
Under review as a conference paper at ICLR 2020

CORRECTNESS VERIFICATION OF NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first verification that a neural network for perception tasks produces
a correct output within a specified tolerance for every input of interest. We define
correctness relative to a specification which identifies 1) a state space consisting of
all relevant states of the world and 2) an observation process that produces neural
network inputs from the states of the world. Tiling the state and input spaces with
a finite number of tiles, obtaining ground truth bounds from the state tiles and
network output bounds from the input tiles, then comparing the ground truth and
network output bounds delivers an upper bound on the network output error for
any input of interest. Results from two case studies highlight the ability of our
technique to deliver tight error bounds for all inputs of interest and show how the
error bounds vary over the state and input spaces.

1 INTRODUCTION

Neural networks are now recognized as powerful function approximators with impressive performance
across a wide range of applications, especially perception tasks (e.g. vision, speech recognition).
Current techniques, however, provide no correctness guarantees on such neural perception systems —
there is currently no way to verify that a neural network provides correct outputs (within a specified
tolerance) for all inputs of interest. The closest the field has come is robustness verification, which
aims to verify if the network prediction is stable for all inputs in some neighborhood around a selected
input point. But robustness verification does not verify for all inputs of interest — it only verifies
around local regions. Besides, it does not guarantee that the output, even if stable, is actually correct
— there is no specification that defines the correct output for any input except for the manually-labeled
center point of each region.

We present the first correctness verification of neural networks for perception — the first verification
that a neural network produces a correct output within a specified tolerance for every input of interest.
Neural networks are often used to predict some property of the world given an observation such
as an image or audio recording. We therefore define correctness relative to a specification which
identifies 1) a state space consisting of all relevant states of the world and 2) an observation process
that produces neural network inputs from the states of the world. Then the inputs of interest are all
inputs that can be observed from the state space via the observation process. We define the set of
inputs of interest as the feasible input space. Because the quantity of interest that the network predicts
is some property of the state of the world, the state defines the ground truth output (and therefore
defines the correct output for each input to the neural network).

We present Tiler, the algorithm for correctness verification of neural networks. Evaluating the
correctness of the network on a single state is straightforward — use the observation process to obtain
the possible inputs for that state, use the neural network to obtain the possible outputs, then compare
the outputs to the ground truth from the state. To do correctness verification, we generalize this idea
to work with tiled state and input spaces. We cover the state and input spaces with a finite number of
tiles: each state tile comprises a set of states; each input tile is the image of the corresponding state
tile under the observation process. The state tiles provide ground truth bounds for the corresponding
input tiles. We use recently developed techniques from the robustness verification literature to obtain
network output bounds for each input tile (Xiang et al., 2018; Gehr et al., 2018; Weng et al., 2018;
Bastani et al., 2016; Lomuscio and Maganti, 2017; Tjeng et al., 2019). A comparison of the ground
truth and output bounds delivers an error upper bound for that region of the state space. The error
bounds for all the tiles jointly provide the correctness verification result.

1

Under review as a conference paper at ICLR 2020

We present two case studies. The first involves a world with a (idealized) fixed road and a camera that
can vary its horizontal offset and viewing angle with respect to the centerline of the road (Section 5).
The state of the world is therefore characterized by the offset δ and the viewing angle θ. A neural
network takes the camera image as input and predicts the offset and the viewing angle. The state
space includes the δ and θ of interest. The observation process is the camera imaging process, which
maps camera positions to images. This state space and the camera imaging process provide the
specification. The feasible input space is the set of camera images that can be observed from all
camera positions of interest. For each image, the camera positions of all the states that can produce
the image give the possible ground truths. We tile the state space using a grid on (δ, θ). Each state tile
gives a bound on the ground truth of δ and θ. We then apply the observation process to project each
state tile into the image space. We compute a bounding box for each input tile and apply techniques
from robustness verification (Tjeng et al., 2019) to obtain neural network output bounds for each
input tile. Comparing the ground truth bounds and the network output bounds gives upper bounds
on network prediction error for each tile. We verify that our trained neural network provides good
accuracy across the majority of the state space of interest and bound the maximum error the network
will ever produce on any feasible input.

The second case study verifies a neural network that classifies a LiDAR measurement of a sign in
an (idealized) scene into one of three shapes (Section 6). The state space includes the position of
the LiDAR sensor and the shape of the sign. We tile the state space, project each tile into the input
space via the LiDAR observation process, and again apply techniques from robustness verification to
verify the network, including identifying regions of the input space where the network may deliver an
incorrect classification.

This paper makes the following contributions:

Specification: We show how to use state spaces and observation processes to specify the global
correctness of neural networks for perception (the space of all inputs of interest, and the correct output
for each input). This is the first systematic approach (to our knowledge) to give global correctness
specification for perception neural networks.

Verification: We present an algorithm, Tiler, for correctness verification. With state spaces and
observation processes providing specification, this is the first algorithm (to our knowledge) for
verifying that a neural network produces the correct output (up to a specified tolerance) for every
input of interest. The algorithm can also compute tighter correctness bounds for focused regions of
the state and input spaces.

Case Study: We apply this framework to a problem of predicting camera position from image and a
problem of classifying shape of the sign from LiDAR measurement. We obtain the first correctness
verification of neural networks for perception tasks.

2 RELATED WORK

Motivated by the vulnerability of neural networks to adversarial attacks (Papernot et al., 2016;
Szegedy et al., 2014), researchers have developed a range of techniques for verifying robustness —
they aim to verify if the neural network prediction is stable in some neighborhood around a selected
input point. Salman et al. (2019); Liu et al. (2019) provide an overview of the field. A range of
approaches have been explored, including layer-by-layer reachability analysis (Xiang et al., 2017;
2018) with abstract interpretation (Gehr et al., 2018) or bounding the local Lipschitz constant (Weng
et al., 2018), formulating the network as constraints and solving the resulting optimization problem
(Bastani et al., 2016; Lomuscio and Maganti, 2017; Cheng et al., 2017; Tjeng et al., 2019), solving
the dual problem (Dvijotham et al., 2018; Wong and Kolter, 2018; Raghunathan et al., 2018), and
formulating and solving using SMT/SAT solvers (Katz et al., 2017; Ehlers, 2017; Huang et al., 2017).
When the adversarial region is large, several techniques divide the domain into smaller subdomains
and verify each of them (Singh et al., 2019; Bunel et al., 2017). Unlike the research presented in this
paper, none of this prior research formalizes or attempts to verify that a neural network for perception
computes correct (instead of stable) outputs within a specified tolerance for all inputs of interest
(instead of local regions around labelled points).

Prior work on neural network testing focuses on constructing better test cases to expose problematic
network behaviors. Researchers have developed approaches to build test cases that improve coverage

2

Under review as a conference paper at ICLR 2020

on possible states of the neural network, for example neuron coverage (Pei et al., 2017; Tian et al.,
2018) and generalizations to multi-granular coverage (Ma et al., 2018) and MC/DC (Kelly J. et al.,
2001) inspired coverage (Sun et al., 2018). Odena and Goodfellow (2018) presents coverage-guided
fuzzing methods for testing neural networks using the above coverage criteria. Tian et al. (2018)
generates realistic test cases by applying natural transformations (e.g. brightness change, rotation,
add rain) to seed images. O’Kelly et al. (2018) uses simulation to test autonomous driving systems
with deep learning based perception. Unlike this prior research, which tests the neural network on
only a set of input points, the research presented in this paper verifies correctness for all inputs of
interest.

