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ABSTRACT

We develop a model of perceptual similarity judgment based on re-training a deep
convolution neural network (DCNN) that learns to associate different views of each
3D object to capture the notion of object persistence and continuity in our visual
experience. The re-training process effectively performs distance metric learning
under the object persistency constraints, to modify the view-manifold of object
representations. It reduces the effective distance between the representations of
different views of the same object without compromising the distance between those
of the views of different objects, resulting in the untangling of the view-manifolds
between individual objects within the same category and across categories. This
untangling enables the model to discriminate and recognize objects within the
same category, independent of viewpoints. We found that this ability is not limited
to the trained objects, but transfers to novel objects in both trained and untrained
categories, as well as to a variety of completely novel artificial synthetic objects.
This transfer in learning suggests the modification of distance metrics in view-
manifolds is more general and abstract, likely at the levels of parts, and independent
of the specific objects or categories experienced during training. Interestingly, the
resulting transformation of feature representation in the deep networks is found
to significantly better match human perceptual similarity judgment than AlexNet,
suggesting that object persistence potentially could be a important constraint in the
development of perceptual similarity judgment in our brains.

1 INTRODUCTION

The power of the human mind in inference and generalization rests on our brain’s ability to develop
models of abstract knowledge of the natural world (Tenenbaum et al., 2011). When shown novel
objects, both children and adults can rapidly generalize from just a few examples to classify and group
them based on their perceptual similarity. Understanding the processes that give rise to perceptual
similarity will provide insight into the development of abstract models in our brain. In this paper, we
explored computational models for understanding the neural basis of human perceptual similarity
judgment.

Recent deep convolutional neural networks (DCNNs) have produced feature representations in the
hidden layers that can match well with neural representations observed in the primate and human
visual cortex. It was found that there is a strong correspondence between neural activities (neuronal
spikes or fMRI signals) and the activities of the deep layers of deep networks (Agrawal et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al., 2014), suggesting that deep neural networks
have in fact learned meaningful representations that are close to humans’, even though the neural
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networks are trained for object classification in computer vision. Cognitive neuroscientists have
started to explore how the representations learned by deep networks can be used to model various
aspects of human perception such as memorability of objects in images (Dubey et al., 2015), object
typicality (Lake et al., 2015), and similarity judgment (Peterson et al., 2016; Kubilius et al., 2016).
Certain correspondence between deep net representations and human experimental results are found.
In particular, Peterson et al. (2016) found that human similarity judgment on a set of natural images
might be similar to the feature representations in deep networks after some transformation.

The DCNNs that neuroscientists and cognitive scientists have studied so far, such as AlexNet
(Krizhevsky et al., 2012), were trained with static images with the goal of classifying objects in static
images into different categories. Perceptual similarity judgment is obviously closely related to the
mechanisms used in object classification—we classify objects with similar attributes and appearances
into the same class, and thus object classification rests in part on our perceptual similarity judgment
and relies on physical, semantic abstract attributes common to objects in each class. Our perceptual
similarity judgment might also be tied to our need for individual object recognition—after all, we
might want to recognize an individual person or object, not just a class. It is obviously important to
be able to recognize one’s own child or the cup one is using. The need to recognize an individual
object, independent of view points, requires fine discrimination of details, and might also be a very
potent force for shaping our perceptual similarity judgment’s machinery.

The development of invariant object recognition has often been attributed to object continuity or
persistence in our visual experience. When we see an object, we tend to see it from different angles
over time, as we walk by or around it, or directly manipulate it. This temporal persistence of
objects allows our visual system to associate one view of an object with another view of the same
object experienced in temporal proximity, as were proposed in slow-feature analysis (Wiskott &
Sejnowski, 2002) or memory trace models (Perry et al., 2006) in computational neuroscience for
learning translation and rotation invariance in object recognition. Object persistence as a term in
psychology sometimes refers to people’s knowledge or belief on the continual existence of an object
even when it is occluded and invisible from view. Here, we use it to more generally to denote the
temporal persistence of an object in our visual experience. We propose to incorporate the object
continuity or persistence constraint in the training of DCNN, and investigate what new abstraction
and capability such a network would develop as a consequence. We also evaluate the behaviors of the
resulting network to see if they match the data on human perceptual similarity judgment of novel
objects in an earlier study (Tenenbaum et al., 2011).

