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ABSTRACT

Deep Neural Networks trained using human-annotated data are able to achieve
human-like accuracy on many computer vision tasks such as classification, object
recognition and segmentation. However, they are still far from being as robust as
the human visual system. In this paper, we demonstrate that even models that are
trained to be robust to random perturbations do not necessarily learn robust rep-
resentations. We propose to address this by imposing a perception based prior on
the learned representations to ensure that perceptually similar images have simi-
lar representations. We demonstrate that, although this training method does not
use adversarial samples during training, it significantly improves the networks
robustness to single-step and multi-step adversarial attacks, thus validating our
hypothesis that the network indeed learns more robust representations. Our pro-
posed method provides a means of achieving adversarial robustness at no addi-
tional computational cost when compared to normal training.

1 INTRODUCTION

One of the primary goals of a classification or object recognition pipeline in applications such as
autonomous navigation is to meet human performance, and eventually outperform the same. While
training Deep Neural Networks to achieve this goal, similarity to human perception is enforced only
by using a human-annotated dataset. While this level of supervision is sufficient to achieve human-
like accuracy, this does not necessarily result in training models that are as robust as the human
visual system (Geirhos et al., 2019). Unlike humans, Deep Neural Networks get easily misled by
various types of deviations in the data due to factors such as noise and spatial transformations.
Augmenting the training data with images subject to such deviations has led to an improvement in
the generalization of these models to random perturbations. However, it is still possible to craft
imperceptible noise that can easily fool these networks (Szegedy et al., 2013), leading to the belief
that the model has not learned truly robust representations. In this paper we demonstrate that existing
training methods fail to incorporate knowledge on perceptual similarity into the learned feature
representation of the network. While we expect that the distance between features of perceptually
similar images should be lesser than that between distinct images, we demonstrate that this is not
always true. This shows that models trained with augmentations such as random noise may be
memorizing the true labels of the randomly perturbed samples, and not actually learning to be robust.
Hence these networks do not show improved robustness to adversarial samples (Szegedy et al.,
2013), which are images perturbed using engineered noise, crafted with an intention to manipulate
the network’s behavior.

Szegedy et al. (2013) demonstrated that adversarial samples are transferable across networks of
different architectures. Adversarial samples crafted using one model can also fool other models
with possibly different architectures. This transferable property of adversarial samples, enables an
attacker to launch a simple black-box attack (Liu et al., 2017; Papernot et al., 2017) on models
deployed in the real world. These properties of adversarial samples pose a challenge for deployment
of models in critical applications such as surveillance systems and autonomous driving.

The most common methods of improving the adversarial robustness of models involve training the
model with adversarial samples only, or a combination of clean and adversarial samples (Goodfel-
low et al., 2015; Kurakin et al., 2017; Tramèr et al., 2018; Madry et al., 2018). This requires the
generation of adversarial samples on the training dataset, which is computationally expensive. Ad-
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versarial samples can be generated by adjusting the input image such that cross entropy loss of the
predicted output with respect to the ground truth labels (or an equivalent loss) is maximized. This
maximization problem can be solved using Projected Gradient Descent (PGD, Madry et al. (2018)),
which involves multiple iterations of small steps in the direction of maximum gradient, and repro-
jection on an lp norm ball (typically l2 or l∞ is used), such that the overall perturbation is below
a certain threshold. The threshold on the pixel intensity of perturbations ensures that the perturbed
image is perceptually similar to the original image. The state-of-the-art method of training a robust
model today is PGD Adversarial training, where the network is trained using PGD adversarial sam-
ples. However, this process is prohibitively expensive and does not scale to large datasets such as
ImageNet. While it is possible to generate perturbations using single step (non-iterative) methods
such as Fast Gradient Sign Method (FGSM, Goodfellow et al. (2015)), it has been shown that single-
step adversarial training causes models to converge to a degenerate minima, where models appear to
be robust to single step attacks (Tramèr et al., 2018). This method does not improve the robustness
to iterative adversarial attacks.

We propose to use the knowledge on perceptual similarity between mildly perturbed images to
learn more robust features. We claim that, by imposing similarity in the learned representations
of perceptually similar images, augmentations such as random noise and spatial transformations
can lead to better generalization. We validate our claim by demonstrating improved performance
on PGD, FGSM, DeepFool (Moosavi-Dezfooli et al., 2016) and C&W (Carlini & Wagner, 2016)
attacks in white-box and black box settings. It is to be noted that, we achieve adversarial robustness
without explicitly exposing the model to adversarial samples. This shows that the model cannot
be over-fitting to adversarial samples, which is one of the main drawbacks of adversarial training.
Secondly, the computational cost of our proposed method is similar to that of normal training, hence
leading to adversarial robustness at a very low cost.

