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Abstract001

Advancements in large language models002
(LLMs) have shown their effectiveness in mul-003
tiple complicated natural language reasoning004
tasks. A key challenge remains in adapting005
these models efficiently to new or unfamil-006
iar tasks. In-context learning (ICL) provides007
a promising solution for few-shot adaptation008
by retrieving a set of data points relevant to a009
query, called in-context examples (ICE), from010
a training dataset and providing them during011
the inference as context. Most existing studies012
utilize a centralized training dataset, yet many013
real-world datasets may be distributed among014
multiple clients, and remote data retrieval can015
be associated with costs. Especially when the016
client data are non-identical independent dis-017
tributions (non-IID), retrieving from clients018
a proper set of ICEs needed for a test query019
presents critical challenges. In this paper, we020
first show that in this challenging setting, test021
queries will have different preferences among022
clients because of non-IIDness, and equal con-023
tribution often leads to suboptimal performance.024
We then introduce a novel approach to tackle025
the distributed non-IID ICL problem when a026
data usage budget is present. The principle is027
that each client’s proper contribution (budget)028
should be designed according to the preference029
of each query for that client. Our approach uses030
a data-driven manner to allocate a budget for031
each client, tailored to each test query. Through032
extensive empirical studies on diverse datasets,033
our method demonstrates superior performance034
relative to competing baselines.035

1 Introduction036

Recent significant progress in large language mod-037

els (LLMs) (Achiam et al., 2023; Touvron et al.,038

2023a,b; Team et al., 2023) has demonstrated their039

effectiveness across various natural language pro-040

cessing (NLP) tasks (Wang et al., 2018, 2019). De-041

spite their impressive performances, they still re-042

quire adaptation to the specific downstream tasks043
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Figure 1: Problem overview. When datasets are dis-
tributed among clients in a non-IID manner, it creates
an obstacle in generating a good context (left). However,
by assigning appropriate budgets to leverage per-client
expertise, better context can be created (right).

for better performance. However, adaptation poses 044

challenges due to LLMs’ vast number of trainable 045

parameters. 046

In-context learning (ICL) (Dong et al., 2022) is 047

a notable method that distinguishes itself through 048

both its effectiveness and efficiency. In brief, ICL 049

adapts to the target task by incorporating context 050

information following two primary steps: i) iden- 051

tify samples from the training dataset helpful to 052

solve the target query by creating a prompt describ- 053

ing a context; ii) feed the constructed prompt with 054

the target query and get the answer. Previous re- 055

lated works on ICL mainly have focused on the 056

construction of a prompt describing the context, 057

which involves several sub-problems, such as the 058

retrieval of in-context examples (ICEs) (Robertson 059

et al., 2009) and determining the optimal sequence 060

for the selected ICEs (Zhang et al., 2024). 061

A common assumption in most existing ICL 062

research is that the system has access to a high- 063

quality centralized dataset used for retrieval. How- 064

ever, in many application scenarios, such as health 065

informatics, centralized datasets may not be fea- 066
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sible, and data could be distributed in different067