3 CORRECTNESS VERIFICATION OF NEURAL NETWORKS

Consider the general perception problem of taking an input observation x and trying to predict some
quantity of interest y. It can be a regression problem (continuous y) or a classification problem
(discrete y). Some neural network model is trained for this task. We denote its function by f : X → Y ,
where X is the space of all possible inputs to the neural network and Y is the space of all possible
outputs. Behind the input observation x there is some state of the world s. Denote S as the space of
all states of the world that the network is expected to work in. For each state of the world, a set of
possible inputs can be observed. We denote this observation process using a mapping g : S → P(X̃),
where g(s) is the set of inputs that can be observed from s. Here P(·) is the power set, and X̃ ⊆ X
is the feasible input space, the part of input space that may be observed from the state space S.
Concretely, X̃ = {x|∃s ∈ S, x ∈ g(s)}.
The quantity of interest y is some attribute of the state of the world. We denote the ground truth of y
using a function λ : S → Y . This specifies the ground truth for each input, which we denote as a
mapping f̂ : X̃ → P(Y). f̂(x) is the set of possible ground truth values of y for a given x:

f̂(x) = {y|∃s ∈ S, y = λ(s), x ∈ g(s)}. (1)

The feasible input space X̃ and the ground truth mapping f̂ together form a specification. In general,
we cannot compute and represent X̃ and f̂ directly — indeed, the purpose of the neural network is
to compute an approximation to this ground truth f̂ which is otherwise not available given only the
input x. X̃ and f̂ are instead determined implicitly by S, g, and λ.

The error of the neural network is then characterized by the difference between f and f̂ . Concretely,
the maximum possible error at a given input x ∈ X̃ is:

e(x) = max
y∈f̂(x)

d(f(x), y), (2)

where d(·, ·) is some measurement on the size of the error between two values of the quantity of
interest. For regression, we consider the absolute value of the difference d(y1, y2) = |y1 − y2|.1 For
classification, we consider a binary error measurement d(y1, y2) = 1y1 6=y2 (indicator function), i.e.
the error is 0 if the prediction is correct, 1 if the prediction is incorrect.

The goal of correctness verification is to compute upper bounds on network prediction errors with
respect to the specification. We formulate the problem of correctness verification formally here:

Problem formulation of correctness verification: Given a trained neural network f and a speci-
fication (X̃ , f̂) determined implicitly by S, g, and λ, compute upper bounds on error e(x) for any
feasible input x ∈ X̃ .

1For clarity, we formulate the problem with a one-dimensional quantity of interest. Extending to multidimen-
sional output (multiple quantities of interest) is straightforward: we treat the prediction of each output dimension
as using a separate neural network, all of which are the same except the final output layer.

3

Under review as a conference paper at ICLR 2020

4 Tiler

We next present Tiler, an algorithm for correctness verification of neural networks. We present here
the algorithm for regression settings, with sufficient conditions for the resulting error bounds to be
sound. The algorithm for classification settings is similar (see Appendix B).

Step 1: Divide the state space S into state tiles {Si} such that ∪iSi = S.

The image of each Si under g gives an input tile (a tile in the input space): Xi = {x|x ∈ g(s), s ∈ Si}.
The resulting tiles {Xi} satisfy the following condition:

Condition 4.1. X̃ ⊆ ∪iXi.
Step 2: For each Si, compute the ground truth bound as an interval [li, ui], such that ∀s ∈ Si, li ≤
λ(s) ≤ ui.
The bounds computed this way satisfy the following condition, which (intuitively) states that the
possible ground truth values for an input point must be covered jointly by the ground truth bounds of
all the input tiles that contain this point:

Condition 4.2(a). For any x ∈ X̃ ,∀y ∈ f̂(x),∃Xi such that x ∈ Xi and li ≤ y ≤ ui.
Previous research has produced a variety of methods that bound the neural network output over given
input region. Examples include layer-by-layer reachability analysis (Xiang et al., 2018; Gehr et al.,
2018; Weng et al., 2018) and formulating constrained optimization problems (Bastani et al., 2016;
Lomuscio and Maganti, 2017; Tjeng et al., 2019). Each method typically works for certain classes of
networks (e.g. piece-wise linear networks) and certain classes of input regions (e.g. polytopes). For
each input tile Xi, we therefore introduce a bounding box Bi that 1) includes Xi and 2) is supported
by the solving method:

Step 3: Using Si and g, compute a bounding box Bi for each tile Xi = {x|x ∈ g(s), s ∈ Si}.
The bounding boxes Bi’s must satisfy the following condition:

Condition 4.3. ∀i,Xi ⊆ Bi.
Step 4: Given f and bounding boxes {Bi}, use an appropriate solver to solve for the network output
ranges {[l′i, u′i]}.
The neural network has a single output entry for each quantity of interest. Denote the value of the
output entry as o(x), f(x) = o(x). The network output bounds (l′i, u

′
i) returned by the solver must

satisfy the following condition:

Condition 4.4(a) ∀x ∈ Bi, l′i ≤ o(x) ≤ u′i.
Step 5: For each tile, use the ground truth bound (li, ui) and network output bound (l′i, u

′
i) to

compute the error bound ei:
ei = max(u′i − li, ui − l′i). (3)

ei gives the upper bound on prediction error when the state of the world s is in Si. This is because
(li, ui) covers the ground truth values in Si, and (l′i, u

′
i) covers the possible network outputs for all

inputs that can be generated from Si. From these error bounds {ei}, we compute a global error
bound:

eglobal = max
i
ei. (4)

We can also compute a local error bound for any feasible input x ∈ X̃ :

elocal(x) = max
{i|x∈Bi}

ei. (5)

Note that max{i|x∈Xi} ei provides a tighter local error bound. But since it is generally much easier to
check containment of x in Bi’s than in Xi’s, we adopt the current formulation.
Theorem 1 (Soundness of local error bound for regression). Given that Condition 4.1, 4.2(a), 4.3,
and 4.4(a) are satisfied, then ∀x ∈ X̃ , e(x) ≤ elocal(x), where e(x) is defined in Equation 2 and
elocal(x) is computed from Equation 3 and 5.

4

Under review as a conference paper at ICLR 2020

Theorem 2 (Soundness of global error bound for regression). Given that Condition 4.1, 4.2(a), 4.3,
and 4.4(a) are satisfied, then ∀x ∈ X̃ , e(x) ≤ eglobal, where e(x) is defined in Equation 2 and eglobal
is computed from Equation 3 and 4.

Algorithm 1 formally presents the Tiler algorithm (for regression). The implementations of DI-
VIDESTATESPACE, GETGROUNDTRUTHBOUND, and GETBOUNDINGBOX are problem dependent.
The choice of SOLVER needs to be compatible with Bi and f . Conditions 4.1 to 4.4 specify the
sufficient conditions for the returned results from these four methods such that the guarantees obtained
are sound.