We summarize our contributions in this paper below:

• We demonstrate that the average l2 distance between the logits of clean and mildly per-
turbed images is greater than that between the logits of distinct images (from the same or
different classes); leading to the conclusion that the model does not necessarily learn robust
representations.

• To address this issue, we propose a regularizer to enforce similarity between the logits of
perceptually similar images.

The paper is organized as follows: section 2 discusses related works, section 3 demonstrates the
failure of normal training methods in incorporating perceptual similarity into the learned feature
representation of the network, and further proposes a training method which addresses this issue,
section 4 presents experiments to validate our claim, and section 5 concludes the paper.

2 RELATED WORKS

Conventionally, deep neural networks for classification are trained on human-labelled images by
minimizing the average loss of the model over the training images (Vapnik & Chervonenkis,
1971). To prevent memorization and improve generalization, techniques such as regularization (e.g.,
dropout, weight decay) and data augmentation (e.g., random crop, horizontal flip) are widely used.

Yet, several studies have revealed the inherent weakness of deep neural networks, to perform well
on data belonging to distributions slightly different from that of the training data (Ben-David et al.,
2010). Szegedy et al. (2013) showed that imperceptible, crafted noise called adversarial perturbation
can fool models with very high success rate. Ever since the vulnerability of deep neural networks be-
came apparent, there have been several attempts to improve their robustness. One of the most widely
used techniques is adversarial training (Goodfellow et al., 2015), where training data is augmented
with adversarial samples during training. The state-of-the-art adversarial training method proposed
by Madry et al. (2018) uses a min-max formulation to find the strongest first-order adversary (PGD
adversary), and minimizes the loss of the model over these adversarial samples. This method is
computationally very expensive and yet achieves only≈ 46% accuracy on PGD adversarial samples
for CIFAR-10 (Krizhevsky et al.) dataset. Despite all these attempts, Engstrom et al. (2019) showed
that these models can still be fooled by adversarial translation and rotation.
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Kannan et al. (2018) claimed to achieve SOTA adversarial robustness by adding a regularizer to the
loss function, to minimize the distance between logits of clean and the corresponding adversarial
samples. This approach requires the generation of adversarial samples and hence is computationally
expensive. Contrary to this, we propose to improve the model’s robustness by reducing the distance
between the logits of perceptually similar images.

Recently, there have been works related to learning better feature representations without adversarial
training to improve the generalization and robustness of deep neural networks. Guo et al. (2018)
proposed sparse DNNs which are obtained by pruning dense DNNs, as a way to improve adversarial
robustness without adversarial training. Input mixup (Zhang et al., 2018) augments the training
data with virtual training examples, generated using convex combinations of the actual training
data and their corresponding labels. Verma et al. (2019) improve upon input mixup by generating
convex combination of input, or latent representations from any random hidden layer of the network.
Though input mixup works by interpolating the raw inputs, it does not take into consideration the
perceptuality of the combined inputs. We demonstrate better robustness when compared to these
methods.

3 INCORPORATING PERCEPTUAL PRIOR

In this section, we demonstrate that models trained using normal training regime does not incor-
porate perceptual prior into the learned feature representation. Further, to address this issue, we
propose a regularizer to enforce similarity between the logits of perceptually similar images.

3.1 FEATURE REPRESENTATION OF THE NETWORK TRAINED USING NORMAL TRAINING
METHOD

Consider a neural network C, that maps an input image x to class scores y, and let ypred =
argmax(y) be the prediction of the network. Let yGT represent the ground truth label of the image,
x. The parameters of the neural network are learned using the loss function, J . Let m be the size
of the training mini-batch, B. Ideally, perceptually similar images should have similar feature rep-
resentation, and one would expect this prior knowledge to be incorporated into the learned feature
representation of the network. Let, dper be the average l2 distance between the logits of clean im-
ages and their corresponding noisy images in a mini-batch. Noisy image is generated such that it is
perceptually similar to its corresponding clean image. dintra be the average l2 distance between the
logits of images of same class, in a mini-batch. dinter be the average l2 distance between the logits
of images of different class, in a mini-batch, B.