institutions, which calls for the distributed ICL.068

In addition, when the data is proprietary and pos-069

sesses high value towards inferences, access to data070

entries may also be bound to data pricing strate-071

gies (Xu et al., 2023; Cong et al., 2022). For in-072

stance, the system needs to pay the local institution073

based on the number of samples sent to the system074

to share profits from inferences (Tang et al., 2020).075

Under this scenario, aggregating ICEs from local076

clients to a center server for ICL entails significant077

financial costs and lacks efficiency.078

In this paper, we focus on integrating knowl-079

edge from distributed clients to achieve better ICL080

performance under the per-query ICE budget con-081

straint. Specifically, we formalize the distributed082

ICL problem where the ICEs are distributed on083

clients, and the server has an LLM for ICL infer-084

ence but can only request a limited number of ICEs085

from all clients for each query, which we refer to086

as the ICE budget.087

We begin by identifying the key challenge in088

distributed ICL with ICE budget constraints lies in089

the non-independently and identically distributed090

(non-IID) training data, as shown in Section 3.1.091

For example, in Figure 1, data samples are spread092

across C clients, each with a unique data distribu-093

tion. Specifically, client 1 primarily contains (+)094

samples, while client 2 is mainly constituted by095

(−) examples. Only limited research (Mohtashami096

et al., 2023) tried to address the challenge of dis-097

tributed datasets for ICL, while none considers the098

challenging real-world setting of non-IID clients.099

This leaves a critical question unanswered: What100

happens to distributed ICL when local clients are101

non-IID?102

To further the understanding of the key challenge103

in the distributed non-IID ICL, we explore the lo-104

cal retrieval process on non-IID clients. We found105

that each query has different preferences for differ-106

ent clients based on local knowledge distribution,107

that is, the number of samples needed from dif-108

ferent clients should vary based on local sample109

distribution. As the toy example shown in Figure 1,110

when the server creates context by uniformly as-111

signing budgets to clients, the answer might be112

incorrect due to the insufficiency of (+) informa-113

tion in the context. To be more detailed, the server114

assigns the clients who have expertise on (−), (×),115

and (÷) operations with the same budget as on (+),116

without any preference. Nevertheless, if the server117

assigns more budget to clients with many (+) sam-118

ples, such as client 1, it can create a more relevant 119

context to answer the query related to (+) opera- 120

tion. This indicates that under non-IID, the server 121

should allocate the budgets over clients based on 122

the preference of each query itself, as well as the 123

distribution of local training samples. 124

Motivated by this, we propose a novel distributed 125

ICL framework to collaboratively collect scattered 126

information among non-IID clients by properly as- 127

signing ICE budgets to each client. First, the server 128

will gather the optimal budget statistics using an 129

existing proxy dataset on the server side. Next, the 130

server will use this dataset to train the budget al- 131

locator. During the deployment stage, the server 132

will predict the proper budget for each client using 133

this trained budget allocator given each test query 134

and perform ICL among clients. Furthermore, in 135

practical scenarios where privacy concerns arise, 136

we augment our framework with the paraphrasing 137

method (Mohtashami et al., 2023) to secure pri- 138

vacy. 139

Contributions. A summary of our contributions: 140

• To the best of our knowledge, we are the first to 141

study the challenging real-world setting of ICL 142

with distributed non-IID clients. We identify 143

the principal challenge as properly assigning the 144

ICE budget for non-IID clients based on the pref- 145

erence of each test query and local knowledge 146

distribution. 147

• We propose a framework to handle the dis- 148

tributed non-IID ICL. This framework trains a 149

budget allocator on the server with the help of a 150

server-side proxy dataset. Then, the server will 151

use this trained allocator to decide how many 152

ICEs to retrieve from each client for the ICL 153

process, enabling collaborative action among 154

clients. 155

• Across a range of dataset benchmarks featuring 156

various non-IID configurations as well as on dif- 157

ferent LLM architectures, our approach has been 158

validated to enhance ICL performance. Notably, 159

we examine both non-private, i.e., communicate 160

raw samples directly, and private cases using the 161

paraphrasing method to secure privacy. In both 162

scenarios, our approach shows superiority to the 163

previous method and other reasonable baselines. 164

2 Problem Formulation 165

In this section, we provide a detailed problem for- 166

mulation. First, we begin with the specifics of in- 167
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context learning (ICL), followed by a description168

of distributed non-IID ICL.169

2.1 In-Context Learning170

Notation. We consider a NLP tasks which have171

training dataset D = {(xi, yi)}Ni=1 with N training172

samples. Here, xi is the input text, and yi is the173

corresponding output. In the test phase, a test query174

xq is given.175

Retrieval. We employ the off-the-shelf pre-trained176

retriever KATE (Liu et al., 2021)1, which utilizes177

k-NN example selection. This retriever employs178

a sentence encoder E(·) to measure the similarity179

between the in-context example xi in datasetD and180

the query xq as follows:181

d(ei, eq) = ∥eq − ei∥2, (1)182

where eq = E(xq) and ei = E(xi). We select k183

samples using the following criterion:184

T (eq, k|D) =
ei=E(xi)∀(xi,yi)∈D

argTop-k(d(ei, eq)), (2)185

where T (eq, k|D) denotes the selected samples186

from the dataset D, and used for inference.187

ICL Inference. In the test phase, given a test query188

with input xi, relevant k training samples called in-189

context examples (ICEs) are selected, i.e., S =190

T (eq, k|D). Based on the retrieved samples, we191

feed the constructed context prompt s(S, xq) into192

LLM for inference and obtain results via:193

yt = argmax
y

pLLM(y|s(S, xq), y<t) (3)194

where s(S, xq) = (x1, y1)⊙ . . .⊙ (xk, yk)⊙ xq,195

where the ⊙ operation denotes concatenation, and196

s(S, xq) is the context constructed using query xq197

and samples in S; the term pLLM represents the out-198

put softmax probability of the LLM, functioning199

autoregressive, meaning that the output up to time200

t, i.e., y<t, is input back into the model to generate201

the tth output, yt. Previous works (Ye et al., 2023;202

Levy et al., 2022) on ICL mainly focus on the selec-203

tion of S under a centralized setting. However, we204

investigate the scenario whereD is split among sev-205

eral clients, each following non-IID distributions.206

2.2 Distributed non-IID ICL207

Distributed ICL Setting. We consider C clients208

with a centralized server in our system. Each209

1We do not fine-tune the retriever for each task, which is
impractical because we cannot gather the distributed datasets.