We retrain a DCNN with object persistence constraints, using rendered 3D objects. We call this
retrained network Object Persistence Net (OPnet). During training, we utilize a Siamese network
architecture for incorporating object persistence constraints into the network. We demonstrated
that multi-view association training with a relatively small set of objects directly affects similarity
judgment across many classes of objects, including novel objects that the network has not seen
before. Our contribution is to demonstrate the surprising transfer of learning of similarity judgment
to untrained classes of objects and a variety of completely artificial novel objects. We analyzed
the view-manifold fine-tuned with object persistence constraints to understand what changes have
taken place in the feature representation of the OPnet that has resulted in the development of this
remarkable transfer of perceptual similarity judgment to novel objects.

Creating large sets of human labeled data on object similarity judgement is expensive. There has
been a recent trend in exploring inherent information as supervisory signal, including using cycle
consistency for learning dense correspondance(Zhou et al., 2015), camera motion for foreground
segmentation(Zeng et al., 2016) and context information(Doersch et al., 2015). Among these, most
related to our study is the work of Wang & Gupta (2015) utilizing visual tracking results as supervisory
signals, which is an object persistence or continuity assumption, to learn deep networks without
explicit object labels. While the tracked patches can be partly regarded as multi-view images, the
changes in views tend to be very limited. In comparison, we used graphics rendered multi-view
images as object persistency constraint. Such a clean setup is necessary for us to study the effect of
object persistency constraint on novel objects, as well as the transferability of view-manifold learning
to similarity perception.

Recent approaches in representation learning of 3D shapes are also related to our work. Generative
models such as (Wu et al., 2016) and (Tatarchenko et al., 2015) learn a vector representation for
generation of 3D shapes. Other approaches learn an embedding space for multi-view object retrieval
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Figure 1: Framework for training and testing the network utilizing object persistence. For training (upper panel),
we first render multiple views for each object and arrange them into triplets containing a similar pair and a
dissimilar pair as input to a Siamese network architecture. For testing (lower panel), when given a query image,
the network computes a similarity score for each of the candidate images. The lower panel shows some example
similarity scores given by our OPnet, where different views of the same object are considered the most similar,
followed by different objects in the same category, and finally those objects belonging to different categories of
least similarities with the query image.

(Guo et al., 2016) or for cross-view image and shape retrieval(Li et al., 2015). While these works
explored training with multi-view images, they did not constrain the view points in a continuous
way and most importantly, the transferability to judgement of novel objects of novel classes were
not studied. We evaluate the performance of the approach with Li et al. (2015) in our tasks for
comparison. That approach learned an embedding space of 3D shapes and used CNN for image
embedding for the purpose of image purification.

2 APPROACH AND METHODS

We take a standard CNN (AlexNet), that has already learned good feature representations for object
classification, and retrain the network in a Siamese triplet architecture with object persistence
constraints using multi-view images rendered from a set of 3D object models in ShapeNet.

2.1 OBJECT PERSISTENT NET (OPNET)

To study the impact of object persistence constraint in the development of perceptual similarity
judgment, OPnet utilizes a Siamese triplet architecture. This triplet architecture can be visualized as
three baseline CNN towers that share the same parameters (Figure 1). In implementation, it is just
one single CNN applied to three images, two of which are considered more “similar” than the third
“different” one. Conceptually, our OPnet tries to bring the feature representations of the two “similar”
images together, and drive apart the representation corresponding to third “different” image. The
architecture and the initial weights of the baseline CNN is same as those of of AlexNet trained on
ImageNet (Deng et al., 2009). To train our OPnet with triplet input (Xi, X

+
i , X

−
i ), we present two

views of the same 3D object to two base networks as (Xi, X+
i ), and a view of a different object to

the third base network as X−
i . Object persistence means that given (Xi, X

+
i , X

−
i ), we try to push

the representations for views of the same object (Xi, X
+
i ) to be close and make them away from the

representation for the different object X−
i . We minimize the loss function with a hinge loss term:

min
W

λ

2
‖W ‖22 +

N∑
i=1

max{0, D(Xi, X
+
i )−D(Xi, X

−
i ) +M},

D(X1, X2) = 1− f(X1) · f(X2)

