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Abstract
Recent empirical results on over-parameterized
deep networks are marked by a striking absence
of the classic U-shaped test error curve: test er-
ror keeps decreasing in wider networks. Re-
searchers are actively working on bridging this
discrepancy by proposing better complexity mea-
sures. Instead, we directly measure prediction
bias and variance for four classification and re-
gression tasks on modern deep networks. We
find that both bias and variance can decrease
as the number of parameters grows. Qualita-
tively, the phenomenon persists over a number of
gradient-based optimizers. To better understand
the role of optimization, we decompose the to-
tal variance into variance due to training set sam-
pling and variance due to initialization. Variance
due to initialization is significant in the under-
parameterized regime. In the over-parameterized
regime, total variance is much lower and domi-
nated by variance due to sampling. We provide
theoretical analysis in a simplified setting that is
consistent with our empirical findings.

1. Introduction
Despite a few notable exceptions, such as boosting
(Schapire, 1990; Freund, 1995; Bühlmann & Yu, 2003),
the dogma in machine learning has been: “the price to
pay for achieving low bias is high variance” (Geman et al.,
1992). This balance between underfitting (high bias) and
overfitting (high variance) is commonly known as the bias-
variance tradeoff (Fig. 1). Statistical learning theory (Vap-
nik, 1998) successfully predicts this U-shaped test error
curve for a number of classic machine learning models by
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identifying a notion of model capacity, understood as the
main parameter controlling this tradeoff. Complex (high
capacity) models achieve low prediction bias at the expense
of high variance. In their landmark work that highlighted
this dilemma, Geman et al. (1992) suggest that bias de-
creases and variance increases with network size.

However, there is a growing amount of empirical evi-
dence that wider networks generalize better than their
smaller counterparts (Neyshabur et al., 2015; Zagoruyko
& Komodakis, 2016; Novak et al., 2018; Lee et al., 2018;
Belkin et al., 2018; Spigler et al., 2018; Liang et al., 2017;
Canziani et al., 2016). In those cases the U-shaped test er-
ror curve is not observed. Researchers have identified clas-
sic measures of complexity as a culprit. The idea is that,
once we have identified the right complexity measure, we
will again be able to observe this fundamental tradeoff.

We bypass this important, ongoing discussion by measur-
ing prediction bias and variance directly—something that
has not been done in related literature since Geman et al.
(1992), to the best of our knowledge. These measurements
allow us to reason directly about the existence of a trade-
off with respect to network width. We find evidence that
both bias and variance can decrease at the same time as
network width increases in common classification and re-
gression settings with deep networks.

We observe this qualitative behavior with a number of
gradient-based optimizers. In order to get a closer look at
the role of optimization and sampling, we propose a simple
decomposition of total prediction variance. We use the law
of total variance to get a term that corresponds to variance
due to training set sampling and another that corresponds to
variance due to initialization. Variance due to initialization
is significant in the under-parameterized regime and mono-
tonically decreases with width in the over-parameterized
regime. There, total variance is much lower and dominated
by variance due to sampling (Fig. 2).

We provide theoretical analysis, consistent with our empir-
ical findings, in simplified analysis settings: i) prediction
variance does not grow arbitrarily in linear models; ii) vari-
ance due to initialization diminishes in deep networks un-
der strong assumptions.
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Figure 1: On the left is an illustration of the common intuition for the bias-variance tradeoff (Fortmann-Roe, 2012). We
find that variance decreases along with bias when increasing network width (right). These results seem to contradict the
traditional intuition.

1.1. Related Work

In concurrent work, Spigler et al. (2018); Belkin et al.
(2018) point out that generalization error decreases with
capacity in the over-parameterized setting, with a sharp
transition between the under-parameterized and the over-
parameterized settings. While this transition can also be
seen as the early hump in variance we observe in some of
our graphs, we mostly focus on the over-parameterized set-
ting. Additionally, our work is unique in that we explicitly
analyze and experimentally measure the quantities of bias
and variance.

2. Preliminaries
2.1. Set-up

We consider the typical supervised learning task of predict-
ing an output y ∈ Y from an input x ∈ X , where the
pairs (x, y) are drawn from some unknown joint distribu-
tion, D. The learning problem consists of inferring a func-
tion hS : X → Y from a finite training dataset S of m i.i.d.
samples from D. The quality of a predictor h can quanti-
fied by the expected error, E(h) = E(x,y)∼D `(h(x), y), for
some loss function ` : Y × Y → R.

