyperparameters that were reported in the PPO paper. Since deep RL
algorithms are sensitive to the combination of architecture-hyperparameter pairs, we argue that using
the architecture and hyperparameters reported in the PPO paper makes for a fairer comparison. In
the case of PPO, we use OpenAI Baselines with default hyperparameters [48], which is considered
to be community standard in deep RL research.

6 Results

We tested our implementation of EAC on five continuous control tasks in the OpenAI gym
framework [35]: Ant-v2, Walker-v2, HalfCheetah-v2, Humanoid-v2 and Hopper-v2. All of these
tasks involve learning good gait policies in continuous state and action spaces. The learning curves
of EAC and three other baseline algorithms are presented in Figure 3.

First, we computed average rewards of our EAC implementation and compared them with the
original results of their EAC implementations. The results are described in the Table 6. In Ant-v2,

7



Humanoid-v2, and Hopper-v2, we observed that our results are very similar to the average rewards
reported in the original EAC paper. In HalfCheetah-v2, our EAC results outperformed their reported
results, while in Walker2d-v2, our implementation of EAC slightly under-performed with respect to
theirs.

However, when comparing to the baseline algorithms, our results were significantly different from
those reported in the original paper. In the original paper, EAC sometimes outperforms the SAC,
PPO, and DDPG baselines. Although our EAC results were similar to theirs, our EAC never
performed better than the baselines. For example, in all five domains, SAC baseline yielded higher
results than our EAC with a significant margin. We also note that our baseline performances were
closer to those reported in the original papers that introduced them. For example, our SAC baseline
results are closer to the ones reported in the original SAC paper [31].

7 Conclusion

We presented a reproducibility analysis of the paper A Unified Bellman Optimality Principle
Combining Reward Maximization and Empowerment [1]. We implemented the main algorithm
of the paper EAC, and compared its performance to state-of-the-art baselines such as SAC, TD3
and PPO. We described missing implementation details that we found to be critical in reproducing
the original paper. Furthermore, we discussed a fundamental shortcoming of the EAC algorithm –
the difficulty of learning an effective transition model for sufficiently complex dynamical systems.
Finally, as suggested by Figure 3 and Table 1, our implementation of EAC yields results similar to
the ones reported in the original paper. However, we find that our baselines perform significantly
better than those reported by Leibfried et al. Consequently, we conclude that our implementation of
EAC is unable to outperform baseline actor-critic algorithms.
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