‖ f(X1) ‖ · ‖ f(X2) ‖
,

where λ is the weight decay andW denotes the weights of the network. f(·) is the CNN representation
output as a function of an input image, andM denotes the margin parameter. The margin is a threshold
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to decide whether the two views are considered similar or not. The higher the margin, the more we
are forcing the network to develop a uniform representation for multiple views of the same object,
relative to views of another object. D is the cosine distance function for a pair of features.

The different objects in principle could be from the same category or from different categories.
During training, we constrain the “different object” to be another 3D object from the same category
to push apart more forcefully the feature representations of objects from the same category, resulting
in view-invariant object discrimination within the same category. We expect the result of this training
to create a view-manifold for each individual object—views within the same manifold are considered
to be “similar” and closer together because they belong to the same object.

2.2 DISTANCE METRIC LEARNING

Our Siamese triplet approach transforms the view-manifold of the original baseline network, so
that different views of the same object are considered similar and become closer in the feature
representation space. Thus, it can be viewed as a form of distance metric learning (DML), which is
a set of methods that learn a transformation from the input space to a feature space. The Siamese
network has been a popular distance metric learning method, used in signature verification (Bromley
et al., 1993), learning invariant mapping (Hadsell et al., 2006), face verification (Chopra et al., 2005),
unsupervised learning (Wang & Gupta, 2015) or image similarity ranking (Wang et al., 2014). In
these works, the definition of similarity for DML comes from the semantic labeling like class label. In
our work, the similarity is defined by the object persistence constraints, obtained during the rendering
of 3D models and providing a continuous trajectory for each single object. Besides, the large variation
of the 2D appearance induced by 3D rotation prevents our network from learning trivial global
templates, but induces it to learn features that are more generalized and thus transferable more easily
to novel objects.

DCNNs, such as AlexNet, pre-trained on large dataset, have developed useful feature representations
that can be fine-tuned for other specific tasks (Donahue et al., 2014; Qian et al., 2015; Karpathy
et al., 2014). However, the pre-training of DCNN involves class labels as teaching signals. During
pretraining, the network learns to throw away much information to extract invariants for classification.
On the other hand, DML approaches are able to develop feature representations that preserve more
fine-grained features, as well as intra- and inter-class variations.

2.3 RENDERING MULTI-VIEW DATASETS FOR SIMILARITY JUDGEMENT TRAINING

To allow the network to learn features under the object persistence constraints and develop a similarity
judgment that can transfer, we create one set of data for training and five sets of novel objects for
testing of the transferability. To focus our study on the network’s ability to perceive 3D spatial
relations and features of individual objects, we grayscale our images during rendering to eliminate
the impact of color. For the same reason, we do not add any backgrounds.

We render multi-view images of individual objects from 7K 3D CAD models of objects in ShapeNet
(Chang et al., 2015). The 7K models belong to 55 categories, such as cars and chairs. For each model,
we render 12 different views by rotating the cameras along the equator from a 30◦ elevation angle
and taking photos of the object at 12 equally separated azimuthal angles (see Fig. 1). We use the
rendering pipeline in Blender, an open source 3D graphics software, with a spotlight that is static
relative to the camera.

For training, we sample 200 object models from 29 categories of ShapeNet. 20 of these object models
from each category are saved for cross validation. For testing, we make the assumptions that (1)
views of the same object are perceived to be more similar when compared to views of a different
object, and (2) views of objects in the same category are perceived to be more similar than views of
objects from different categories. These assumptions are consistent with findings in earlier studies on
similarity judgment in human (Quiroga et al., 2005; Erdogan et al., 2014; Goldstone, 2013). Since
we render images based on CAD models, we can control the variations to create a large dataset that
can approximate ground-truth data for similarity judgment for our experiments without resorting
to large-scale human judgment evaluation. All the objects in the following five test sets are novel
objects in the sense that they are not used in training.
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Novel instance: Created by rendering additional 20 novel objects from each of the 29 categories
used in training the OPnet. This is used to test the transfer of view-manifold learning to novel objects
of the same category. The task is not trivial due to the large intra-category variation existing in the
ShapeNet.