During normal training of a network, cross-entropy loss would cause dintra to become less than
dinter. Further, it is implicitly assumed that dper < dintra, i.e., average l2 distance between the
logits of perceptually similar images (clean and its corresponding noisy image) is lesser than that
of average l2 distance between the logits of images of the same class. This assumption is based on
the observation that networks are robust to random perturbations (||δr||p ≤ ξ, typically p = 2 or∞
is used). In section 4.1, we empirically show that this implicit assumption (dper < dintra) is not
true for the model trained using the existing normal training method. We show this by obtaining
plots of dper versus training iteration, and dintra versus training iteration, for the model trained
using normal training method (refer row-1 of Fig. 1). From the obtained plots, we observe that
for the entire training duration dper > dintra (compare column-1 and column-2 plot in row-1 of
Fig. 1). Further, during PGD adversarial training method (Madry et al., 2018) (models trained
using this method are robust to both iterative and non-iterative attacks) we observe dper ≤dintra
(compare column-1 and column-2 plot in row-2 of Fig. 1). This demonstrates that the perceptual
prior is naturally incorporated into a model that is trained to be robust, although there is no explicit
regularizer to enforce the same.

3.2 PROPOSED REGULARIZER

In the previous subsection 3.1, we demonstrated that existing normal training method fails to incor-
porate perceptual prior into the learned feature representation of the network. Further, we showed
that this prior knowledge is incorporated into the learned feature representation of the network
trained using adversarial training method. Based on this observation, we propose a normal training
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Figure 1: Column-1: Average l2 distance between the logits of clean and its corresponding noisy im-
ages (dper) versus iterations. Column-2: Average l2 distance between the logits of images belonging
to the same class (dintra) in a training mini-batch versus iterations. Column-3: Average l2 distance
between the logits for images belonging to different classes (dinter) in a training mini-batch versus
iterations. Rows represent the training method. Row-1: Normal training. Row-2: PGD adversarial
training.

method with a regularizer to enforce similarity between the logits of perceptually similar images.
Eq. (1) represents the proposed total training loss, where fclean and fnoisy represents the logits
of clean and noisy images. The first term in the Eq. (1 represents the cross-entropy loss on the
mini-batch containing both clean images and their corresponding noisy images, and the second term
represents the proposed regularizer. The hyper-parameter λ decides the weightage given to the reg-
ularizer term. The proposed regularizer causes training loss to increase, when the distance between
the logits of clean and their corresponding noisy images increases. In section 4, we empirically show
that incorporating perceptual prior using the proposed regularizer results in significant improvement
in the model’s robustness against adversarial attacks.

Loss = 1

2m

∑
s={clean,noisy}

( m∑
i=1

J(C(xis; θ), y
i
true)

)
+ λ

m∑
j=1

∥∥f jclean − f jnoisy∥∥22 (1)

Generating perceptually similar images: In this work, we generate perceptually similar image
pairs by adding small random perturbation (||δr|| ≤ ξ) to the clean image using Eq. (2), where, ξ
is the l∞ norm of the random perturbation and N represents normal distribution. We observed that
random perturbations with l∞ norm constraint are more effective than random perturbations with l2
norm constraint.

xnoisy = x+ δr; where, δr = ξ.sign(N (0d, Id)) (2)

The proposed regularizer encourage models to learn similar feature representation for perceptually
similar images. This nature of the proposed regularizer, enable us to extend the framework to defend
against other types of adversarial attacks such as spatial transformation attack (Engstrom et al.,
2017). In section 4.3, we show that by generating perceptually similar image pairs using spatial
transformation such as translation and rotation, results in significant improvement in the robustness
of the model against transformation based attack only. Further, we observe improvement in the
model’s robustness against perturbation and transformation based attack if both types of perceptually
similar pairs are included while training.
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4 EXPERIMENTS

In this section, we provide empirical results for the observations made in section 3. Further, we
show the performance of models trained on MNIST (LeCun), Fashion-MNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al.) datasets using the proposed method, against adversarial attacks.
Results for Fashion-MNIST dataset are shown in the appendix. We use MNIST-Network shown in
table 6 for MNIST dataset, and WideResNet-28-10 (WRN-28-10) (Zagoruyko & Komodakis, 2016)
for CIFAR-10 dataset. These models are trained using SGD with momentum, and step-policy is
used for learning rate scheduling. For all datasets, images are normalized to be in [0,1] range. We
ran our experiments on Nvidia TITAN X GPU.