client c ∈ [C] has local training dataset Dc = 210

{(xci , yci )}
Nc
i=1 with Nc training samples. Note 211

that Dc follows different distributions for differ- 212

ent clients. We follow the non-IID conditions as 213

defined in (Li et al., 2022), with details provided in 214

Appendix A. In summary, we allocate data on a per- 215

class basis, where each client receives a specific 216

number of classes, meaning each client has samples 217

from only specified classes. Clients and the server 218

have identical off-the-shelf pre-trained retrievers. 219

Consider the computation resource limitation on 220

clients as in many real scenarios (Yoo et al., 2022), 221

only the server is equipped with an LLM. Moreover, 222

the server has limited query-only proxy dataset 223

Dproxy = {xproxy
j }Nproxy

j=1 , that Nproxy ≪
∑C

c=1Nc. 224

The server has quite a small Dproxy, and it is an 225

auxiliary dataset to extract information for collabo- 226

ration to make the problem feasible. Notice that we 227

do not require the ground truth label information 228

of the proxy dataset, only input queries are suffi- 229

cient, which reduces the difficulty on collecting 230

such dataset in practical setting. 231

Pipeline. First, the server requests relevant sam- 232

ples from each client by sending xq to all clients 233

with local budgets kc. Remark that each query xq 234

has its own preference of each client, which can 235

be represented as kc. A larger kc indicates the 236

given test query xq prefers more information from 237

client c, compared with client c′ with a smaller 238

kc′ . Here, xq can be anonymized by paraphras- 239

ing, as done in previous works (Mohtashami et al., 240

2023)2. Each client then selects the most rele- 241

vant kc samples from their local training dataset, 242

i.e., Sc = T (eq, kc|Dc) ⊂ Dc, and returns them to 243

the server. The server receives Sc from clients and 244

generates the context s based on the merged ex- 245

amples, S =
⋃C

c=1 Sc. In the final step, the server 246

infers y using s(S, xq). The entire framework also 247

can be described in Figure 2. In this paper, we 248

are concentrating on assigning kc to each client as 249

described in Figure 2. 250

3 Observations 251

In this section, we describe several empirical sup- 252

ports to handle the distributed non-IID ICL. First, 253

we demonstrate that non-IID distributions hinder 254

the merging of scattered information. We then es- 255

tablish our goal, termed as oracle budget, which 256

2Although our main experiments utilize the non-
paraphrased dataset, we also present the paraphrased results
in Section 5.
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Figure 3: Non-IID experimental results. It shows that
centralized performance is comparable to the IID case,
whereas non-IID scenarios exhibit a significant declined
performance. This highlights the critical importance of
addressing non-IIDness to find a solution.

reflects the server’s preference for each client if the257

server knows all distributed data. Finally, we check258

if predicting the oracle budget of each test query259

for inference is feasible.260

3.1 Non-IIDness Leads to Performance Drop261

First of all, we evaluate the effect of non-262

IIDness. Straightforwardly, we distribute the bud-263

get {kc}Cc=1 uniformly according to the following264

criteria: Given C clients are involved in answer-265

ing this question, and the number of samples for266

context is k. We first explore the naïve equally267

assigned local budget scheme in both IID and non-268

IID settings. That is, each client c ∈ [C] locally269

retrieves top-kc samples where kc = ⌈ kC ⌉ from lo-270

cal dataset Dc. Detailed experimental settings are271

described in Appendix B.272

As illustrated in Figure 3, we observe the fol-273

lowings: (1) There is no significant performance274

degradation between the centralized case (■) and275

the IID case (■). This is expected, as the merged276

top-kc samples in the IID case closely resemble the277

centralized top-k samples. Any minor discrepan-278

cies are attributed to differences in sample ordering. 279

(2) However, performance degradation becomes 280

pronounced in non-IIDness case (refer to the com- 281

parison between ■, ■ and ■). Hereinafter, we 282

gather insights to address the distributed non-IID 283

ICL. 284

3.2 Proper Budget per Query for Each Client 285

Oracle budget. The remaining issue is that to 286

make the server operate similarly in a centralized 287

manner, it needs to allocate the budget as if it has 288

complete knowledge of all clients. We call this 289

budget for each client as the oracle budget for query 290

embedding eq and define it as follows: 291

k⋆c (eq) =
∣∣∣T (eq, k|Dc) ∩ T (eq, k|D)