Algorithm 1 Tiler (for regression)

Input: S, g, λ, f
Output: eglobal, {ei}, {Bi}

1: procedure TILER(S, g, λ, f)
2: {Si} ← DIVIDESTATESPACE(S) . Step 1
3: for each Si do
4: (li, ui)← GETGROUNDTRUTHBOUND(Si, λ) . Step 2
5: Bi ← GETBOUNDINGBOX(Si, g) . Step 3
6: (l′i, u

′
i)← SOLVER(f,Bi) . Step 4

7: ei ←max(u′i − li, ui − l′i) . Step 5
8: end for
9: eglobal ←max({ei}) . Step 5

10: return eglobal, {ei}, {Bi} . {ei}, {Bi} can be used later to compute elocal(x)
11: end procedure

The complexity of this algorithm is determined by the number of tiles, which scales with the
dimension of the state space S. Because the computations for each tile are independent, our Tiler
implementation executes these computations in parallel.

4.1 DEALING WITH NOISY OBSERVATION

Our formulation also applies to the case of noisy observations. Notice that the observation process g
maps from a state to a set of possible inputs, so noise can be incorporated here. The above version of
Tiler produces hard guarantees, i.e. the error bounds computed are valid for all cases. This works
for observations with bounded noise. For cases where noise is unbounded (e.g. Gaussian noise),
Tiler can be adjusted to provide probabilistic guarantees: we compute bounding boxes Bi such that
P (x ∈ Bi|x ∼ g(s), s ∈ Si) > 1− ε for some small ε. Here we also need the probability measure
associated with the observation process — g(s) now gives the probability distribution of input x
given state s. This will give an error bound that holds with probability at least 1− ε for any state in
this tile. We demonstrate how this is achieved in practice in the second case study (Section 6).

4.2 DETECTING ILLEGAL INPUTS

Tiler provides a way to verify the correctness of the neural network over the whole feasible input
space X̃ . To make the system complete, we need a method to detect whether a new observed input
is within X̃ (the network is designed to work for it, and we have guaranteed correctness) or not
(the network is not designed for it, so we don’t have guarantees). In general, checking containment
directly with X̃ is hard, since there is no explicit representation of it. Instead, we use the bounding
boxes {Bi} returned by Tiler as a proxy for X̃ : for a new input x∗, we check if x∗ is contained in any
of the Bi’s. Since the network output ranges computed in Step 4 covers the inputs in each Bi, and the
error bounds incorporate the network output ranges, we know that the network output will not have
unexpected drastic changes in Bi’s. This makes Bi’s a good proxy for the space of legal inputs.

Searching through all the Bi’s can introduce a large overhead. We propose a way to speed up the
search by utilizing the network prediction and the verified error bounds. Given the network prediction
y∗ = f(x∗) and the global error bound eglobal, we can prune the search space by discarding tiles that
do not overlap with [y∗ − eglobal, y

∗ + eglobal] in the ground truth attribute. The idea is that we only
need to search the local region in the state space that has ground truth attribute close to the prediction,

5

Under review as a conference paper at ICLR 2020

𝛿

θ

x

y

z

(a)

(b)

Image space

Imaging
Process

𝒳i

ℬi

g

𝒳

𝒮i

δ, θ
Network output range MILP

Solver [δi
min, δi

max], [θi
min, θi

max]

Error Bound Ground truth bound

[δi1, δi2], [θi1, θi2] ei
δ, ei

θ

(c)

Figure 1: (a) Schematic of the scene. (b) Example image taken by the camera. (c) Schematics of
Tiler applied on the road scene case.

since we have verified the bound for the maximum prediction error. We demonstrate this detection
method and the prediction-guided search in the first case study (Section 5).

5 CASE STUDY 1: POSITION MEASUREMENT FROM ROAD SCENE

Problem set-up: Consider a world containing a road with a centerline, two side lines, and a camera
taking images of the road. The camera is positioned at a fixed height above the road, but can vary its
horizontal offset and viewing angle with respect to the centerline of the road. Figure 1a presents a
schematic of the scene. The state of the world s is characterized by the offset δ and angle θ of the
camera position. We therefore label the states as sδ,θ. We consider the camera position between the
range δ ∈ [−40, 40] (length unit of the scene, the road width from the centerline to the side lines is
50 units) and θ ∈ [−60◦, 60◦], so the state space S = {sδ,θ|δ ∈ [−40, 40], θ ∈ [−60◦, 60◦]}.
The input x to the neural network is the image taken by the camera. The observation process g is
the camera imaging process. For each pixel, we shoot a ray from the center of that pixel through the
camera focal point and compute the intersection of the ray with objects in the scene. The intensity of
that intersection point is taken as the intensity of the pixel. The resulting x’s are 32×32 gray scale
images with intensities in [0, 255] (see Appendix C.1 and C.2 for detailed descriptions of the scene
and the camera imaging process). Figure 1b presents an example image. The feasible input space X̃
is the set of all images that can be taken with δ ∈ [−40, 40] and θ ∈ [−60◦, 60◦].

The quantity of interest y is the camera position (δ, θ). The ground truth function λ is simply
λ(sδ,θ) = (δ, θ). For the neural network, we use the same ConvNet architecture as CNNA in Tjeng
et al. (2019) and the small network in Wong et al. (2018). It has 2 convolutional layers (size 4×4,
stride 2) with 16 and 32 filters respectively, followed by a fully connected layer with 100 units. All the
activation functions are ReLUs. The output layer is a linear layer with 2 output nodes, corresponding
to the predictions of δ and θ. The network is trained on 130k images and validated on 1000 images
generated from our imaging process. The camera positions of the training and validation images are
sampled uniformly from the range δ ∈ [−50, 50] and θ ∈ [−70◦, 70◦]. The network is trained with
an l1-loss function, using Adam (Kingma and Ba, 2014) (see Appendix E for more training details).

For error analysis, we treat the predictions of δ and θ separately. The goal is to find upper bounds on
the prediction errors eδ(x) and eθ(x) for any feasible input x ∈ X̃ .

Tiler Figure 1c presents a schematic of how we apply Tiler to this problem. Tiles are constructed
by dividing S on (δ, θ) into a grid of equal-sized rectangles with length a and width b. Each cell in
the grid is then Si = {sδ,θ|δ ∈ [δi1, δ

i
2], θ ∈ [θi1, θ

i
2]}, with δi2− δi1 = a and θi2− θi1 = b. Each tile Xi

is the set of images that can be observed from Si. The ground truth bounds can be naturally obtained
from Si: for δ, li = δi1 and ui = δi2; for θ, li = θi1 and ui = θi2.

6

Under review as a conference paper at ICLR 2020

We next encapsulate each tile Xi with an l∞-norm ball Bi by computing, for each pixel, the range of
possible values it can take within the tile. As the camera position varies in a cell Si, the intersection
point between the ray from the pixel and the scene sweeps over a region in the scene. The range of
intensity values in that region determines the range of values for that pixel. We compute this region
for each pixel, then find the pixel value range (see Appendix C.3). The resulting Bi is an l∞-norm
ball in the image space covering Xi, represented by 32×32 pixel-wise ranges.

To solve the range of outputs of the ConvNet for inputs in the l∞-norm ball, we adopt the approach
from (Tjeng et al., 2019). They formulate the robustness verification problem as mixed integer linear
program (MILP). Presolving on ReLU stability and progressive bound tightening are used to improve
efficiency. We adopt the same formulation but change the MILP objectives. For each l∞-norm ball,
we solve 4 optimization problems: maximizing and minimizing the output entry for δ, and another
two for θ. Denote the objectives solved as δimin, δimax, θimin, θimax.