We compare the proposed method with normal training, FGSM adversarial training (Goodfellow
et al., 2015), Adversarial Logits Pairing (ALP) (Kannan et al., 2018), and PGD adversarial train-
ing (Madry et al., 2018) methods. Further, in order to show the effectiveness of the proposed reg-
ularizer term, we show results on three ablation experiments. (i) Ablation-1: train on mini-batchs
containing both clean and their noisy images, with no regularizer (i.e., λ=0), (ii) Ablation-2: pro-
posed training method, but noisy image is generated by adding perturbation with l2 norm constraint,
and Ablation-3: Ablation-2 with no regularizer (i.e., λ=0). We show results for perturbation and
transformation based attacks. For l∞ norm bounded perturbation based attacks, we use FGSM, I-
FGSM and PGD attacks, and for unbounded perturbation based attacks DeepFool and C&W attacks
are used. For transformation based attacks, we use the grid-search method proposed by Engstrom
et al. (2017). For perturbation based attacks, we follow (Madry et al., 2018) for the attack perturba-
tion strength (ε) and attack parameters.

4.1 FEATURE REPRESENTATION OF THE NETWORK TRAINED USING NORMAL TRAINING
METHOD

In this subsection, we present relevant experiments to show that existing normal training method
fail to incorporate perceptual prior into the learned feature representation of the network. We train
MNIST-Network on MNIST dataset using normal training method. During training, we compute the
feature distance metrics dper, dintra and dinter. Row-1 of Fig. 1 shows the obtained feature distance
metric plots: (i) dper versus iterations (column-1), (ii) dintra versus iterations (column-2), and (iii)
dinter versus iterations (column-3). By comparing plots of column-1 and column-2 in row-1, it can
be observed that for the entire training duration dper >dintra i.e., average l2 distance between the
logits of perceptually similar images is greater than the average l2 distance between the logits of
images of same class. Row-2 of Fig. 1, shows the obtained feature distance metric plots for the
model trained using PGD adversarial training method (Madry et al., 2018). It can be observed that
during training dper ≤dintra. Note that, models trained using PGD adversarial training method are
robust against perturbation based adversarial attacks.

4.2 PERFORMANCE AGAINST PERTURBATION ATTACKS IN WHITE-BOX AND BLACK-BOX
SETTINGS

We train MNIST-Network and WRN-28-10 on MNIST and CIFAR-10 datasets respectively using
the proposed training method. We set the hyper-parameters (λ, ξ) to (10, 0.3) and (50, 8.0/255) for
MNIST and CIFAR-10 datasets respectively. Further, we train these models using normal training,
FGSM adversarial training, Adversarial Logits Pairing (ALP) and PGD adversarial training meth-
ods. We follow the training procedure described in the respective papers. Table 1 and 2, shows
the performance of models trained using different methods, against l∞ norm bounded perturbation
attacks in white-box setting (complete knowledge of the deployed model is available for generating
adversarial attack). It can be observed that there is a significant improvement in the robustness of
models trained using the proposed training method, for both non-iterative (FGSM) and iterative at-
tacks (I-FGSM and PGD). Further, it can be observed that models trained using FGSM adversarial
training method are not robust to iterative adversarial attacks. Last column of table 1 and 2 shows the
training time per epoch for different training methods, it can be observed that the proposed training
method is faster than FGSM and PGD adversarial training methods. The slight increase in the train-
ing time of the proposed training method when compared to normal training method, is due to the
inclusion of noisy samples to the training mini-batch. In appendix A.2, we show the performance of
these models against unbounded perturbation attacks (DeepFool and C&W attacks).
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Table 1: White-Box attack: Classification accuracy (%) of models trained on MNIST dataset using
different training methods. For all attacks ε=0.3 is used and for PGD attack εstep is set to 0.01. For
the proposed method, mean and standard-deviation of accuracy over three runs are reported. For
Ablation-2 and Ablation-3, we generate noisy image by adding perturbation with l2 norm constraint
equals to 4.