Novel category: Created by rendering objects from 26 untrained categories. This is a more challeng-
ing test of the transfer of view-manifold learning to novel categories.

Synthesized objects: Created by rendering a set of 3D models we synthesized. These are textureless
objects with completely novel shapes. The dataset consists of 5 categories, with 10 instances for each
category. Within each category, the objects either have similar local parts, or have the same global
configuration, based on human judgment. This is an even more challenging test, as these synthesized
objects are not in the ImageNet or ShapeNet.

Pokemon Created by 3D models of Pokemon dataset. Pokemons are cartoon characters with certain
evolution relationships with each other, which provides an alternative measurement of similarity.
This test evaluates the transfer of learning to novel objects with different styles and more complicated
textures. We collected 438 CAD models of Pokemon from an online database. We divide these
models into 251 categories according to their evolution relationships, with most of these categories
containing only 2 to 4 objects. Pokemons of the same category look more similar on average due to
their “genetic linkage”.

Tenenbaum objects This test set contains novel objects from Tenenbaum et al. (2011), where the
ground truth is based on human similarity judgment.

2.4 SIMILARITY JUDGMENT EVALUATION

The similarity score between a query image and a candidate image is computed as 1 minus the cosine
distance of the feature representations of the query and candidate pair, and higher score means higher
similarity. Given a test set containing objects of multiple categories, we evaluate the OPnet via two
retrieval tasks: object instance retrieval and categorical retrieval. In the object instance retrieval task,
for each image P containing object O of category C in the test set, the network is asked to rank all
other images in C, such that images for O should have higher similarity score than images for other
objects in C. In the categorical retrieval task, for each image P of category C, the network is asked
to rank all other images, such that images in category C should have higher score than images not in
C. Here we are indirectly utilizing the human perception information, as categories are defined by
human perception based on their similarity in shapes or functions.

2.5 IMPLEMENTATION DETAILS

We use Caffe (Jia et al., 2014) for training the networks. The base network of the OPnet is modified
from the AlexNet architecture, where we drop the last fully connected layer (fc8) and replace the
softmax loss with our triplet hinge loss. The network is initialized by weights pre-trained on ImageNet.
The objective is optimized using mini-batch stochastic gradient descent (SGD) and we fine-tune
the network for all layers. For each pair of positive example (X,X+), we select two hard negative
examples X− which give the highest loss (similar in (Wang & Gupta, 2015)) and another two
randomly from within the mini-batch. Starting with a learning rate of 0.01, we decrease it by a factor
of 10 every 8K iterations and with a momentum of 0.9. We stop the training at 20K iterations. Weight
decay is set to 0.0005. We set the margin parameter M to 0.1 by cross validation.

3 EXPERIMENTAL RESULTS

We compare HoG feature representation (Dalal & Triggs, 2005) and four deep learning networks: 1)
OPnet, 2) AlexNet pre-trained on ImageNet, 3) An AlexNet fine-tuned for classification on ShapeNet
data, denoted as “AlexNetFT”, 4) The joint embedding model by Li et al. (2015). In AlexNetFT, we
replace the original fc8 layer with a fully connected layer with 29 output units and fine-tune the last
two fully connected layers (fc7, fc8) with cross-entropy loss. The AlexNetFT model is trained with
the same data we used for training the OPnet. The joint embedding model was pre-trained on 6700
shapes in the chair category of ShapeNet. For the first three deep models, we use the fc7 layer as the
feature representation and cosine distance to compute distance between feature representations. We
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(a) (b)

(c) (d) (e)

Figure 2: The precision-recall curves for the object instance retrieval task on different datasets.