∣∣∣, 292

where T (·) is defined as Eq. (2) and | · | is set car- 293

dinality. Note that the physical meaning of k⋆c (eq) 294

is the number of shared samples between the top-k 295

relevant to eq in local Dc and global D datasets. 296

Check of predictability of oracle budget. For 297

the next step, it is necessary to check if eq has suffi- 298

cient patterns of oracle budget to extract and use it 299

in the inference phase. Our hypothesis is that simi- 300

lar queries may share similar oracle budget patterns 301

and preferences on the same client, and it can lead 302

to similar budget allocations for that client. There- 303

fore, to verify this hypothesis, we perform t-SNE 304

analysis (Van der Maaten and Hinton, 2008) on the 305

embeddings obtained from the retriever for queries. 306

Furthermore, we color each sample based on the 307

oracle budget k⋆c (eq). As described in Figure 5 of 308

Appendix F, similar query embeddings exhibit simi- 309

lar oracle budget patterns. This indicates that, given 310

4



Algorithm 1 Top-k sampling, T (e, k|D)
Require: Query embedding e, Encoder E(·)

/* Compute embedding */

1: for (xi, yi) ∈ D do
2: ei ← E(x)
3: end for

/* Select top-k samples */

4: S =
(xi,yi)∈D
argTop-k∥e− ei∥2

5: Return: S

a test query, we can infer the budget assignment for311

each client. However, it is challenging to predict312

fine-grained budget value since there are no rigid313

classification patterns. For instance, determining314

the detailed budget value seems challenging in the315

case of client 1 in SST-5. Therefore, developing an316

efficient method to infer the exact budgets based on317

these broad patterns for each client is required. We318

also conduct t-SNE visualization on clients under319

other non-IID with task shifting and feature skew320

as shown in Figure 9 of Appendix F, which helps us321

to conclude this observation holds under different322

non-IID settings.323

3.3 Observation Summary324

In summary, our findings and the approach for de-325

signing a method are as follows: (1) non-IIDness326

significantly affects the distributed ICL setting, ne-327

cessitating the development of a coalition method.328

To handle this problem, it is straightforward to al-329

locate an appropriate number of budgets to each330

client, i.e., making server work so as it knows client331

all samples. (2) By analyzing the query embed-332

dings, we can determine the importance of each333

client per query.334

4 Method335

In this section, we outline the proposed method to336

mitigate non-IIDness in the ICL framework. Specif-337

ically, we show how to train the budget allocator338

and conduct inference.339

4.1 Train a Budget Allocator340

Based on Section 3, it is feasible to assign budgets341

of each client by using the embeddings obtained342

from the retriever encoder E . We first construct343

the datasets having the targeting budget values and344

then train the budget allocator.The pseudo-codes345

are described in Algorithm 2 and 1.346

Construct dataset for oracle budget. First, we347

Algorithm 2 Construct dataset

Require: Encoder E(·), server-side ICE budget k,
proxy dataset Dproxy = {(xj , yj)}

Nproxy
j=1 Quan-

tization parameter δ.
1: for (x

proxy
j , y

proxy
j ) ∈ Dproxy do

2: e
proxy
j = E(xproxy

j )
/* Get distributed examples */

3: for c ∈ [C] do
4: e

proxy
j → Client c

5: Sc = T (eproxy
j , k|Dc)

6: Server← Sc

7: end for
/* Construct optimal example */

8: S =
⋃C

c=1 Sc

9: Stop =
(xs,ys)∈S
argTop-k∥eproxy

j − E(xs)∥2
/* Compute proper budget size for each c */

10: kc(ej) = |Stop ∩ Sc|//δ ∀c ∈ [C]
11: end for
12: Bproxy = {(ej , {kc(ej)}Cc=1)}

Nproxy
j=1

13: Return: Bproxy

explain how to create a dataset to train the bud- 348

get allocator for each client, as described in Al- 349

gorithm 2. Given proxy dataset Dproxy, for all 350

embeddings ej = E(xj) where xj ∈ Dproxy, we 351

request k samples from each client c ∈ [C] us- 352

ing Top-k procedure, i.e., Sc = T (e, k|Dc). Once 353

the server receives k examples from each clients, 354

i.e., {Sc}Cc=1, it merges and re-orders them to ob- 355

tains Stop. Based on Stop, we count the number 356

of samples from each client in Stop, i.e., compute 357

kc(ej). After counting kc(ej) for all clients, we 358

quantize the budget levels for each client using the 359

quantization hyper-parameter δ. As a result, the 360

output of this procedure is Bproxy for all clients, 361

composed of embeddings e and their respective 362

budgets kc(ej). 363

Train budget allocator. Based on the constructed 364

dataset Bproxy, we train the budget allcoators, 365

i.e., {fc(·)}Cc=1, for each fc(·) has Multi-layer per- 366

ceptrons on top of the frozen feature extractor of 367

the off-the-shelf retriever E . The budget allcoa- 368

tors are trained on the cross-entropy loss, as we 369

have already quantized the optimal budgets using 370

the hyper-parameter δ. Note that if δ is high, the 371

quantization is severe, otherwise the quantization 372

is mild. 373
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Algorithm 3 Inference (Client, Server)