Training method Attack Method Training time
Clean FGSM I-FGSM PGD PGD per epoch (sec.)

steps = 40 steps = 40 steps = 100

Normal training 99.27 13.84 0.39 0.03 0.00 6
FGSM adversarial training 99.45 93.02 30.90 10.02 2.94 13
PGD adversarial training 99.28 96.77 95.11 95.70 94.33 212
ALP 99.22 97.17 96.07 96.48 95.49 290

Proposed 99.10 93.89 89.96 89.29 83.48 10
±0.03 ±0.165 ±0.055 ±0.082 ±0.340

Ablation1 (Proposed, λ=0) 99.32 33.74 7.43 2.54 0.12 10
Ablation2 (l2 noise, λ=10) 99.35 92.24 82.18 65.33 31.96 10
Ablation3 (l2 noise, λ=0) 99.29 20.58 1.29 0.20 0.00 10

Table 2: White-Box attack: Classification accuracy (%) of models trained on CIFAR-10 dataset
using different training methods. For all attacks ε=8/255 is used and for PGD attack εstep is set
to 2/255. For the proposed method, mean and standard-deviation of accuracy over three runs are
reported. For Ablation-2 and Ablation-3, we generate noisy image by adding perturbation with l2
norm equals to 0.2.

Training method Attack Method Training time
Clean FGSM I-FGSM PGD PGD per epoch (sec.)

steps = 7 steps = 7 steps = 20

Normal training 94.75 28.16 0.07 0.03 0.00 194
FGSM adversarial training 94.04 98.54 0.31 0.09 0.00 419
PGD adversarial training 85.70 53.96 48.65 47.30 43.09 1524
ALP 85.11 57.46 54.28 53.75 51.07 2140

Proposed 85.81 45.70 38.22 35.84 28.50 299
±1.371 ±1.557 ±0.973 ±0.777 ±0.500

Ablation1 (Proposed, λ=0) 94.90 31.24 2.08 0.69 0.04 299
Ablation2 (l2 noise, λ=50) 93.47 28.89 0.04 0.01 0.00 299
Ablation3 (l2 noise, λ=0) 94.95 6.83 4.84 4.38 3.32 299

Table 3 and 4, shows the performance of models trained using PGD adversarial training method and
the proposed training method against FGSM attack in black-box setting (partial or no knowledge of
the deployed model is available for generating adversarial attack). It can be observed that there is no
significant drop in the performance of models against adversarial attacks. Note that, source model
(normally trained) is used for generating adversarial samples, and these generated samples are fed
to the target model.

4.3 PERFORMANCE AGAINST SPATIAL TRANSFORMATION ATTACKS

In this section, we extend the proposed training method to defend against spatial transformation
attacks. Engstrom et al. (2017) demonstrated that neural networks are susceptible to spatial trans-
formations of input image i.e., models can be fooled by rotating and translating the input image.
Here, the extent of translation and rotation is constrained. Further, Engstrom et al. (2017) proposed
a grid search method to find the parameters of the transformation matrix (translation along x-axis
tx, translation along y-axis ty and rotation θ). We show that incorporating perceptually similar
images that are generated by spatial transformations (e.g., rotation and translation), during the pro-
posed training method results in a model that is robust to spatial transformation attacks. Further,
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Table 3: Black-Box attack: Classification
accuracy (%) of models trained on MNIST
dataset using the proposed and PGD adver-
sarial training methods, against FGSM attack
with ε=0.3. A normally trained model (source
model) is used for generating adversarial sam-
ples, and these samples are fed to the tar-
get model. M represents MNIST-Network and
subscript denotes the training method.

Source Model Target Model
MPGD MProposed

Net-A 96.07 94.95
Net-B 95.8 94.53

Table 4: Black-Box attack: Classification accu-
racy (%) of models trained on CIFAR-10 dataset
using the proposed and PGD adversarial training
methods, against FGSM attack with ε=8/255. A
normally trained model (source model) is used
for generating adversarial samples, and these
samples are fed to the target model. M repre-
sents WideResNet-28-10 and subscript denotes
the training method.

Source Model Target Model
MPGD MProposed

VGG-11 79.24 79.24
VGG-19 83.35 81.23

Table 5: Spatial transformation attack: Performance of models trained on MNIST dataset using
different training methods, against spatial transformation attack and perturbation attack i.e., PGD
attack (ε=0.3, εstep=0.01, steps=100). For spatial transformation attack, (tx, ty, θ) are constrained
to (±3px, ±3px, ±30◦).