In this paper, predictors hθ are parameterized by the
weights θ ∈ RN of deep neural networks. We will consider
the average performance over possible training sets (de-
noted by the random variable S) of sizem. This is the same
quantity Geman et al. (1992) consider. While S is the only
random quantity focused on in traditional bias-variance de-
composition, we also focus on randomness coming from
optimization. We denote the random variable for optimiza-
tion randomness (e.g. initialization) by I .1

1We focus on randomness from initialization and do not focus
on randomness from stochastic mini-batching because we found

Formally, given a fixed training set S and fixed optimiza-
tion randomness I , the learning algorithm A produces θ
= A(S, I). Randomness in initialization translates to ran-
domness in A(S, ·). Given a fixed training set, we en-
code the randomness due to I in a conditional distribu-
tion p(θ|S); marginalizing over the training set S of size
m gives a marginal distribution p(θ) = ESp(θ|S) on the
weights learned by A from m samples. In this context, the
average performance for the learning algorithm using train-
ing sets of size m can be expressed in the following ways:

Eθ∼pE(hθ) = ESEθ∼p(·|S)E(hθ) = ESEIE(hθ) (1)

2.2. Bias-Variance Decomposition

We briefly recall the standard bias-variance decomposition
in the case of squared-loss. We work in the context of clas-
sification, where each class k ∈ {1 · · ·K} is represented
by a one-hot vector in RK . The predictor outputs a score
or probability vector in RK . In this context, the average
performance in Eq. (1) decomposes into three sources of
error (Geman et al., 1992):

Enoise + Ebias + Evariance (2)

The first term is an intrinsic error term independent of the
predictor; the second is a bias term:

Enoise = E(x,y)

[
‖y − ȳ(x)‖2

]
,

Ebias = Ex
[
‖Eθ[hθ(x)]− ȳ(x)‖2

]
,

where ȳ(x) denotes the expectation E[y|x] of y given x.
The third term is the expected variance of the output pre-
dictions:

Evariance = ExVar(hθ(x)),

the phenomenon of decreasing variance with width persists when
using batch gradient descent (Section 3.1, Appendix B.6).
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Figure 2: Trends of variance due to sampling and variance due to initialization with width on CIFAR10 (left) and on
SVHN (right). Variance due to initializaiton decreases with width, once in the over-parameterized setting. Variance due to
sampling plateaus and remains constant. This is in contrast with what the bias-variance tradeoff would suggest.

Var(hθ(x)) = Eθ
[
‖(hθ(x)− Eθ[hθ(x)]‖2

]
,

where the expectation over θ can be done as in Eq. (1). Fi-
nally, in the set-up of Section 2.1, the sources of variance
are the choice of training set S and the choice of initializa-
tion I (encoded into the conditional p(·|S)). By the law of
total variance, we then have the further decomposition:

Var(hθ(x)) =ES [VarI (hθ(x)|S)] + VarS (EI [hθ(x)|S])
(3)

We call the first term variance due to initialization and the
second term variance due to sampling throughout the pa-
per. Note that risks computed with classification losses (e.g
cross-entropy or 0-1 loss) do not have such a clean bias-
variance decomposition (Domingos, 2000; James, 2003).
However, it is natural to expect that bias and variance are
useful indicators of the performance of the models. In fact,
we show the classification risk can be bounded as 4 times
the regression risk in Appendix D.4.

3. Experiments
In this section, we experimentally study how variance of
fully connected single hidden layer networks varies with
width. We provide evidence against Geman et al. (1992)’s
claim that “bias falls and variance increases with the num-
ber of hidden units.” Experimental details are specified in
Appendix A.

3.1. Bias and Variance

In Fig. 1, we see that variance decreases (along with bias)
as network width increases on MNIST. Similarly, we also
observe this phenomenon in CIFAR10 and SVHN (Fig. 2
and Appendices B.1 and B.2). In addition to these clas-
sification tasks, we see this in a sinusoid regression task
(Fig. 3c and Appendix B.7). In each of these tasks, the

same hyperparameters are used across all widths.

Decreasing the size of the dataset can only increase vari-
ance. To study the robustness of the above observation, we
decrease the size of the MNIST training set to just 100 ex-
amples. In this small data setting, somewhat surprisingly,
we still see that both bias and variance decrease with width
(Figure 3a). The test error behaves similarly (Figure 3b).
Test error trends for all of our experiments follow the bias-
variance trends (Appendix B), as the bias-variance decom-
position would suggest. Because performance is more sen-
sitive to step size in the small data setting, the step size
for each network size is tuned using a validation set (see
Appendix B.4 for step sizes). This protocol allows the
bias to decrease with width, indicating effective capacity
is, indeed, increasing while variance is decreasing (see Ap-
pendix A.1 for more discussion).