We then use Equation 3 to compute the error bounds for each tile: eiδ = max(δimax − δi1, δi2 − δimin),
eiθ = max(θimax − θi1, θi2 − θimin). eiδ and eiθ give upper bounds on prediction error when the state
of the world s is in cell Si. These error bounds can later be used to compute global and local error
bounds as in Equation 4 and 5.

Experimental results We run Tiler with a cell size of 0.1 (the side length of each cell in the (δ, θ)
grid is a = b = 0.1). The step that takes the majority of time is the optimization solver. With
parallelism, the optimization step takes about 15 hours running on 40 CPUs@3.00 GHz, solving
960000× 4 MILP problems.

Global error bound: We compute global error bounds by taking the maximum of eiδ and eiθ over all
tiles. The global error bound for δ is 12.66, which is 15.8% of the measurement range (80 length
units for δ); for θ is 7.13◦ (5.94% of the 120◦ measurement range). We therefore successfully verify
the correctness of the network with these tolerances for all feasible inputs.

Error bound landscape: We present the visualizations of the error bound landscape by plotting the
error bounds of each tile as heatmaps over the (δ, θ) space. Figures 2a and 2d present the resulting
heatmaps for eiδ and eiθ, respectively. To further inspect the distribution of the error bounds, we
compute the percentage of the state space S (measured on the (δ, θ) grid) that has error bounds
below some threshold value. The percentage varying with threshold value can be viewed as a
cumulative distribution. Figures 2c and 2f present the cumulative distributions of the error bounds.
It can be seen that most of the state space can be guaranteed with much lower error bounds, with
only a small percentage of the regions having larger guarantees. This is especially the case for the
offset measurement: 99% of the state space is guaranteed to have error less than 2.65 (3.3% of the
measurement range), while the global error bound is 12.66 (15.8%).

A key question is how well the error bounds reflect the actual maximum error made by the neural
network. To study the tightness of the error bounds, we compute empirical estimates of the maximum
errors for each Si, denoted as ēiδ and ēiθ. We sample multiple (δ, θ) within each cell Si, generate
input images for each (δ, θ), then take the maximum over the errors of these points as the empirical
estimate of the maximum error for Si. The sample points are drawn on a sub-grid within each cell,
with sampling spacing 0.05. This estimate is a lower bound on the maximum error for Si, providing
a reference for evaluating the tightness of the error upper bounds we get from Tiler.

We take the maximum of ēiδ’s and ēiθ’s to get a lower bound estimate of the global maximum error.
The lower bound estimate of the global maximum error for δ is 9.12 (11.4% of the measurement
range); for θ is 4.08◦ (3.4% of the measurement range). We can see that the error bounds that Tiler
delivers are close to the lower bound estimates derived from the observed errors that the network
exhibits for specific inputs.

Having visualized the heatmaps for the bounds eiδ and eiθ, we subtract the error estimates ēiδ and
ēiθ and plot the heatmaps for the resulting gaps in Figures 2b and 2e. We can see that most of the
regions that have large error bounds are due to the fact that the network itself has large errors there.
By computing the cumulative distributions of these gaps between bounds and estimates, we found
that for angle measurement, 99% of the state space has error gap below 1.9◦ (1.6% of measurement
range); and for offset measurement, 99% of the state space has error gap below 1.41 length units
(1.8%). The gaps indicate the maximum possible improvements on the error bounds.

7

Under review as a conference paper at ICLR 2020

-60 -36 -12 12 36 60
Angle

-40
-24
-8
8

24
40

Of
fs

et

offset error bound

0.0

0.5

1.0

1.5

2.0

Le
ng

th
 u

ni
t

(a)

-60 -36 -12 12 36 60
Angle

-40
-24
-8
8

24
40

Of
fs

et

offset error gap

0.0

0.5

1.0

1.5

2.0

Le
ng

th
 u

ni
t

(b)

0.0 2.5 5.0 7.5 10.0 12.5
Threshold (length unit)

0

20

40

60

80

100

%
 st

at
e

sp
ac

e

offset error bound

95%: 1.88
99%: 2.65

(c)

-60 -36 -12 12 36 60
Angle

-40
-24
-8
8

24
40

Of
fs

et

angle error bound

0

1

2

3

De
gr

ee

(d)

-60 -36 -12 12 36 60
Angle

-40
-24
-8
8

24
40

Of
fs

et

angle error gap

0

1

2

3

De
gr

ee

(e)

0 2 4 6
Threshold (degree)

0

20

40

60

80

100

%
 st

at
e

sp
ac

e

angle error bound

95%: 2.98
99%: 3.69

(f)

Figure 2: (a,d) Heatmaps of the upper bounds on the maximum error of each tile over the offset-angle
space. (b,e) Corresponding heatmaps after subtracting empirical estimates of the actual maximum
error. (c,f) Percentage of the state space with error upper bounds below some threshold value
(cumulative distribution).

0.2 0.4 0.6 0.8
Grid size

0

5

10

15

20

An
gl

e
(d

eg
re

e)

angle bound
angle gap
offset bound
offset gap

0

10

20

30

Of
fs

et
 (l

en
gt

h
un

it)

99 percentiles of bounds and gaps
 against grid size

(a)

0.2 0.4 0.6 0.8
grid size

10

20

30

40

50

60

70

Ti
m

e
fo

r s
ol

vi
ng

 (h
ou

r)

Time for solving against grid size

(b)
(c) (d) (e)

Figure 3: (a) 99 percentiles of the error upper bounds and the gaps between upper and lower bounds
against cell size. (b) Total solving time against cell size. (c) Example legal inputs. (d) Example
corrupted inputs. (e) Example inputs from new scene.

Contributing factors to the gap: The first factor is that we use interval arithmetic to compute the
error bound in Tiler: Tiler takes the maximum distance between the range of possible ground truths
and the range of possible network outputs as the bound. The second factor is the extra space included
in the box Bi that is not in the tile Xi. This results in a larger range on network output being used for
calculating error bound, which in turn makes the error bound itself larger.

Effect of tile size: Both of the factors described above are affected by the tile size. We run Tiler
with a sequence of cell sizes (0.05, 0.1, 0.2, 0.4, 0.8) for the (δ, θ) grid. Figure 3a shows how the 99
percentiles of the error upper bounds and the gap between error bounds and estimates vary with cell
size. As tile size gets finer, Tiler provides better error bounds, and the tightness of bounds improves.

These results show that we can get better error bounds with finer tile sizes. But this improvement
might be at the cost of time: reducing tile sizes also increases the total number of tiles and the number
of optimization problems to solve. Figure 3b shows how the total solving time varies with cell size.
For cell sizes smaller than 0.2, the trend can be explained by the above argument. For cell sizes larger
than 0.2, total solving time increases with cell size instead. The reason is each optimization problem
becomes harder to solve as the tile becomes large. Specifically, the approach we adopt (Tjeng et al.,
2019) relies on the presolving on ReLU stability to improve speed. The number of unstable ReLUs
will increase drastically as the cell size becomes large, which makes the solving slower.

8

Under review as a conference paper at ICLR 2020

θ

Sign

Lidar

d

working
 zone

x

yz

(a) (b)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Circle → Square

Square → Triangle

Circle → Square

(c)

Figure 4: (a) Schematic for case study 2. (b) Shapes of the sign. (c) Example inputs in the bounding
boxes that cause misclassification. The inputs are visualized using their values after preprocessing
of the neural network. The left hand side is the ground truth label, and the right hand side is the
misclassified label.