Novel instance Novel category Synthesized objects Pokemon Chair
HoG 0.316 0.391 0.324 0.332 0.322

AlexNetFT 0.437 0.503 0.356 0.287 0.478
AlexNet+CosDis 0.529 0.623 0.517 0.607 0.686
AlexNet+EucDis 0.524 0.617 0.514 0.591 0.677

OPnet 0.856 0.855 0.574 0.697 0.938
Joint-embedding 0.429 0.513 0.443 0.387 0.814

Table 1: Mean Average Precision for the object instance retrieval task over all test sets.

also show results based on AlexNet feature representation both in terms of Eculidean distance and
cosine distance measures, denoted as AlexNet+EcuDis and AlexNet+CosDis. Comparison of feature
representations from different layers are shown in Appendix B. We show the results for the instance
retrieval task in Figure 2 and Table 1. The precision measure reflects the accuracy of the model’s
similarity judgment, with the two assumptions given in section 2.3.

On similarity judgment of novel objects from both the trained and untrained categories, OPnet
significantly outperforms AlexNet and AlexNetFT, with an increased Mean Average Precision of at
least 23%. The improvement is due to OPnet’s gains in ability in discriminating different objects
inside one category regardless of their viewpoints, while recognizing different views of the objects
to be similar. For novel shapes in artificial synthesized objects and Pokemons, OPnet still shows an
increased MAP of at least 6% (or 15% decreased error rate for the Pokemon test). This shows that
the similarity judgment resulting from view manifold learning is valid not only for the trained objects
or just to the objects in the same data set, but generalizable to other classes of objects. This suggests
the learned feature representations are more abstract and general, allowing the transfer of the learning
to substantially different datasets and novel objects, to a degree that is not well known or well studied
in computer vision.

We compare OPnet with the joint embedding approach on the chair category of ShapeNet, shown in
Figure 2b. Both networks are trained with the chair category and are tested on novel chairs. OPnet
outperforms the joint embedding approach by a large margin, showing that a better instance level
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Figure 3: The precision-recall curves for the category level retrieval task. The three figures show the network’s
performance on the ShapeNet dataset with novel instance, novel category and synthesized objects respectively.

discrimination is achieved using object persistence training, compared to using known shapes as
anchor points for image embedding. Furthermore, because the joint embedding approach would need
to be trained for each specific category, it does not perform well on novel categories.

When we fine-tuned AlexNet for classification of the 29 trained categories, the resulting AlexNetFT’s
feature representation actually performs the worst, compared to OPnet and the original AlexNet, on
the instance similarity judgment or retrieval tasks. When a network is trained to perform classification,
it learns to ignore subtle differences among objects in the same category. The fewer categories a
network is trained on, the more the instance level similarity judgment will be compromised. This loss
of the generality of its feature representation compromises its transferability to novel objects in other
classes.

We notice that the performance gain for the OPnet is most significant in the ShapeNet dataset and the
gap becomes small for the synthesized and Pokemon dataset. This shows OPnet’s certain overfitting
to the bias in ShapeNet, as the synthesized object dataset contains textureless objects and Pokemon
dataset contains mainly human-like characters that are not in ShapeNet.

Categorical retrieval provides another measure of the network’s performance in similarity judgment.
In this test, we randomly sample 20 categories each from the novel instance test and the novel category
test, with 20 object instances drawn from each category. For the synthesized object test set, we test
all 5 categories and each with 10 instances. For each instance, a single random view is provided.
The results are shown in Figure 3. Despite the fact that AlexNet knows more about the semantic
features of each category, our OPnet still achieves comparable results. OPnet here shows an improved
ability in similarity judgment at the categorical level. On our artificially synthesized object dataset,
where all three networks have no prior experience, OPnet performs better than AlexNet. AlexNetFT
performs extremely well on trained categories likely because it is overfitted to the limited trained
objects, even though it uses the same amount of data. This overfitting problem shows that training
with only class labels might not preserve the essential information to develop transferable general
feature and abstract feature representation, especially with limited training dataset.

3.1 CORRELATION WITH HUMAN PERCEPTION

Using the novel objects from Tenenbaum et al. (2011), we are able to compare our networks with
human similarity perception. We collect 41 images from the paper, one image per object. A pairwise
similarity matrix is calculated based on the cosine distance of their feature representations. We
can then perform hierarchical agglomerative clustering to obtain a tree structure, using the Nearest
Point Algorithm. That is, for all points i in cluster u and points j in cluster v, the distance of the
two clusters are calculated by dist(u, v) = min(D(u[i], v[j])), where D(·) is the cosine distance
function. We merge two clusters with the shortest distance successively to construct the tree. The
tree based on human perception is constructed by giving human subjects all the images and asking
them to merge two clusters that are most similar each time, similar to the hierarchical agglomerative
clustering algorithm. Results are shown in Figure 4.