To see how dependent this phenomenon is on SGD, we also
run these experiments using batch gradient descent and Py-
Torch’s version of LBFGS. Interestingly, we find a decreas-
ing variance trend with those optimizers as well. These ex-
periments are included in Appendix B.6.

3.2. Decoupling Variance due to Sampling from
Variance due to Initialization

In order to better understand this variance phenomenon in
neural networks, we separate the variance due to sampling
from the variance due to initialization, according to the
law of total variance (Equation 3). Contrary to what tra-
ditional bias-variance tradeoff intuition would suggest, we
find variance due to sampling levels with increasingly large
width (Fig. 2). Furthermore, we find that variance due to
initialization decreases with width, causing the joint vari-
ance to decrease with width (Fig. 2).

A body of recent work has provided evidence that over-
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(a) Variance decreases with width, even in
the small MNIST setting.
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(b) Test error trend is same as bias-variance
trend (small MNIST).
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(c) Similar bias-variance trends on sinusoid
regression task.

Figure 3: We see the same bias-variance trends in small data settings: small MNIST (left) and a regression setting (right).

parameterization (in width) helps gradient descent optimize
to global minima in neural networks (Du et al., 2019; Du
& Lee, 2018; Soltanolkotabi et al., 2017; Livni et al., 2014;
Zhang et al., 2018). Always reaching a global minimum
implies low variance due to initialization on the training
set. Our observation of decreasing variance on the test set
shows that the over-parameterization (in width) effect on
optimization seems to extend to generalization, on the data
sets we consider.

4. Discussion and Theoretical Insights
Our empirical results demonstrate that in the practical set-
ting, variance due to initialization decreases with network
width while variance due to sampling levels off. Here, we
take inspiration from linear models (Hastie et al., 2009,
Section 7.3) to provide arguments for the behavior of vari-
ance in increasingly wide neural networks.

Remark 1: In overparameterized linear models, variance
does not grow with the number of parameters. This is due
to the fact that, all learning occurs in rowspace(X) of the
design matrix X (no learning in nullspace(X)), and the
dimension of the solution space, r = rank(X), is inde-
pendent of N . For a complete walk-through of this, see
Appendix C. We formalize this in Proposition 1 there.

We will illustrate our arguments in the following simplified
setting, where M, M⊥, and d(N) are the more general
analogs of rowspace(X), nullspace(X), and r (respec-
tively):

Setting. Let N be the dimension of the parameter space.
The prediction for a fixed example x, given by a trained
network parameterized by θ depends on:

(i) a subspace of the parameter space, M ∈ RN with rel-
atively small dimension, d(N), which depends only on the
learning task.

(ii) parameter components corresponding to directions or-

thogonal toM. The orthogonalM⊥ ofM has dimension,
N −d(N), and is essentially irrelevant to the learning task.

We can write the parameter vector as a sum of these two
components θ = θM + θM⊥ . We will further make the
following assumptions:

Assumption 1 The optimization of the loss function is in-
variant with respect to θM⊥.

Assumption 2 Regardless of initialization, the optimiza-
tion method consistently yields a solution with the same
θM component, (i.e. the same vector when projected onto
M).

We provide a short discussion on these assumptions in Ap-
pendix E. Given the above assumptions, the following re-
sult, proved in Appendix D.3, shows that the variance from
initialization vanishes as we increase N .

Theorem 1 (Decay of variance due to initialization). For
a fixed data set and parameters initialized as θ0 ∼
N (0, 1

N I), the variance of the prediction satisfies the in-
equality,

Varθ0(hθ(x)) ≤ C 2L2

N
(4)

where L is the Lipschitz constant of the prediction with re-
spect to θ, and for some universal constant C > O.

This result guarantees that the variance from initialization
decreases to zero as N increases, provided the Lipschitz
constant L grows more slowly than the square root of di-
mension, L = o(

√
N).

5. Conclusion
First, we provide evidence against Geman et al. (1992)’s
claim that “the price to pay for achieving low bias is high
variance,” finding that both bias and variance decrease with
width. Second, we find variance due to sampling (analog
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of regular variance in simple settings) does not appear to be
dependent on width, once sufficiently over-parameterized.
Third, variance due to initialization decreases with width.
We see further theoretical treatment of variance as a fruitful
direction for better understanding complexity and general-
ization abilities of neural networks.
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Appendices
A. Experimental details
We run experiments on different datasets: MNIST, CIFAR10, SVHN, small MNIST, and a sinusoid regression task. Av-
erages over data samples are performed by taking the training set S and creating 50 bootstrap replicate training sets S′ by
sampling with replacement from S. We train 50 different neural networks for each hidden layer size using these different
training sets. Then, we estimate Ebias

2 and Evariance as in Section 2.2, where the population expectation Ex is estimated with
an average over the test set. To estimate the two terms from the law of total variance (Equation 3), we use 10 random seeds
for the outer expectation and 10 for the inner expectation, resulting in a total of 100 neural networks for each hidden layer
size. Furthermore, we compute 99% confidence intervals for our bias and variance estimates using the bootstrap (Efron,
1979).