Detecting illegal inputs: We implement the input detector by checking if the new input x∗ is
contained in any of the bounding boxes Bi. We test the detector with 3 types of inputs: 1) legal
inputs, generated from the state space through the imaging process; 2) corrupted inputs, obtained by
applying i.i.d uniformly distributed per-pixel perturbation to legal inputs; 3) inputs from a new scene,
where the road is wider and there is a double centerline. Figure 3c to 3e show some example images
for each type. We randomly generated 500 images for each type. Our detector is able to flag all inputs
from type 1 as legal, and all inputs from type 2 and 3 as illegal. On average, naive search (over all Bi)
takes 1.04s per input, while prediction-guided search takes 0.04s per input. So the prediction-guided
search gives a 26× speedup without any compromise in functionality.

6 CASE STUDY 2: SHAPE CLASSIFICATION FROM LIDAR SENSING

Problem set-up The world in this case contains a planar sign standing on the ground. There are 3
types of signs with different shapes: square, triangle, and circle (Figure 4b). A LiDAR sensor takes
measurement of the scene, which is used as input to a neural network to classify the shape of the sign.
The sensor can vary its distance d and angle θ with respect to the sign, but its height is fixed, and it is
always facing towards the sign. Figure 4a shows the schematic of the set-up. Assume the working
zone for the LiDAR sensor is with position d ∈ [30, 60] and θ ∈ [−45◦, 45◦]. Then the state space S
has 3 dimensions: two continuous (d and θ), and one discrete (sign shape c). The LiDAR sensor emits
an array of 32×32 laser beams in fixed directions. The measurement from each beam is the distance
to the first object hit in that direction. We consider a LiDAR measurement model where the maximum
distance that can be measured is MAX_RANGE=300, and the measurement has a Gaussian noise with
zero mean and a standard deviation of 0.1% of MAX_RANGE. This gives the observation process g.
Appendix D.1 and D.2 provides more details on the scene and LiDAR measurement model.

We use a CNN with 2 convolutional layers (size 4×4) with 16 filters, followed by a fully connected
layer with 100 units. The distance measurements are preprocessed before feeding into the network:
first dividing them by MAX_RANGE to scale to [0,1], then using 1 minus the scaled distances as
inputs. This helps the network training. We train the network using 50k points from each class, and
validating using 500 points from each class. The training settings are the same as the previous case
study (Appendix E).

Tiler The state tiles are constructed in each of the three shape subspaces. We divide the θ dimension
uniformly into 90 intervals and the d dimension uniformly in the inverse scale into 60 intervals
to obtain a grid with 5400 cells per shape. To compute the bounding box Bi for a given tile Si,
we first find a lower bound and an upper bound on the distance of object for each beam as the
sensor position varies within that tile Si (Appendix D.3). We extend this lower and upper bound
by 5σ, where σ is the standard deviation of the Gaussian measurement noise. This way we have
P (x ∈ Bi|x ∼ g(s), s ∈ Si) >= (P (|a| <= 5σ|a ∼ N (0, σ2)))N > 0.999, where N = 32× 32 is
the input dimension. The factor 5 can be changed, depending on the required probabilistic guarantee.

9

Under review as a conference paper at ICLR 2020

40 20 0 20 40
Angle

30

35

40

45

50

55

60

Di
st

an
ce

40 20 0 20 40
Angle

30

40

50

60

Di
st

an
ce

Square

40 20 0 20 40
Angle

30

35

40

45

50

55

60

Di
st

an
ce

40 20 0 20 40
Angle

30

40

50

60

Di
st

an
ce

Triangle

40 20 0 20 40
Angle

30

35

40

45

50

55

60

Di
st

an
ce

40 20 0 20 40
Angle

30

40

50

60

Di
st

an
ce

Circle

Figure 5: Verification results over the state space for the LiDAR case study. The top row corresponds
to tiling with a grid of 90×60 cells, the bottom row corresponds to a grid of 180×120 cells. Green
cells indicate that the tile is verified (ei = 0); red cells indicate that we cannot verify that tile (ei = 1);
orange cells indicate that the solver exceeds time limit while solving for that tile.

Same as the previous case study, we adopt the MILP method (Tjeng et al., 2019) to solve the network
output, which is used to decide whether the tile is verified to be correct or not.

Experimental results We plot the verification results as heatmaps over the state space in Figure 5
(top row). We are able to verify the correctness of the network over the majority of the state space. In
particular, we verify that the network is always correct when the shape of the sign is triangle.

Besides the tiling described above, we also run a finer tiling with half the cell sizes in both d and θ.
Figure 5 (bottom row) shows the verification results. By reducing the tile sizes, we can verify more
regions in the state space.

For the tiles that we are unable to verify correctness (red squares in the heatmaps), there are inputs
within those bounding boxes on which the network will predict a different class. We inspect several
of such tiles to see the inputs that cause problems. Figure 4c shows a few examples. In some of the
cases (top two in figure), the ‘misclassified’ inputs actually do not look like coming from the ground
truth class. This is because the extra space included in Bi is too large, so that it includes inputs that
are reasonably different from feasible inputs. Such cases will be reduced as the tile size becomes
smaller, since the extra spaces in Bi’s will be shrunk. We have indeed observed such phenomenon,
as we can verify more regions when the tile size becomes smaller. In some other cases (bottom
example), however, the misclassified inputs are perceptually similar to the ground truth class. Yet
the network predicts a different class. This reveals that the network is potentially not very robust on
inputs around these points. In this sense, our framework provides a way to systematically find regions
of the input space of interests where the network is potentially vulnerable.

7 DISCUSSION

The techniques presented in this paper work with specifications provided by the combination of a
state space of the world and an observation process that converts states into neural network inputs.
Results from the case studies highlight how well the approach works for a state space characterized by
several attributes and a camera imaging or LiDAR measurement observation process. We anticipate
that the technique will also work well for other problems that have a low dimensional state space
(but potentially a high dimensional input space). For higher dimensional state spaces, the framework
makes it possible to systematically target specific regions of the input space to verify. Potential
applications include targeted verification, directed testing, and the identification of illegal inputs for
which the network is not expected to work on.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya V. Nori, and
Antonio Criminisi. 2016. Measuring Neural Net Robustness with Constraints. In Proceedings of
the 30th International Conference on Neural Information Processing Systems (NIPS’16). Curran
Associates Inc., USA, 2621–2629. http://dl.acm.org/citation.cfm?id=3157382.
3157391

Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. 2017. A
Unified View of Piecewise Linear Neural Network Verification. arXiv:cs.AI/1711.00455

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum Resilience of Artificial
Neural Networks. In ATVA.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. 2018.
A dual approach to scalable verification of deep networks. In Proceedings of the Thirty-Fourth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-18). AUAI Press,
Corvallis, Oregon, 162–171.

Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks.
CoRR abs/1705.01320 (2017). arXiv:1705.01320 http://arxiv.org/abs/1705.01320

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. 2018. AI2:
Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In 2018
IEEE Symposium on Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.
2018.00058

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Verification of Deep
Neural Networks. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.).
Springer International Publishing, Cham, 3–29.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Relu-
plex: An Efficient SMT Solver for Verifying Deep Neural Networks. In Computer Aided
Verification. Springer International Publishing, 97–117. https://doi.org/10.1007/
978-3-319-63387-9_5

Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Rierson Leanna K. 2001. A Practical
Tutorial on Modified Condition/Decision Coverage. Technical Report.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J. Kochenderfer. 2019.
Algorithms for Verifying Deep Neural Networks. CoRR abs/1903.06758 (2019). arXiv:1903.06758
http://arxiv.org/abs/1903.06758

Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward
ReLU neural networks. CoRR abs/1706.07351 (2017). arXiv:1706.07351 http://arxiv.
org/abs/1706.07351

Lei Ma, Felix Juefei-Xu, Jiyuan Sun, Chunyang Chen, Ting Su, Fuyuan Zhang, Minhui Xue, Bo
Li, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Comprehensive and
Multi-Granularity Testing Criteria for Gauging the Robustness of Deep Learning Systems. CoRR
abs/1803.07519 (2018). arXiv:1803.07519 http://arxiv.org/abs/1803.07519

Augustus Odena and Ian J. Goodfellow. 2018. TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing. CoRR abs/1807.10875 (2018).

Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, John Duchi, and Russ Tedrake. 2018. Scalable
End-to-End Autonomous Vehicle Testing via Rare-event Simulation. arXiv:cs.LG/1811.00145

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Anan-
thram Swami. 2016. The Limitations of Deep Learning in Adversarial Settings. 2016 IEEE
European Symposium on Security and Privacy (EuroS&P) (2016), 372–387.

11

http://dl.acm.org/citation.cfm?id=3157382.3157391
http://dl.acm.org/citation.cfm?id=3157382.3157391
http://arxiv.org/abs/1705.01320
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1803.07519

Under review as a conference paper at ICLR 2020

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated Whitebox
Testing of Deep Learning Systems. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). ACM, New York, NY, USA, 1–18. https://doi.org/10.1145/
3132747.3132785

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses against Adversarial
Examples. In International Conference on Learning Representations. https://openreview.
net/forum?id=Bys4ob-Rb

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. 2019. A Convex
Relaxation Barrier to Tight Robustness Verification of Neural Networks. arXiv:cs.LG/1902.08722

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An Abstract Domain
for Certifying Neural Networks. Proc. ACM Program. Lang. 3, POPL, Article 41 (Jan. 2019),
30 pages. https://doi.org/10.1145/3290354

Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural Networks. CoRR
abs/1803.04792 (2018). arXiv:1803.04792 http://arxiv.org/abs/1803.04792

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. 2014. Intriguing properties of neural networks. CoRR abs/1312.6199 (2014).

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated Testing of Deep-
neural-network-driven Autonomous Cars. In Proceedings of the 40th International Conference on
Software Engineering (ICSE ’18). ACM, New York, NY, USA, 303–314. https://doi.org/
10.1145/3180155.3180220

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating Robustness of Neural Networks
with Mixed Integer Programming. In International Conference on Learning Representations.
https://openreview.net/forum?id=HyGIdiRqtm

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S.
Dhillon, and Luca Daniel. 2018. Towards Fast Computation of Certified Robustness for ReLU
Networks. In International Conference on Machine Learning (ICML).

Eric Wong and Zico Kolter. 2018. Provable Defenses against Adversarial Examples via the Convex
Outer Adversarial Polytope. In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.),
Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 5286–5295. http://proceedings.
mlr.press/v80/wong18a.html

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. 2018. Scaling
provable adversarial defenses. In Advances in Neural Information Processing Systems
31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (Eds.). Curran Associates, Inc., 8400–8409. http://papers.nips.cc/paper/
8060-scaling-provable-adversarial-defenses.pdf

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2017. Reachable Set Computation and
Safety Verification for Neural Networks with ReLU Activations. CoRR abs/1712.08163 (2017).
arXiv:1712.08163 http://arxiv.org/abs/1712.08163

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2018. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS) (March 2018). https://doi.org/10.1109/TNNLS.2018.
2808470

12

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb
https://doi.org/10.1145/3290354
http://arxiv.org/abs/1803.04792
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://openreview.net/forum?id=HyGIdiRqtm
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses.pdf
http://papers.nips.cc/paper/8060-scaling-provable-adversarial-defenses.pdf
http://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
https://doi.org/10.1109/TNNLS.2018.2808470

Under review as a conference paper at ICLR 2020

APPENDICES

A PROOFS FOR THEOREM 1 AND 2

Theorem 1 (Local error bound for regression). Given that Condition 4.1, 4.2(a), 4.3, and 4.4(a)
are satisfied, then ∀x ∈ X̃ , e(x) ≤ elocal(x), where e(x) is defined in Equation 2 and elocal(x) is
computed from Equation 3 and 5.

Proof. For any x ∈ X̃ , we have

e(x) = max
y∈f̂(x)

d(f(x), y)

= max
y∈f̂(x)

|f(x)− y|

= max
y∈f̂(x)

{max(f(x)− y, y − f(x))}

Condition 4.1 and 4.2(a) guarantees that for any x ∈ X̃ and y ∈ f̂(x), we can find a tile Xi such that
x ∈ Xi and li ≤ y ≤ ui. Let t(y, x) be a function that gives such a tile Xt(y,x) for a given x and
y ∈ f̂(x). Then

e(x) ≤ max
y∈f̂(x)

{max(f(x)− lt(y,x), ut(y,x) − f(x))}.

Since x ∈ Xt(y,x) and Xt(y,x) ⊆ Bt(y,x) (Condition 4.3), x ∈ Bt(y,x). By Condition 4.4(a),

l′t(y,x) ≤ f(x) ≤ u′t(y,x),∀y ∈ f̂(x).

This gives

e(x) ≤ max
y∈f̂(x)

{max(u′t(y,x) − lt(y,x), ut(y,x) − l
′
t(y,x))}

= max
y∈f̂(x)

et(y,x)

Since x ∈ Bt(y,x) for all y ∈ f̂(x), we have {t(y, x)|y ∈ f̂(x)} ⊆ {i|x ∈ Bi}, which gives

e(x) ≤ max
{t(y,x)|y∈f̂(x)}

et(y,x)

≤ max
{i|x∈Bi}

ei

= elocal(x)

Theorem 2 (Global error bound for regression). Given that Condition 4.1, 4.2(a), 4.3, and 4.4(a) are
satisfied, then ∀x ∈ X̃ , e(x) ≤ eglobal, where e(x) is defined in Equation 2 and eglobal is computed
from Equation 3 and 4.

Proof. By Theorem 1, we have ∀x ∈ X̃ ,

e(x) ≤ max
{i|x∈Bi}

ei

≤ max
i
ei

= eglobal

13

Under review as a conference paper at ICLR 2020

B CLASSIFICATION

We present here the algorithm of Tiler for classification settings.

Step 1 (tiling the space) is the same as regression.