Training Method Perturbation attack Transformation attack
Clean PGD Both rotation and translation

Normal training 99.27 0.00 21.60
FGSM adversarial training 99.45 2.94 36.04
PGD adversarial training 99.28 94.33 34.45
ALP 99.22 95.49 26.14

Proposed (only noisy samples) 99.10 83.48 23.25
±0.03 ±0.34 ±0.825

Proposed (only transformed samples) 98.75 0.28 84.14
±0.55 ±1.35 ±0.59

Proposed 98.45 80.54 75.99
(both noisy and transformed samples) ±0.01 ±1.36 ±0.56

model’s robustness improves against perturbation and spatial transformation attacks, if both, noisy
and transformed images are included while training. We train MNIST-Network on MNIST dataset
using the proposed training method, and during training we include (i) only noisy samples, (ii) only
transformed samples, and (iii) both noisy and transformed samples. We limit tx = ty = ±3 pixels
(px) and θ = ±30◦ while generating spatially transformed samples. Table 5 shows the performance
of models trained on MNIST dataset using different training methods, against spatial transforma-
tion attacks. It can be observed that models trained using normal, PGD adversarial training, ALP
and the proposed training (only noisy samples) methods are not robust to spatial transformation
attacks. Further, it can be observed that the model trained using the proposed training (only trans-
formed samples), is robust to spatial transformation attack only. Furthermore, models trained using
the proposed training (both noisy and transformed samples) shows significant improvement in their
robustness against both perturbation and spatial transformation attacks. For spatial transformation
attack, (tx, ty, θ) are constrained to (±3px, ±3px, ±30◦). We use grid search method proposed
by Engstrom et al. (2017).

4.4 SANITY TESTS TO DETECT OBFUSCATING GRADIENTS

We obtain the following plots to detect obfuscating gradients. Models exhibiting obfuscating gradi-
ents are not robust against adversarial attacks (Athalye et al., 2018).
Plot of accuracy versus perturbation strength of PGD attack: Typically, with the increase in the

7



Under review as a conference paper at ICLR 2020

perturbation strength of an attack, the distortion in the resultant adversarial sample increases, and
this causes degradation in the performance of the model. Whereas, this behavior is not observed
in models exhibiting obfuscating gradients. Fig. 2 shows the plot of accuracy of the model on test
set versus perturbation strength of PGD attack. It can be observed that the performance of models
trained using the proposed method, degrades with increase in the perturbation strength.
Plot of loss versus perturbation strength of FGSM attack: Typically, model’s loss should in-
crease monotonically with the increase in the perturbation size of an adversarial attack, and this is
not observed in models exhibiting obfuscating gradients. Fig. 3 shows the plot of average loss on
test set versus perturbation strength of FGSM attack, obtained for models trained using the pro-
posed training method. It can be observed that loss increases monotonically with increase in the
perturbation strength.
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Figure 2: Plot of accuracy on test set versus perturbation strength (ε) of PGD attack obtained for
models trained on MNIST and CIFAR-10 datasets using different training methods. PGD attack
with steps=40 is used for MNIST, and for CIFAR-10 steps=7 is used. Note: Legends are the same
for both the plots.
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Figure 3: Plot of average loss on test set versus perturbation strength (ε) of FGSM attack, obtained
for models on MNIST and CIFAR-10 datasets respectively using the proposed training method.

4.5 EFFECT OF HYPER-PARAMETERS

In this subsection, we show the effect of hyper-parameter (λ) of the proposed training method.
The hyper-parameter λ defines the weightage given to the regularizer term in the total training loss
(Eq. 1). We train MNIST-Network on MNIST dataset, using the proposed training method with
different values of λ, and after training we obtain the accuracy of the model on clean validation
set and on PGD adversarial validation set (ε=0.3, εstep=0.01, steps=100). Fig. 4 shows the effect
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Figure 4: Effect of hyper-parameter(λ) of the proposed training method. For PGD attack, we set
ε=0.3, εstep=0.01 and steps=100. Note that x-axis is in log scale.

of varying λ from 0.1 to 100. From column-2 plot of Fig. 4, it can be observed that the model’s
robustness to PGD attack, initially increases with the increase in the value of λ and reaches a peak
value for λ=50, and for further increase in the value of λ causes the model’s robustness to decrease.
At the same time, the accuracy on clean validation set, decreases with the increase in the value of
λ (please refer column-1 plot of Fig. 4). Based on this trade-off between accuracy on clean and
adversarial samples, we choose λ=10, to maintain good accuracy on both clean and adversarial
samples.