Require: Embedding model E(·), LLM model
M(·), local datasets Dc, budget allocator fc(·)
Buffering hyperparameter α.

Input: Test query xq
1: Extract embedding eq = E(xq)
2: for c ∈ [C] do
3: k̂c = fc(eq)
4: Send eq to all clients
5: Sc = T (eq, k̂c + α|Dc)
6: return back Sc → Server
7: end for
8: Sagg =

⋃
c∈[C] Sc

9: S = T (eq, k|Sagg)
10: s(S, xq) = (x1, y1)⊙ ...⊙ (xk, yk)⊙ xq
11: Return: y =M(s(S, xq))
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Figure 4: Overview of budget allocator: We train a
budget allocator on top of the frozen encoder E , which
inherits from the retriever. During inference, when a
test query xq is provided, this module determines quan-
tized budget levels for each client and allocates them
accordingly.

4.2 Inference Using Budget Allocator374

We derive the response to the test query xq utilizing375

the LLMM(·) through the described steps (see Al-376

gorithm 3 for specifics). We first extract the em-377

bedding eq = E(xq). Then, we compute the allo-378

cated budget {k̂c = fc(eq)}Cc=1 and send k̂c to each379

client. Each client sends back top k̂c + α samples,380

i.e., Sc, to the server. Note that we summarize how381

the budget allocator outputs k̂c in Figure 4. Here,382

α denotes the buffering hyper-parameter, which383

increases the chances for each client to be involved.384

After collecting Sagg =
⋃

c∈[C] Sc, we aggregate385

them and run regular ICL.386

5 Experiment 387

5.1 Experiment setup 388

First, we summarize the baselines, datasets, and the 389

method for constructing non-IID settings. Finally, 390

we depict the implementation details. 391

Baselines. We compare our method with various 392

baselines, including Social Learning (Mohtashami 393

et al., 2023), which does not account for non-IID, 394

and other possible ways to handle distributed non- 395

IID ICL, like Zero-shot, Proxy-only, Singleton, 396

Uniform-budget, Random-budget, and∞-budget 397

(oracle case). Notice that the proxy set in Proxy- 398

Only baseline here contains the ground truth label 399

information for each query in proxy set, which is 400

different from proxy set used in our method. De- 401

tailed explanations are described in Appendix C. 402

Datasets. We check performance under 403

7 datasets – Sentiment classification: SST- 404

5 (Socher et al., 2013), Amazon (McAuley and 405

Leskovec, 2013), Yelp (Zhang et al., 2015), 406

MR (Pang and Lee, 2005), Topic classification: 407

Yahoo, AGNews (Zhang et al., 2015), and 408

Subjectivity classification: Subj (Pang and Lee, 409

2004). 410

Dataset partition for non-IIDness. We split the 411

training dataset into C subsets to ensure they follow 412

a non-IID distribution. To achieve this, we partition 413

the data based on class, following the splitting cri- 414

teria outlined in (Li et al., 2022). Specifically, each 415

client has access to only γ < Γ classes, where Γ 416

represents the total number of classes. We outline 417

the summary of γ for each dataset in Appendix D. 418

We also perform other non-IID partitions, includ- 419

ing Dirichlet distribution non-IID, feature skew 420

non-IID, and task shifting non-IID, with detailed 421

description included in Appendix F. 422

Dataset paraphrasing. Due to concerns about 423

sharing private samples between servers and clients, 424

various techniques have been developed for NLP 425

tasks. In this paper, we adopt paraphrasing tech- 426

nique used in (Mohtashami et al., 2023). Specif- 427

ically, we utilize a small language model (Team 428

et al., 2024) to generate paraphrased questions. In 429

Appendix E, we summarize the instructions pro- 430

vided to the language model for rephrasing queries 431

in the training dataset. 432

Implementation details. We implement our 433

method and baselines based on OpenICL (Wu 434

et al., 2023). We utilize pre-trained KATE re- 435

triever (Liu et al., 2021). Note that they do not 436
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Algorithm
Dataset