In order to quantitatively measure the similarity between the trees output by neural networks and the
one based on human perception, we calculate the Cophenetic distances on the tree for each pair of
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(a) Grouping by Human Perception

(b) Grouping by AlexNet Features

(c) Grouping by OPnet Features

Figure 4: Hierarchical clustering of the alien objects, based on (a) human perceptions, (b)A lexNet features
and (c) OPnet features. The dendrograms illustrate how each cluster is composed by drawing a U-shaped link
between a cluster and its children. The height of each U-link denotes the distance between its children clusters
when they are merged.

object. For object i and j, the Cophenetic distances ti,j are defined as ti,j = dist(u, v), i ∈ u, j ∈ v,
where u,v are clusters connected by U-link. Finally, we can evaluate the similarity of the two trees by
calculating the Spearman’s rank correlation coefficient. In the experiment, the Spearman correlation
is 0.460 between AlexNet and the human perception and 0.659 between OPnet and the human
perception, meaning that our OPnet, trained with object persistence constraints on a relatively small
set of objects, automatically yielded a higher match to the human perceptual similarity data. This
finding provides some support to our conjecture that object persistence might play an important role
in shaping human similarity judgment.

3.2 STRUCTURES OF THE VIEW MANIFOLD

We study the feature representations in these networks and their transformation induced by the object
persistence constraints to understand how the changes in similarity judgment performance come
about. As our network uses cosine distance in the feature space as similarity measure, we study how
this measure changes in the view-manifold of the same object and between views of different objects.

Figure 5: Distance measures for 5 cabinet objects. Lighter pixels mean larger distance. On the left is the objects
each with 12 views, whose similarity distance between each other we are interested in. In the middle and the
right is the cosine distance of the ouptut features of OPnet and AlexNet respectively. The element on the ith row
and the jth column stands for the cosine distance between the ith and jth image. The ith image is rendered
from [i/12]th object and (i mod 12)th view.
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We first visualize the pairwise similarity distance matrix of AlexNet and OPnet in Figure 5. We
randomly choose 5 objects from the cabinet category for illustration. Each object has 12 views
that the network has never seen before. Images are arranged first by different object instances (in
columns) then by views (in rows). Many properties of the view manifolds are revealed. First, for
the matrix of OPnet, we can see clearly five dark blocks formed in the diagonal, each standing for
the strong similarity (small distance) among the different views of the same cabinet. The dark block
means that OPnet is associating different views of the same object together, reducing intra-object
distance relative to inter-object distance. In this way, the similarity judgment of the OPnet becomes
more viewpoint independent. On the other hand, the similarity matrix of AlexNet shows a variety
of patterns across all objects within the same category. A closer look at these patterns suggests that
AlexNet first forms groups by certain views (e.g. side-views), and then by objects, resulting in a
more viewpoint dependent similarity measure that is poor in discriminating objects within a category.
Second, even though OPnet groups different views together, the view-manifold has not degenerated
into a single point. Certain patterns can be seen inside each dark block of OPnet’s matrix, forming
a hierarchical structure: different views of the same object are more similar to each other than to
another object and some rotations in angle are considered more similar than others. To illustrate how
the view manifolds have contracted but not completely degenerated, we randomly sample objects
from the novel instance test set and use TSNE (Maaten & Hinton, 2008) to plot them in 2D, as shown
in Figure 6. We can see clearly that different views of the same object are considered more similar in
the feature space, and objects form tight and distinct clusters. We borrow a measurement from Linear

Figure 6: TSNE visualization of the features produced by AlexNet and OPnet, on four categories. Each point
represents a view of an object. Different colors represent different objects.