The networks are trained using SGD with momentum and generally run for long after 100% training set accuracy is reached
(e.g. 500 epochs for full data MNIST and 10000 epochs for small data MNIST). The overall trends we find are robust to
how long the networks are trained after the training error converges. To make our study as general as possible, we consider
networks without regularization bells and whistles such as weight decay, dropout, or data augmentation, which Zhang et al.
(2017) found to not be necessary for good generalization.

Hyperparameters: In the full data experiments (all but small MNIST), the same step size is used for all networks for a given
dataset (0.1 for MNIST, 0.005 for CIFAR10, and 0.005 for SVHN). The momentum hyperparameter is always set to 0.9.
In the small data MNIST experiment, the is tuned, using a validation set, for each width. The training for tuning is stopped
after 1000 epochs, whereas the training for the final models is stopped after 10000 epochs. The chosen step sizes can be
found in Appendix B.4.

A.1. Justification for tuning the step size on small MNIST

Because performance is more sensitive to step size in the small data setting, the step size for each network size is tuned
using a validation set (see Appendix B.4 for step sizes).

Note that because we see decreasing bias with width, effective capacity is, indeed, increasing while variance is decreasing.

One control that motivates the experimental design choice of optimal step size is that it leads to the conventional decreasing
bias trend (Fig. 3a) that indicates increasing effective capacity. In fact, in the corresponding experiment where step size is
the same 0.01 for all network sizes, we do not see monotonically decreasing bias (Appendix B.5).

This sensitivity to step size in the small data setting is evidence that we are testing the limits of our hypothesis. By looking
at the small data setting, we are able to test our hypothesis when the ratio of size of network to dataset size is quite large,
and we still find this decreasing trend in variance (Fig. 3a).

2Because we do not have access to ȳ, we use the labels y to estimate Ebias. This is equivalent to assuming noiseless labels and is
standard procedure for estimating bias (Kohavi & Wolpert, 1996; Domingos, 2000).
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B. Additional empirical results and discussion
B.1. CIFAR10
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Figure 4: Bias-variance plot (left) and corresponding train and test error (right) for CIFAR10 after training for 150 epochs
with step size 0.005 for all networks.

101 102 103 104 105

Number of hidden units

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Bi
as

 a
nd

 V
ar

ia
nc

e

Bias
Variance

101 102 103 104 105

Number of hidden units

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

er
ro

r

Test Error
Train Error

Figure 5: Bias-variance plot (left) and corresponding train and test error (right) for CIFAR10 after training for using early
stopping with step size 0.005 for all networks.
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B.2. SVHN
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Figure 6: Bias-variance plot (left) and corresponding train and test error (right) for SVHN after training for 150 epochs
with step size 0.005 for all networks.

B.3. MNIST
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Figure 7: MNIST bias-variance plot from main paper (left) next to the corresponding test error (right)
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Figure 8: Decomposed variance on MNIST

B.4. Tuned learning rates for SGD
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(a) Variance decreases with width, even in the small data MNIST
setting (SGD). This figure is in the main paper, but we include it
here to compare with the corresponding step sizes used.

100 101 102 103 104

Number of hidden units

0.002

0.004

0.006

0.008

0.010

Be
st

 le
ar

ni
ng

 ra
te

(b) Corresponding optimal learning rates found, by random
search, and used.
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B.5. Fixed learning rate results for small data MNIST
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Figure 10: Variance on small data with a fixed learning rate of 0.01 for all networks.

Note that the U curve shown in Fig. 10 when we do not tune the step size is explained by the fact that the constant step
chosen is a “good” step size for some networks and “bad” for others. Results from Keskar et al. (2017) and Smith et al.
(2018) show that a step size that corresponds well to the noise structure in SGD is important for achieving good test set
accuracy. Because our networks are different sizes, their stochastic optimization process will have a different landscape
and noise structure. By tuning the step size, we are making the experimental design choice to keep optimality of step size
constant across networks, rather than keeping step size constant across networks. To us, choosing this control makes much
more sense than choosing to control for step size.