5 CONCLUSION

In this work, we have demonstrated that normal training method fails to incorporate perceptual
prior into the learned feature representation of the network. Further, we have proposed a training
method that incorporates perceptual prior through a regularizer. The proposed regularizer causes
training loss to increase when the Euclidean distance between the logits of perceptually similar
images increases. The models trained using the proposed method show significant improvement in
their robustness against adversarial attacks. Finally, the training complexity of the proposed method
is similar to that of the normal training method.
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A APPENDIX

Table 6: Network used for MNIST dataset. Net-A and Net-B are used for generating black-box
attacks.

MNIST-Network Net-A Net-B
{conv(32,5,5) + Relu}×2 Conv(64,5,5) + Relu Dropout(0.2)

MaxPool(2,2) Conv(64,5,5) + Relu Conv(64,8,8) + Relu
{conv(64,5,5) + Relu}×2 Dropout(0.25) Conv(128,6,6) + Relu

MaxPool(2,2) FC(128) + Relu Conv(128,5,5) + Relu
FC(512) + Relu Dropout(0.5) Dropout(0.5)
FC + Softmax FC + Softmax FC + Softmax

A.1 ADVERSARIAL ATTACKS

Following are the adversarial attacks considered in the paper.
Fast Gradient Sign Method (FGSM): Single-step adversarial attack proposed by Goodfellow et al.
(2015). Adversarial image is generated by perturbing the clean image in the direction of the sign of
the gradient of loss with respect to the input image. The extent of perturbation is controlled by ε.

x∗ = x+ ε.sign
(
∇xJ(C(x; θ), yGT )

)
(3)

Iterative Fast Gradient Sign Method (I-FGSM): Iterative version of FGSM attack, proposed by
Kurakin et al. (2016). Where, εstep = ε/steps.

x0 = x; xN+1 = xN + εstep.sign
(
∇xNJ(C(xN ; θ), yGT )

)
(4)

Projected Gradient Descent (PGD): Proposed by Madry et al. (2018). First, the image is perturbed
with a small random noise and then IFGSM is applied with re-projection.
DeepFool: Proposed by Moosavi-Dezfooli et al. (2016). This method finds the minimal
perturbation(δ∗) that is required to fool the classifier.

δ∗ = argmin
δ

∥∥δ∥∥2
2

s.t. C(x+ δ) 6= C(x)
(5)

Carlini & Wagner Attack: Proposed by Carlini & Wagner (2016), to evaluate the model’s robust-
ness. The minimal l∞ perturbation(δ∗), is obtained by solving the following optimization problem.

δ∗ = argmin
δ

∥∥δ∥∥∞ + c.f(x+ δ)

s.t. x+ δ ∈ [0, 1]n

where f is an objective function such that C(x+ δ) = t if and only if f(x+ δ) ≤ 0, C(x) 6= t

and the constant c is chosen as the minimum c for which f(x+ δ∗) ≤ 0

A.2 PERFORMANCE AGAINST UNBOUNDED ATTACKS

Unbounded attacks such as DeepFool and C&W generates minimum perturbation δ that is required
to fool the classifier, and robustness of the model is measured in terms of average l2 norm of the
generated perturbations. Table 7 and 8 shows the performance of models trained on MNIST and
CIFAR-10 datasets using different training methods, against DeepFool and C&W attacks. For Deep-
Fool attack we set steps=100, and for C&W attack we set iterations=1000, binary search=4. It can
be observed that for models trained using normal training and FGSM adversarial training methods,
perturbations with small l2 norm is sufficient to fool the classifier. Whereas, for the models trained
using the PGD and the proposed adversarial training methods, perturbations with relatively large l2
norm is required to fool the classifier.
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Table 7: Performance of models trained on MNIST dataset using different training methods, against
DeepFool and C&W attack. Fooling rate (FR) defines the percentage of test set images that are
misclassified by the model, post attack. Mean l2 is the average l2 norm of perturbations generated
for test set images. For robust models, Mean l2 should be large i.e., perturbation with large l2 norm
is required to fool the classifier. Note that for models trained using PGD method and the proposed
method, perturbations with large l2 norm is required to fool the classifier.