Discriminant Analysis (LDA) to evaluate how tightly different views of the same object are clustered
together, relative to the distance among different objects within the same category. Formally, let S
be the set of all the objects inside one category and c be the set of all views for one object, x̄ be the
center of all image features, and µc be the center for the object c. We then calculate the score for
category i using the following equation:

Scorei =
σinter instance

σintra instance
=

1
|Si|

∑
c

||µc − x̄||2

1
|Si|

∑
c∈Si

1

|c|
∑
x∈c

||x− µc||2

We then average over all the categories to get a score for each network. The higher the score is, the
larger the inter-object distance is compared to intra object distance and the more closely different
views of the same object are grouped together. In the experiment with the novel instance test set,
OPnet’s score is 0.535 whereas AlexNet’s is 0.328, showing the different views of the same object
are more similar than that between different objects due to the object persistence constraint.

4 CONCLUSION AND DISCUSSION

In this work, we fine-tune AlexNet with object persistence constraints in the framework of distance
metric learning with a Siamese triplet. This fine-tuning modifies the view-manifold of the object

9



Published as a conference paper at ICLR 2017

representation, bringing closer together the representations of an object in different views, driving
apart representations of different objects in the same category, resulting in better intra-categorical
object recognition, without compromising inter-categorical discrimination. We investigated whether
this view-manifold learning results in an improvement in the network’s ability to recognize the
similarity of novel objects that have never been seen before by performing instance and categorical
image retrieval on artificial novel objects or novel object classes, including a set tested in human
similarity judgment. Interestingly, we find that AlexNet, with its rich feature representations, already
perform similarity judgement significantly above chance, in the sense that different views of the same
object are considered more similar to the views of another object in the same category, or objects in
the same category are considered to be more similar than objects in different categories. Fine-tuning
with the object persistence constraint significantly improves this ”similarity judgement” among a
variety of novel objects, suggesting the view manifold learning in the OPnet is accompanied by
feature embeddings with more general and abstract attributes that are transferable, likely at the level
of local object parts.

From a technical point of view, our OPnet performs better than earlier approaches (Li et al., 2015)
in instance and categorical retrieval of novel objects. We have tested our approach with real image
database (Geusebroek et al., 2005) and found it only yields a slight improvement over AlexNet.
That database contains 1000 objects with different views but without categorical labels. OPnet’s
superiority over AlexNet lies in its better discrimination of objects within the same category. When
objects are not organized in categories, i.e. when each object is essentially treated as a category,
OPnet loses its advantages. In addition, there are more complex variations such as lighting and scale
in real scene environments that our current OPnet has not considered. We plan to develop this model
to discount additional nuisance variables and to develop or find database to explore the transferability
of its view-manifold learning in more general settings.

Our work was motivated by our hypothesis that object persistence/continuity constraint in our visual
experience might play a role in the development of neural representations that shape our similarity
judgement of objects that we have not seen before. The fact that fine-tuning AlexNet with this
additional constraint automatically yields a new view-manifold that match human similarity judgment
data better than AlexNet lends some support to our hypothesis. However, more extensive testing with
human perception ground-truth will be needed to fully confirm our hypothesis.
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APPENDIX A EXAMPLES OF SOME TOP RANKING RESULTS

Figure 7: Examples of top instance retrieval results for AlexNet and OPnet. Images that are different views of
the same object(which are considered more similar) are marked with red solid rectangle while views of other
objects are marked with gray dashed rectangle. Obviously from the gun example we can see how the retrieval
results for AlexNet are highly view-dependent.

APPENDIX B INSTANCE RETRIEVAL RESULTS USING FEATURES FROM
DIFFERENT LAYERS

As shown in many literatures (Massa et al., 2015; Aubry & Russell, 2015), features from different
layers sometimes perform differently for a given task. For the instance retrieval task on the novel
instance dataset of the ShapeNet, we compare OPnet and AlexNet using features from different layers,
as shown in Figure 8. The accuracy of AlexNet is pretty flat up to conv3, and then keeps increasing
until layer fc8 where the feature becomes categorical probability and not appropriate for instance
level discrimination. On the other hand, the object persistence training gives a significant increase in
accuracy in fully connected layers.

Figure 8: Instance Retrieval Results Using Features From Different Layers
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