B.6. Other optimizers for width experiment on small data mnist
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Figure 11: Variance decreases with width in the small data setting, even when using batch gradient descent.
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Figure 12: Variance decreases with width in the small data setting, even when using a strong optimizer, such as PyTorch’s
LBFGS, as the optimizer.
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B.7. Sinusoid regression experiments

(a) Example of the many different functions learned by a high
variance learner (Bishop, 2006, Section 3.2)

(b) Caricature of a single function learned by a high variance
learner (EliteDataScience, 2018)

Figure 13: Caricature examples of high variance learners on sinusoid task. Below, we find that this does not happen with
increasingly wide neural networks (Fig. 15 and Fig. 16).
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Figure 14: Target function of the noisy sinusoid regression task (in gray) and an example of a training set (80 data points)
sampled from the noisy distribution.
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Figure 15: Visualization of 100 different functions learned by the different width neural networks. Darker color indicates
higher density of different functions. Widths in increasing order from left to right and top to bottom: 5, 10, 15, 17, 20, 22,
25, 35, 75, 100, 1000, 10000. We do not observe the caricature from Fig. 13 as width is increased.
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Figure 16: Visualization of the mean prediction and variance of the different width neural networks. Widths in increasing
order from left to right and top to bottom: 5, 10, 15, 17, 20, 22, 25, 35, 75, 100, 1000, 10000.
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Figure 17: We observe the same trends of bias and total variance in the sinusoid regression setting. The figure on the left
is in the main paper, while the figure on the right is support.

C. Insights from Linear Models
In this section, we review the classic result that the variance of a linear model grows with the number of parameters (Hastie
et al., 2009, Section 7.3) and point out that variance behaves differently in the over-parameterized setting.

We consider least-squares linear regression in a standard setting which assumes a noisy linear mapping y = θTx + ε
between input feature vectors x ∈ RN and real outputs, where ε denotes the noise random variable with E[ε] = 0 and
Var(ε) = σ2

ε . In this context, the over-parameterized setting is when the dimension N of the input space is larger than the
number m of examples.

LetX denote them×N design matrix whose ith row is the training point xTi , let Y denote the corresponding labels, and let
Σ = XTX denote the empirical covariance matrix. We consider the “fixed design” setting where X is fixed, so all of the
randomness due to data sampling comes solely from ε. A learns weights θ̂ from (X,Y ), either by a closed-form solution
or by gradient descent, using a standard initialization θ0 ∼ N (0, 1

N I). The predictor makes a prediction on x ∼ D:
h(x) = θ̂Tx. Then, the quantity we care about is ExVar(h(x)).

C.1. Under-parameterized Setting

The case where N ≤ m is standard: if X has maximal rank, Σ is invertible; the solution is independent of the initialization
and given by θ̂ = Σ−1XTY . All of the variance is a result of randomness in the noise ε. For a fixed x,

Var(h(x)) = σ2
εTr(xxTΣ−1) . (5)

This grows with the number of parameters N . For example, taking the expected value over the empirical distribution, p̂, of
the sample, we recover that the variance grows with N :

Ex∼p̂[Var(h(x))] =
N

m
σ2
ε . (6)

We provide a reproduction of the proofs in Appendix D.1.

C.2. Over-parameterized Setting

The over-parameterized case whereN > m is more interesting: even ifX has maximal rank, Σ is not invertible. This leads
to a subspace of solutions, but gradient descent yields a unique solution from updates that belong to the span of the training
points xi (row space of X) (LeCun et al., 1991), which is of dimension r = rank(X) = rank(Σ). Correspondingly,
no learning occurs in the null space of X , which is of dimension N − r. Therefore, gradient descent yields the solution
that is closest to initialization: θ̂ = P⊥(θ0) + Σ+XTY , where P⊥ projects onto the null space of X and + denotes the
Moore-Penrose inverse.
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The variance has two contributions: one due to initialization and one due to sampling (here, the noise ε), as in Eq. (3).
These are made explicit in Proposition 1.
Proposition 1 (Variance in over-parameterized linear models). Consider the over-parameterized setting where N > m.
For a fixed x, the variance decomposition of Eq. (3) yields

Var(h(x)) =
1

N
‖P⊥(x)‖2 + σ2

εTr(xxTΣ+) . (7)

This does not grow with the number of parameters N . In fact, because Σ−1 is replaced with Σ+, the variance scales as the
dimension of the data (i.e the rank of X), as opposed to the number of parameters. For example, taking the expected value
over the empirical distribution, p̂, of the sample, we obtain

Ex∼p̂[Var(h(x))] =
r

m
σ2
ε , (8)

where r = rank(X). We provide the proofs for over-parameterized linear models in Appendix D.2.