Avg
SST-5 Amazon Yelp MR Yahoo AGNews Subj

Zero-shot 29.19 24.70 31.23 73.95 25.87 67.60 50.55 43.30

Proxy-only 40.64± 2.89 28.43± 0.11 31.85± 1.28 70.40± 1.54 54.73± 0.93 84.65± 0.42 71.09± 1.34 54.54

Singleton 25.14± 4.18 24.03± 0.57 29.44± 3.91 50.00± 0.00 38.14± 2.03 50.60± 0.66 50.00± 0.00 38.19

Social Learning 36.03± 0.27 28.42± 0.19 29.25± 0.45 58.58± 0.18 46.03± 0.49 81.10± 0.29 71.37± 0.71 50.11

Uniform-budget 32.94 25.63 26.60 33.65 43.00 73.17 63.20 42.60

Random-budget 32.82± 0.82 25.69± 0.55 27.72± 0.51 34.68± 0.59 42.46± 0.53 67.34± 0.39 65.37± 0.80 42.30

∞-budget 43.26 32.70 34.80 77.20 62.67 89.37 91.4 61.62

Ours 44.08± 0.12 31.54± 0.22 35.48± 0.28 80.44± 0.67 61.67± 0.25 88.52± 0.30 82.36± 0.91 60.58

Table 1: Main results: To address the issue of non-IIDness in distributed ICL, we examined seven datasets and seven
straightforward baselines. We run three random seeds and illustrate mean and std values. The top performance is
highlighted in bold font, excluding the infinite budget scenario due to its impracticality. In summary, the proposed
method effectively mitigates the non-iid distributed ICL problem to a reasonable extent.

overlap with the datasets used in our experiment.437

They used RoBERTa-large (Liu et al., 2019) en-438

coder model. We use GPT-Neo-2.7B (Black et al.,439

2021) pre-trained model as answering LLMs as de-440

fault. Hyper-parameters related to training budget441

allocators, α, and δ are described in Appendix D.442

5.2 Main results443

We have presented the performance of our method444

and baselines in Table 1. First, we can observe445

that performance varies significantly depending on446

the way the budget is allocated, which indicates447

that the budget allocation scheme really matters in448

non-IID ICL. Additionally, even when using only449

the proxy dataset, there is a performance improve-450

ment, and this performance surpasses that of using451

other clients which have the tilted local datasets452

(e.g., 29.19% → 40.64% in SST-5 case). This in-453

dicates that utilizing a biased dataset can degrade454

the ICL performance. Although Social Learning455

method has shown good performance in the pre-456

vious paper, it does not perform well under the457

non-IID cases configured in this research. If we458

can use an infinite budget, all settings would exhibit459

high performance. However, our proposed method460

demonstrates better performance than the infinite461

budget upper limit (e.g., 34.86% → 35.48% in462

the Yelp case). This is likely due to a mechanism463

that prevents unnecessary information from being464

selected by the retriever with high importance. Ulti-465

mately, our method shows an average performance466

improvement of 5.05% across seven datasets com-467

pared to the best performance of baselines using468

the proxy dataset. Our method also shows outstand-469

ing performance under Dirichlet distribution non-470

IID, as shown in Table 14 of Appendix F. These471

show that the proposed method can handle the 472

non-IID case well. Furthermore, considering that 473

our method does not necessitate the collection of 474

ground truth label information for the proxy set and 475

solely relies on task-related queries, it proves to be 476

more practical in real-world applications compared 477

to the leading baseline Proxy-only. Unlike the base- 478

line, our method imposes fewer constraints on the 479

proxy set, enhancing its practicability. 480

5.3 Analysis 481

In this section, we further examine four key as- 482

pects: (1) privacy-preserving case analysis, which 483

encompasses paraphrasing both training and testing 484

queries, (2) sensitivity to hyper-parameters, (3) the 485

performance of the trained budget allocator, and 486

(4) the compatibility of the LLMs. 487

Paraphrasing results. Due to privacy concerns in 488

the fundamental distributed system, we evaluate the 489

performance of paraphrased datasets, with results 490

detailed in Table 20 of Appendix F. Our method 491

demonstrates superior performance compared to 492

other baselines across multiple datasets. We used 493

the exact same data settings as in Table 1. Specifi- 494

cally, performance on the Subj and SST-5 datasets 495

is lower than without paraphrasing, while the Yelp 496

dataset shows a slight improvement. Additionally, 497

as consistent with Table 1, non-IIDness causes sig- 498

nificant performance degradation for ICL methods, 499

as seen by comparing Zero-shot with ICL-related 500

methods (e.g., 27.96%→ 25.31% in Singleton). 501

Hyper-parameter sensitivity. We examine the 502

sensitivity of the hyper-parameters of our method. 503

We have two hyper-parameters: δ, which is the res- 504

olution of the budget allocator; α, which represents 505

the additional budget allocated to each client as a 506
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buffer; and proxy size, which is the size of proxy507