Step 2: For each Si, compute the ground truth bound as a set Ci ⊆ Y , such that ∀s ∈ Si, λ(s) ∈ Ci.
The bounds computed this way satisfy the following condition:

Condition 4.2(b). For any x ∈ X̃ , ∀y ∈ f̂(x),∃Xi such that x ∈ Xi and y ∈ Ci.
The idea behind Condition 4.2(b) is the same as that of Condition 4.2(a), but formulated for discrete y.
For tiles with Ci containing more than 1 class, we cannot verify correctness since there is more than 1
possible ground truth class for that tile. Therefore, we should try to make the state tiles containing
only 1 ground truth class each when tiling the space in step 1. For tiles with |Ci| = 1, we proceed to
the following steps.

Step 3 (compute bounding box for each input tile) is the same as regression.

The next step is to solve the network output range. Suppose the quantity of interest has K possible
classes. Then the output layer of the neural network is typically a softmax layer with K output nodes.
Denote the k-th output score before softmax as ok(x). We use the solver to solve the minimum
difference between the output score for the ground truth class and each of the other classes:

Step 4: Given f , Bi, and the ground truth class ci (the only element in Ci), use appropriate solver
to solve lower bounds on the difference between the output score for class ci and each of the other
classes: l′(k)i for k ∈ {1, . . . ,K} \ {ci}. The bounds need to satisfy:

Condition 4.4(b) ∀x ∈ Bi,∀k ∈ {1, . . . ,K} \ {ci}, l′(k)i ≤ oci(x)− ok(x).

Step 5: For each tile, compute an error bound ei, with ei = 0 meaning the network is guaranteed to
be correct for this state tile, and ei = 1 meaning no guarantee:

ei = 0 if and only if ∀k ∈ {1, . . . ,K} \ {ci}, l′(k)i ≥ 0 (6)
Otherwise, ei = 1. We can then compute the global and local error bounds using Equation 4 and 5,
same as in the regression case.
Theorem 3 (Local error bound for classification). Given that Condition 4.1, 4.2(b), 4.3, and 4.4(b)
are satisfied, then ∀x ∈ X̃ , e(x) ≤ elocal(x), where e(x) is defined in Equation 2 and elocal(x)
is computed from Equation 6 and 5. Equivalently, when elocal(x) = 0, the network prediction is
guaranteed to be correct at x.

Proof. We aim to prove that ∀x ∈ X̃ , if elocal(x) = 0, then f(x) = f̂(x). First, according to
the definition of elocal(x), elocal(x) = 0 implies ei = 0 for all i ∈ {i|x ∈ Bi}. Arbitrarily pick a
p ∈ {i|x ∈ Bi}, we have ep = 0. Then Cp only contains one element with class index cp. Condition
4.4(b) gives:

∀k ∈ {1, . . . ,K} \ {cp}, ocp(x)− ok(x) ≥ l′(k)p

By Equation 6, ∀k ∈ {1, . . . ,K} \ {cp}, l′(k)p ≥ 0. Therefore we have:
ocp(x) ≥ ok(x)

for all k 6= cp. This gives f(x) = cp. For any q ∈ {i|x ∈ Bi, i 6= p}, we can similarly derive
f(x) = cq . Therefore, we must have cq = cp for all q ∈ {i|x ∈ Bi, i 6= p}, otherwise there will be a
contradiction. In another word, we have ⋃

{i|x∈Bi}

Ci = {cp}

Now, according to Condition 4.2(b), ∀y ∈ f̂(x),∃Xi such that x ∈ Xi and y ∈ Ci. Rewriting this
condition, we get

∀y ∈ f̂(x), y ∈
⋃

{i|x∈Xi}

Ci

14

Under review as a conference paper at ICLR 2020

which also means f̂(x) ⊆
⋃
{i|x∈Xi} Ci. But {i|x ∈ Xi} ⊆ {i|x ∈ Bi} (Condition 4.3), which gives

f̂(x) ⊆
⋃

{i|x∈Xi}

Ci ⊆
⋃

{i|x∈Bi}

Ci = {cp}.

Since f̂(x) is not empty, we have f̂(x) = {cp} = f(x).

Theorem 4 (Global error bound for classification). Given that Condition 4.1, 4.2(b), 4.3, and 4.4(b)
are satisfied, then if eglobal = 0, the network prediction is guaranteed to be correct for all x ∈ X̃ .
eglobal is computed from Equation 6 and 4.

Proof. We aim to prove that if eglobal = 0, then ∀x ∈ X̃ , f(x) = f̂(x). According to Equation 4,
eglobal = 0 means ei = 0 for all i. Then ∀x ∈ X̃ , elocal(x) = 0, which by Theorem 3 indicates that
f(x) = f̂(x).

Algorithm 2 formally presents the Tiler algorithm for classification.

Algorithm 2 Tiler (for classification)

Input: S, g, λ, f
Output: eglobal, {ei}, {Bi}

1: procedure TILER(S, g, λ, f)
2: {Si} ← DIVIDESTATESPACE(S) . Step 1
3: for each Si do
4: ci ← GETGROUNDTRUTHBOUND(Si, λ) . Step 2
5: Bi ← GETBOUNDINGBOX(Si, g) . Step 3
6: {l′(k)i }k 6=ci ← SOLVER(f,Bi, ci) . Step 4
7: ei ← GETERRORBOUND({l′(k)i }k 6=ci) . Step 5, Equation 6
8: end for
9: eglobal ←max({ei}) . Step 5

10: return eglobal, {ei}, {Bi} . {ei}, {Bi} can be used later to compute elocal(x)
11: end procedure

C POSITION MEASUREMENT FROM ROAD SCENE

C.1 SCENE

For clarity, we describe the scene in a Cartesian coordinate system. Treating 1 length unit as roughly
5 centimeters will give a realistic scale. The scene contains a road in the xy-plane, extending along
the y-axis. A schematic view of the road down along the z-axis is shown in Figure 6a. The road
contains a centerline and two side lines, each with width x2 = 4.0. The width of the road (per lane)
is x1 = 50.0, measuring from the center of the centerline to the center of each side line. Each point
in the scene is associated with an intensity value in [0.0, 1.0] grayscale. The intensity of the side lines
is i1 = 1.0, centerline i2 = 0.7, road i3 = 0.3, and sky i4 = 0.0. The intensity adopts a ramp change
at each boundary between the lines and the road. The half width of the ramp is x3 = 1.0.

The schematic of the camera is shown in Figure 6b. The camera’s height above the road is fixed at
zc = 20.0. The focal length f = 1.0. The image plane is divided into 32× 32 pixels, with pixel side
length d = 0.16.

C.2 CAMERA IMAGING PROCESS

The camera imaging process we use can be viewed as an one-step ray tracing: the intensity value of
each pixel is determined by shooting a ray from the center of that pixel through the focal point, and
take the intensity of the intersection point between the ray and the scene. In this example scene, the
intersection points for the top half of the pixels are in the sky (intensity 0.0). The intersection points
for the lower half of the pixels are on the xy-plane. The position of the intersection point (in the

15

Under review as a conference paper at ICLR 2020

x

y

z

x_2

x_1

x_2x_2

x_3

(a)

Road plane

z_c

Image plane

Focal point
f Camera

(b)

Figure 6: (a) Schematic of the top view of the road. (b) Schematic of the camera.