D. Some Proofs
D.1. Proof of Classic Result for Variance of Linear Model

Here, we reproduce the classic result that variance grows with the number of parameters in a linear model. This result can
be found in Hastie et al. (2009)’s book, and a similar proof can be found in Gonzalez (2016)’s lecture slides.

Proof. For a fixed x, we have h(x) = xT θ̂. Taking θ̂ = Σ−1XTY to be the gradient descent solution, and using
Y = Xθ + ε, we obtain:

h(x) = xTΣ−1XT (Xθ + ε) = xT θ + xTΣ−1XT ε

Hence Eε[h(x)] = xT θ, and the variance is,

Varε(h(x)) = Eε[(h(x)− Eε[h(x)])2]

= Eε[(xT θ + xTΣ−1XT ε− xT θ)2]

= Eε[(xTΣ−1XT ε)2]

= Eε[(xTΣ−1XT ε)(xTΣ−1XT ε)T ]

= Eε[xTΣ−1XT εεT (xTΣ−1XT )T ]

= σ2
εx
TΣ−1ΣΣ−1x

= σ2
εx
TΣ−1ΣΣ−1x

= σ2
εx
TΣ−1x

= σ2
εTr(xTΣ−1x)

= σ2
εTr(xxTΣ−1)

Taking the expected value over the empirical distribution, p̂, of the sample, we find an explicit increasing dependence on
N :

Ex∼p̂[Varε(h(x))] = Ex∼p̂[σ2
εTr(xxTΣ−1)]

= σ2
εTr(Ex∼p̂[xxT ]Σ−1)

= σ2
εTr
(

1

m
ΣΣ−1

)
= σ2

ε

1

m
Tr(IN )

= σ2
ε

N

m
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D.2. Proof of Result for Variance of Over-parameterized Linear Models

Here, we produce a variation on what was done in Appendix D.1 to show that variance does not grow with the number of
parameters in over-parameterized linear models. Recall that we are considering the setting where N > m, where N is the
number of parameters and m is the number of training examples.

Proof. By the law of total variance,

Var(h(x)) = EεVarθ0(h(x)) + Varε(Eθ0 [h(x)])

Here have h(x) = xT θ̂, where θ̂ the gradient descent solution θ̂ = P⊥(θ0) + Σ+XTY , and θ0 ∼ N (0, 1
N I). Then,

Varθ0(h(x)) = Eθ0 [(h(x)− Eθ0 [h(x)])2]

= Eθ0 [xT (P⊥(θ0)− Eθ0 [P⊥(θ0)])2]

= Varθ0(xTP⊥(θ0))

= Varθ0(P⊥(x)TP⊥(θ0))

=
1

N
‖P⊥(x)‖2

Since Eθ0(h(x)) = xTΣ+XTY , the calculation of Varε(Eθ0)h(x)) is similar as in D.1, where Σ−1 is replaced by Σ+.
Thus,

Varε(Eθ0h(x)) = σ2
εTr(xxTΣ+)

Taking the expected value over the empirical distribution, p̂, of the sample, we find an explicit dependence on r = rank(X),
not N :

Ex∼p̂[Var(h(x))] = 0 + Ex∼p̂[σ2
εTr(xxTΣ+)]

= σ2
εTr(Ex∼p̂[xxT ]Σ+)

= σ2
εTr
(

1

m
ΣΣ+

)
= σ2

ε

1

m
Tr(I+r )

= σ2
ε

r

m

where I+r denotes the diagonal matrix with 1 for the first r diagonal elements and 0 for the remaining N − r elements.

D.3. Proof of Theorem 1

First we state some known concentration results (Ledoux, 2001) that we will use in the proof.
Lemma 1 (Levy). Let h : SnR → R be a function on the n-dimensional Euclidean sphere of radius R, with Lipschitz
constant L; and θ ∈ SnR chosen uniformly at random for the normalized measure. Then

P(|h(θ)− E[h]| > ε) ≤ 2 exp

(
−C nε2

L2R2

)
(9)

for some universal constant C > 0.

Uniform measures on high dimensional spheres approximate Gaussian distributions (Ledoux, 2001). Using this, Levy’s
lemma yields an analogous concentration inequality for functions of Gaussian variables:
Lemma 2 (Gaussian concentration). Let h : Rn → R be a function on the Euclidean space Rn, with Lipschitz constant L;
and θ ∼ N (0, σIn) sampled from an isotropic n-dimensional Gaussian. Then:

P(|h(θ)− E[h]| > ε) ≤ 2 exp

(
−C ε2

L2σ2

)
(10)

for some universal constant C > 0.
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Note that in the Gaussian case, the bound is dimension free.