Training method DeepFool C&W
Fooling Rate Mean l2 Fooling Rate Mean l2

Normal training 99.31 1.5696 100 1.4114
FGSM adv. training 99.49 3.3539 100 1.8044
PGD adv. training 95.21 12.0685 100 3.7438

Proposed 95.50 8.5979 100 2.6991

Table 8: Performance of models trained on CIFAR-10 dataset using different training methods,
against DeepFool and C&W attack. Fooling rate (FR) defines the percentage of test set images
that are misclassified by the model, post attack. Mean l2 is the average l2 norm of perturbations
generated for test set images. For robust models, Mean l2 should be large i.e., perturbation with
large l2 norm is required to fool the classifier. Note that for models trained using PGD method and
the proposed method, perturbations with large l2 norm is required to fool the classifier.

Training method DeepFool C&W
Fooling Rate Mean l2 Fooling Rate Mean l2

Normal training 96.33 0.2019 100.00 0.1218
FGSM adv. training 95.78 0.2529 100.00 0.1077
PGD adv. training 92.19 1.2284 97.80 0.6068

Proposed 90.08 2.6984 80.47 0.4539

Table 9: White-Box attack: Classification accuracy (%) of models trained on fashion-MNIST dataset
using different training methods. For all attacks ε=0.1 is used and for PGD attack εstep is set to 0.01.

Training method Attack Method Training time
Clean FGSM I-FGSM PGD PGD per epoch (sec.)

steps = 40 steps = 40 steps = 100

Normal training 91.6 13.37 0.66 0.0 0.0 13
FGSM adversarial training 92.5 90.58 26.04 16.09 15.67 28
PGD adversarial training 87.25 81.76 80.68 79.77 79.74 230

Proposed 89.007 70.66 67.073 63.687 63.27 19
±0.060 ±0.072 ±0.096 ±0.074 ±0.026

A.3 RESULTS ON FASHION MNIST DATASET

We train MNIST-Network on Fashion-MNIST dataset using the proposed training method. We set
the hyper-parameters (λ, ξ) to (10, 0.1) . Further, we train these models using normal training,
FGSM adversarial training and PGD adversarial training methods. We follow the training procedure
described in the respective papers. Table 9 shows the performance of models trained using different
methods, against l∞ norm bounded perturbation attacks in white-box setting. It can be observed
that there is significant improvement in the robustness of models trained using the proposed training
method, for both non-iterative (FGSM) and iterative attacks (I-FGSM and PGD).
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Table 10: Black-Box attack: Target models trained on Fashion MNIST dataset. The FGSM adver-
sarial samples (ε = 0.1) required for the attack are generated from undefended pre-trained Net A
and B (refer table 6). For the target model, subscript denotes the training method and M represents
MNIST-Network table (refer table 6)

Source Model Target Model
MPGD MProposed

Net-A 84.5 80.64
Net-B 83.58 77.52

Figure 5: Plot of accuracy on test set versus per-
turbation strength (ε) of PGD attack obtained for
models trained on Fashion-MNIST dataset us-
ing different training methods. PGD attack with
steps=40 is used.
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Figure 6: Plot of average loss on test set versus
perturbation strength (ε) of FGSM attack, ob-
tained for the model trained using the proposed
training method on Fashion-MNIST dataset.
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B SPATIAL TRANSFORMATION ATTACKS

Engstrom et al. (2017) investigated the robustness of the model against spatial transformations of
inputs such as rotation or translation. The task of the adversary is to find (tx, ty, θ) for every input
image x such that performance of the model degrades. Here,

• θ is the angle of rotation of x about the center.
• (tx, ty) denotes translation of x along x-axis and y-axis

Therefore, adversary transforms every pixel (px, py) of x to (px′, py′) as follows:[
px′

py′

]
=

[
cosθ −sinθ
sinθ cosθ

]
·
[
px
py

]
+

[
tx
ty

]
An attacker can follow a variety of ways to find adversarial spatial transformations (tx, ty, θ):

1. Grid / Exhaustive Search: The adversary selects the transformation from an exhaustive,
discrete grid of (tx, ty, θ) within threat model constraints for which the model performance
is worst. Engstrom et al. (2017) showed this method is more effective than First Order
Search and Random Search methods.

2. Worst-of-k / Random Search: The adversary chooses parameters from k arbitrarily sampled
points from valid attack space that deal maximum damage to the model’s performance.

3. First Order Search: The adversary starts from random parameters and moves towards the
direction of gradient that maximizes the loss function. This approach is analogous to iter-
ative attacks in `∞ space, but here the adversary optimizes in (tx, ty, θ) space rather than
pixel space. However, this method is less effective when compared to the Grid Search.
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