data for the budget allocator training. As illustrated508

in Figure 11 of Appendix F, when we increase α,509

the performance is improved while the budget ef-510

ficiency is reduced. On the other hand, when δ is511

high (or low), it has too sparse (or dense) repre-512

sentation of the budget class, thus performance is513

degraded. Nevertheless, the performance is higher514

than the other baselines in Table 1. For the sensitiv-515

ity of the size of proxy data, it is revealed that our516

framework is not sensitive to how many proxy data517

samples are used to train the budget allocator, as518

shown in Figure 12 of Appendix F. This indicates519

our method is stable even with limited proxy data520

on the server side. We have more fine-grained ex-521

periment result for relation between proxy size and522

the budget allocator resolution δ, which is shown523

in Figure 7 of Appendix F.524

Trained budget allocator. We assess whether the525

trained budget allocator distributes budgets appro-526

priately for each client. To evaluate efficiency, we527

examine the number of samples, i.e., k̂c communi-528

cated for all queries and plot histogram. As demon-529

strated in Figure 6 of Appendix F, we confirm that530

our method’s forecasts exhibit nearly identical per-531

formance to the oracle budget when an additional532

25% budget is allocated. Notice that it is neces-533

sary to assign k × C budgets to get a performance534

similar to the oracle case, without our method.535

Other types of LLMs. We utilize various LLMs536

to assess the compatibility of our method. Specifi-537

cally, we evaluate the SST-5 using different model538

sizes, including GPT-Neo-1.3B (Black et al., 2021),539

Llama-2-7B (Touvron et al., 2023a), and OpenAI540

gpt-3.5-turbo (OpenAI, 2022). As demonstrated541

in Table 18 of Appendix F, our method exhibits a542

plug-and-play capability and achieves reasonable543

performance improvements in ICL.544

Distribution of proxy set. We also conduct ex-545

periments on when the proxy set has different dis-546

tributions from the test set, aiming to verify the547

applicability of our method in broader real-world548

settings. The results and conclusion are included549

in Appendix F.5 due to the space limit.550

6 Related Work551

In-context learning. ICL (Dong et al., 2022)552

is one of the fastest paradigms using pre-trained553

LLMs by feeding several examples to construct the554

context to solve the given query. The main criteria555

of this research field are to find the most informa-556

tive samples among the training datasets. (Liu et al., 557

2021) trains BERT (Devlin et al., 2018) oriented 558

encoder and uses k nearest neighbors. (Rubin et al., 559

2022) proposed an efficient retriever called EPR. It 560

trains two encoders by inheriting method of dense 561

passage retriever (DPR) (Karpukhin et al., 2020) 562

using loss of positive and negative pairs. To re- 563

duce domain specificity, (Li et al., 2023) proposed 564

UDR, which is applicable to multiple domain tasks 565

in a universal way and shows reasonable perfor- 566

mance from a single retriever. PromptPG (Lu et al., 567

2022) utilized a reinforcement learning framework 568

to train the retriever so that it can generate context 569

to improve the answerability of LLMs. (Chang and 570

Jia, 2022) trains linear regressors according to the 571

example influence on the LLM prediction. (Xie 572

et al., 2021) proposes to use implicit Bayesian in- 573

ference to understand the ICL problem. Note that 574

extensive research focuses on the centralized case 575

rather than targeting distributed cases. 576

Distributed ICL. To the best of our knowledge, 577

only a single study (Mohtashami et al., 2023) tries 578

to address ICL in a distributed manner. However, 579

this paper solely focuses on merging the distributed 580

information without considering the nature of the 581

non-identically distributed information. Many stud- 582

ies, such as those on federated learning (Li et al., 583

2021; Zhang et al., 2021; Mammen, 2021), address 584

the non-IID distribution of datasets, highlighting 585

the need to handle distributed non-IID ICL. Dis- 586

tributed ICL may resemble distributed RAG, yet 587

the latter is more complex and requires further ex- 588

ploration, as discussed in Appendix H. 589

7 Conclusion 590

In this paper, we tackle the challenge of distributed 591

non-IID ICL. Initially, we show that non-IID leads 592

to performance degradation and discover that im- 593

proper budget allocation causes significant drops 594

in ICL. Inspired by the learnable pattern between 595

budget values and query embeddings, we propose a 596

method that learns budget assignment and employs 597

it during inference to allocate appropriate budgets 598

for each query. The proposed method achieves 599

performance improvements across several bench- 600

marks compared with various baselines. In addi- 601

tion, we examine the privacy-preserving version 602

of our method using paraphrasing and show its 603

efficacy. Last but not least, extensive sensitivity 604

experiments show robustness of our method on hy- 605

perparameters and different LLMs. 606
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Limitations. This research addresses in-context607