Table 1: Scene parameters

Parameter Description Value Parameter Description Value

x1 Road width 50.0 i1 Intensity (side line) 1.0
x2 Line width 4.0 i2 Intensity (centerline) 0.7
x3 Ramp half width 1.0 i3 Intensity (road) 0.3
zc Camera height 20.0 i4 Intensity (sky) 0.0
f Focal length 1.0 n Pixel number 32
d Pixel side length 0.16

world coordinate) can be computed using a transformation from the pixel coordinate in homogeneous
coordinate systems: 2

X̃
(i,j)
W = TFW · Pp ·RCF · PPC ·

[
i
j
1

]
(7)

PPC is the transformation from pixel coordinate to camera coordinate. Camera coordinate has the
origin at the focal point, and axes aligned with the orientation of the camera. We define the focal
coordinate to have its origin also at the focal point, but with axes aligned with the world coordinate
(the coordinate system used in Appendix C.1). RCF is the rotation matrix that transforms from
camera coordinate to focal coordinate. Pp represents the projection to the road plane through the
focal point, in the focal coordinate. Finally, TFW is the translation matrix that transforms from the
focal coordinate to the world coordinate. The transformation matrices are given below:

TFW =

1 0 0 δ
0 1 0 0
0 0 1 zc
0 0 0 1

 , Pp =

−zc 0 0 0
0 −zc 0 0
0 0 −zc 0
0 0 1 0

RCF =

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 , PPC =

 0 d d
2 −

nd
2

0 0 f
−d 0 −(d2 −

nd
2)

0 0 1

2Note that for this imaging process, flipping the image on the image plane to the correct orientation (originally

upside-down) is equivalent to taking the image on a virtual image plane that is in front of the focal point by
the focal length, by shooting rays from the focal point through the (virtual) pixel centers. We compute the
intersection points from the pixel coordinates on the virtual image plane.

16

Under review as a conference paper at ICLR 2020

The variables are defined as in Table 1, with δ and θ being the offset and angle of the camera.

After the intensity values of the pixels are determined, they are scaled and quantized to the range
[0, 255], which are used as the final image taken.

C.3 METHOD TO COMPUTE PIXEL-WISE RANGE FOR EACH TILE

In the road scene example, we need to encapsulate each tile in the input space with a l∞-norm ball
for the MILP solver to solve. This requires a method to compute a range for each pixel that covers all
values this pixel can take for images in this tile. This section presents the method used in this paper.

A tile in this example corresponds to images taken with camera position in a local range δ ∈ [δ1, δ2],
θ ∈ [θ1, θ2]. For pixels in the upper half of the image, their values will always be the intensity of
the sky. For each pixel in the lower half of the image, if we trace the intersection point between the
projection ray from this pixel and the road plane, it will sweep over a closed region as the camera
position varies in the δ-θ cell. The range of possible values for that pixel is then determined by the
range of intensities in that region. In this example, there is an efficient way of computing the range of
intensities in the region of sweep. Since the intensities on the road plane only varies with x, it suffices
to find the span on x for the region. The extrema on x can only be achieved at: 1) the four corners
of the δ-θ cell; 2) the points on the two edges δ = δ1 and δ = δ2 where θ gives the ray of that pixel
perpendicular to the y axis (if that θ is contained in [θ1, θ2]). Therefore, by computing the location of
these critical points, we can obtain the range of x. We can then obtain the range of intensities covered
in the region of sweep, which will give the range of pixel values.

D SIGN CLASSIFICATION USING LIDAR SENSOR

D.1 SCENE

The sign is a planer object standing on the ground. It consists of a holding stick and a sign head on
top of the stick. The stick is of height 40.0 and width 2.0 (all in terms of the length unit of the scene).
The sign head has three possible shapes: square (with side length 10.0), equilateral triangle (with side
length 10.0), and circle (with diameter 10.0). The center of the sign head coincides with the middle
point of the top of the stick.

The LiDAR sensor can vary its position within the working zone (see Figure 4a). Its height is fixed at
40.0 above the ground. The center direction of the LiDAR is always pointing parallel to the ground
plane towards the centerline of the sign.

D.2 LIDAR MEASUREMENT MODEL

The LiDAR sensor emits an array of 32×32 laser beams and measures the distance to the first object
along each beam. The directions of the beams are arranged as follows. At distance f = 4.0 away
from the center of the sensor, there is a (imaginary) 32×32 grid with cell size 0.1. There is a beam
shooting from the center of the sensor through the center of each cell in the grid.

The LiDAR model we consider has a maximum measurement range of MAX_RANGE=300.0. If the
distance of the object is larger than MAX_RANGE, the reflected signal is too weak to be detected.
Therefore, all the distances larger than MAX_RANGE will be measured as MAX_RANGE. The distance
measurement contains a Guassian noise n ∼ N (0, σ2), where σ = 0.001 × MAX_RANGE. So the
measured distance for a beam is given by

d = d0 + n, n ∼ N (0, σ2)

where d0 is the actual distance and d is the measured distance.

D.3 METHOD TO COMPUTE DISTANCE BOUNDS FOR EACH BEAM

To compute the bounding boxes in Tiler, we need to compute a lower bound and an upper bound on
the measured distance for each beam as the sensor position varies within a tile. We first determine
whether the intersection point p between the beam and the scene is 1) always on the sign, 2) always
on the background (ground/sky), or 3) covers both cases, when the sensor position varies within the

17

Under review as a conference paper at ICLR 2020

tile. Denote the d range of the tile as [d1, d2] and the θ range as [θ1, θ2]. We find the intersection point
p at a list of critical positions: (d1, θ1), (d1, θ2), (d2, θ1), (d2, θ2). If at some angle θ∗ ∈ [θ1, θ2],
the beam direction has no component along the y-axis, then we add (d1, θ

∗) to the list of critical
positions. The cases for p (on sign/background) covered in the critical points determine the cases
covered in the whole tile.

In most situations, the distances of p at the list of critical positions (we refer it as the list of critical
distances) contain the maximum and minimum distances of p in the tile. There is one exception:
at d = d1, as θ varies in [θ1, θ2], if the intersection point shifts from sign to background (or vice
versa), then the minimum distance of p can occur at (d1, θ

′) where θ′ is not equal to θ1 or θ2. To
handle this case, if at the previous step we find that p do occur on the sign plane in the tile, then we
add the distance of the intersection point between the beam and the sign plane at position (d1, θ1)
(or (d1, θ2), whichever gives a smaller distance) to the list of critical distances. Notice that this
intersection point is not necessarily on the sign. In this way, the min and max among the critical
distances are guaranteed to bound the distance range for the beam as the sensor position varies within
the tile. After this, the bounds can be extended according to the noise scale to get the bounding boxes.

E ADDITIONAL TRAINING DETAILS

This section presents the additional details of the training of the neural networks in the case studies.
We use Adam optimizer with learning rate 0.01. We use early stopping based on the loss on the
validation set: we terminate training if the validation performance does not improve in 5 consecutive
epochs. We take the model from the epoch that has the lowest loss on the validation set.

18

	Introduction
	Related Work
	Correctness Verification of Neural Networks
	Tiler
	Dealing with noisy observation
	Detecting illegal inputs

	Case Study 1: Position Measurement from Road Scene
	Case Study 2: Shape Classification from LiDAR Sensing
	Discussion
	Proofs for Theorem 1 and 2
	Classification
	Position Measurement from Road Scene
	Scene
	Camera Imaging Process
	Method to Compute Pixel-wise Range for Each Tile

	Sign Classification using LiDAR Sensor
	Scene
	LiDAR Measurement Model
	Method to compute distance bounds for each beam

	Additional Training Details