In turn, concentration inequalities give variance bounds for functions of random variables.

Corollary 1. Let h be a function satisfying the conditions of Theorem 2, and Var(h) = E[(h− E[h])2]. Then

Var(h) ≤ 2L2σ2

C
(11)

Proof. Let g = h− E[h]. Then Var(h) = Var(g) and

Var(g) = E[|g|2] = 2E
∫ |g|
0

tdt = 2E
∫ ∞
0

t1|g|>t dt (12)

Now swapping expectation and integral (by Fubini theorem), and by using the identity E1|g|>t = P(|g| > t), we obtain

Var(g) = 2

∫ ∞
0

tPR(|g| > t) dt

≤ 2

∫ ∞
0

2t exp

(
−C t2

L2σ2

)
dt

= 2

[
−L

2σ2

C
exp

(
−C t2

L2σ2

)]∞
0

=
2L2σ2

C

We are now ready to prove Theorem 1. We first recall our assumptions:

Assumption 1. The optimization of the loss function is invariant with respect to θM⊥.

Assumption 2. AlongM, optimization yields solutions independently of the initialization θ0.

We add the following assumptions.

Assumption 3. The prediction hθ(x) is L-Lipschitz with respect to θM⊥.

Assumption 4. The network parameters are initialized as

θ0 ∼ N (0,
1

N
· IN×N ). (13)

We first prove that the Gaussian concentration theorem translates into concentration of predictions in the setting of ??.

Theorem 2 (Concentration of predictions). Consider the setting of ?? and Assumptions 1 and 4. Let θ denote the pa-
rameters at the end of the learning process. Then, for a fixed data set, S we get concentration of the prediction, under
initialization randomness,

P(|hθ(x)− E[hθ(x)]| > ε) ≤ 2 exp

(
−CNε

2

L2

)
(14)

for some universal constant C > 0.

Proof. In our setting, the parameters at the end of learning can be expressed as

θ = θ∗M + θM⊥ (15)

where θ∗M is independent of the initialization θ0. To simplify notation, we will assume that, at least locally around θ∗M,
M is spanned by the first d(N) standard basis vectors, andM⊥ by the remaining N − d(N). This will allow us, from
now on, to use the same variable names for θM and θM⊥ to denote their lower-dimensional representations of dimension
d(N) and N − d(N) respectively. More generally, we can assume that there is a mapping from θM and θM⊥ to those
lower-dimensional representations.
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From Assumptions 1 and 4 we get

θM⊥ ∼ N
(

0,
1

N
I(N−d(N))×(N−d(N))

)
. (16)

Let g(θM⊥) , hθ∗M+θM⊥
(x). By Assumption 3, g(·) is L-Lipschitz. Then, by the Gaussian concentration theorem we

get,

P(|g(θM⊥)− E[g(θM⊥)]| > ε) ≤ 2 exp

(
−CNε

2

L2

)
. (17)

The result of Theorem 1 immediately follows from Theorem 2 and Corollary 1, with σ2 = 1/N :

Varθ0(hθ(x)) ≤ C 2L2

N
(18)

Provided the Lipschitz constant L of the prediction grows more slowly than the square of dimension, L = o(
√
N), we

conclude that the variance vanishes to zero as N grows.

D.4. Bound on classification error in terms of regression error

In this section we give a bound on classification riskRclassif in terms of the regression riskRreg.

Notation. Our classifier defines a map h : X → Rk, which outputs probability vectors h(x) ∈ Rk, with
∑k
y=1 h(x)y = 1.

The classification loss is defined by

L(h) = Probx,y{h(x)y < max
y′

h(x)y′}

= E(x,y)I(h(x)y < max
y′

h(x)y′) (19)

where I(a) = 1 if predicate a is true and 0 otherwise. Given trained predictors hS indexed by training dataset S, the
classification and regression risks are given by,

Rclassif = ESL(hS), Rreg = ESE(x,y)||hS(x)− Y ||22 (20)

where Y denotes the one-hot vector representation of the class y.
Proposition 2. The classification risk is bounded by four times the regression risk,Rclassif ≤ 4Rreg.

Proof. First note that, if h(x) ∈ Rk is a probability vector, then

h(x)y < max
y′

h(x)y′ =⇒ h(x)y <
1

2

By taking the expectation over x, y, we obtain the inequality L(h) ≤ L̃(h) where

L̃(h) = Probx,y{h(x)y <
1

2
} (21)

We then have,

Rclassif := ESL(hS) ≤ ESL̃(hS)

= ProbS; x,y{hS(x)y <
1

2
}

= ProbS; x,y{|hS(x)y − Yy| >
1

2
}

≤ ProbS; x,y{||hS(x)− Y ||2 >
1

2
}

= ProbS; x,y{||hS(x)− Y ||22 >
1

4
} ≤ 4Rreg
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where the last inequality follows from Markov’s inequality.

E. Discussion on Assumptions
We made strong assumptions, but there is some support for them in the literature. The existence of a subspace M⊥ in
which no learning occurs was also conjectured by Advani & Saxe (2017) and shown to hold in linear neural networks
under a simplifying assumption that decouples the dynamics of the weights in different layers. Li et al. (2018) empirically
showed the existence of a critical number d(N) = d of relevant parameters for a given learning task, independent of the
size of the model. Sagun et al. (2017) showed that the spectrum of the Hessian for over-parameterized networks splits into
(i) a bulk centered near zero and (ii) a small number of large eigenvalues; and Gur-Ari et al. (2018) recently gave evidence
that the small subspace spanned by the Hessian’s top eigenvectors is preserved over long periods of training. These results
suggest that learning occurs mainly in a small number of directions.

F. Probabilistic notion of effective capacity
The problem with classical complexity measures is that they do not take into account optimization and have no notion of
what will actually be learned. Arpit et al. (2017, Section 1) define a notion of an effective hypothesis class to take into
account what functions are possible to be learned by the learning algorithm.

However, this still has the problem of not taking into account what hypotheses are likely to be learned. To take into account
the probabilistic nature of learning, we define the ε-hypothesis class for a data distribution D and learning algorithm A,
that contains the hypotheses which are at least ε-likely for some ε > 0:

HD(A) = {h : p(h(A, S)) ≥ ε}, (22)

where S is a training set drawn from Dm, h(A, S) is a random variable drawn from the distribution over learned functions
induced by D and the randomness in A; p is the corresponding density. Thinking about a model’s ε-hypothesis class can
lead to drastically different intuitions for the complexity of a model and its variance (Fig. 18). This is at the core of the
intuition for why the traditional view of bias-variance as a tradeoff does not hold in all cases.
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Figure 18: The dotted red circle depicts a cartoon version of the ε-hypothesis class of the learner. The left side reflects
common intuition, as informed by the bias-variance tradeoff and worst-case analysis from statistical learning theory. The
right side reflects our view that variance can decrease with network width.

G. Common intuitions from impactful works
“Neural Networks and the Bias/Variance Dilemma” from (Geman et al., 1992): “How big a network should we employ?
A small network, with say one hidden unit, is likely to be biased, since the repertoire of available functions spanned by
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f(x;w) over allowable weights will in this case be quite limited. If the true regression is poorly approximated within this
class, there will necessarily be a substantial bias. On the other hand, if we overparameterize, via a large number of hidden
units and associated weights, then the bias will be reduced (indeed, with enough weights and hidden units, the network
will interpolate the data), but there is then the danger of a significant variance contribution to the mean-squared error. (This
may actually be mitigated by incomplete convergence of the minimization algorithm, as we shall see in Section 3.5.5.)”

“An Overview of Statistical Learning Theory” from (Vapnik, 1999): “To avoid over fitting (to get a small confidence
interval) one has to construct networks with small VC-dimension.”

“Stability and Generalization” from Bousquet & Elisseeff (2002): “It has long been known that when trying to estimate an
unknown function from data, one needs to find a tradeoff between bias and variance. Indeed, on one hand, it is natural to
use the largest model in order to be able to approximate any function, while on the other hand, if the model is too large,
then the estimation of the best function in the model will be harder given a restricted amount of data." Footnote: “We
deliberately do not provide a precise definition of bias and variance and resort to common intuition about these notions."

Pattern Recognition and Machine Learning from Bishop (2006): “Our goal is to minimize the expected loss, which we
have decomposed into the sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there is a tradeoff
between bias and variance, with very flexible models having low bias and high variance, and relatively rigid models having
high bias and low variance.”

“Understanding the Bias-Variance Tradeoff” from Fortmann-Roe (2012): “At its root, dealing with bias and variance is
really about dealing with over- and under-fitting. Bias is reduced and variance is increased in relation to model complexity.
As more and more parameters are added to a model, the complexity of the model rises and variance becomes our primary
concern while bias steadily falls. For example, as more polynomial terms are added to a linear regression, the greater the
resulting model’s complexity will be.”

Figure 19: Illustration of common intuition for bias-variance tradeoff (Fortmann-Roe, 2012)