learning with datasets distributed among clients608

with non-iid data. One limitation of this study can609

be described as follows: (1) Proxy dataset: In prac-610

tice, some datasets might lack a proxy dataset on611

the server side, posing a challenge for the proposed612

algorithm. (2) The research assumes the use of a613

pre-trained off-the-shelf retriever. However, this614

retriever may fail if there is a significant difference615

between the target task domain and the pre-trained616

domain. This issue can be mitigated by employ-617

ing the contrastive training mechanism suggested618

in federated learning research (Seo et al., 2024),619

as one effective approach for training retrievers is620

utilizing contrastive loss.621

Ethical statement. As outlined in the main622

manuscript, utilizing distributed knowledge raises623

privacy concerns. We address this by employing a624

paraphrasing technique developed and frequently625

used in federated learning with pre-trained gener-626

ative models, although it has not been thoroughly627

explored. We will make every effort to eliminate628

privacy concerns and implement all possible mea-629

sures to prevent privacy information leakage when630

applying the paraphrasing method to the best of our631

ability.632
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A How we construct non-IIDness831

Following Li et al. (2022), we use class number832

based non-IID partition in our experiment. For a833

dataset with overall Γ classes, given hyperparam-834

eter class number γ on each client, we randomly835

assign γ classes from the overall Γ classes for each836

client. Assuming that C1 ≤ C clients are assigned837

with a specific class, we equally partition samples838

of this class into C1 parts and assign one part to839

each of C1 clients. We denote this non-IID par-840

tition with the class number γ on each client as841

noniid-#label=γ.842

B Motivation Experimental Settings843

Non-IIDness performance drop experiment. For844

this experiment, we use SST5, Amazon, Yelp, Ya-845

hoo, and AGNews. And the non-iid settings are846

dsecribed in Table 2.847

Dataset ICE size k #Clients Partition
SST-5 32 8 noniid-#label=1

Amazon 16 8 noniid-#label=1
Yahoo 16 8 noniid-#label=2

AGNews 16 4 noniid-#label=1
Yelp 4 2 noniid-#label=3

Table 2: Experimental setup for obtaining the motiva-
tion.

t-SNE analysis of per-client budget experi-848

ment. For extracting t-SNE figure, we utilized849

the following experimental setting Table 3850

Dataset ICE size k #Clients Partition
SST-5 32 4 noniid-#label=2
Yelp 8 2 noniid-#label=3

Table 3: Experimental setup for obtaining the motiva-
tion.

C Baseline Details851

Proxy-only. We randomly select samples from the852

original test set to construct the proxy set on the853

server side and use the remaining test set as the true854

test set. Notice that the proxy set in this baseline is855

different from the one we use in our pipeline. The856

proxy set used in Proxy-only contains label infor-857

mation for each query in the proxy set, while the858

proxy set in our algorithm does not require this in-859

formation, which is more flexible in the real-world860

setting. When performing the ICL process, the861

server directly retrieves ICEs from the proxy set862

rather than from the training set. For SST5, MR, 863

and Subj, we randomly select 500 samples from the 864

test set to be the proxy set. For Amazon, Yelp, Ya- 865

hoo, and Agnews, we randomly select 750 samples 866

from the test set to be the proxy set. Also, since the 867

proxy set is already on the server side, there will be 868

no privacy issues during communication between 869

clients and the server. Thus, we don’t generate sam- 870

ples to protect privacy and directly use the original 871

samples in the proxy set for ICL. 872

Singleton. This baseline is for if the whole ICE 873

set is constructed only using single client’s local 874

dataset. We randomly select one client from C 875

clients, and perform local retrieval with kc = k 876

budget. Then, the server uses this locally retrieved 877

ICE set for LLM inference. We report the average 878

accuracy over all clients. 879

Social learning. This algorithm (Mohtashami 880

et al., 2023) is the first paper that considers the 881

distributed ICL, but it only considers the IID set- 882

ting. Since the authors didn’t release the source 883

code, we implemented it on our own. In our im- 884

plementation, given server-side ICE number as k, 885

each local client c performs local top-
⌈
k
C

⌉
retrieval 886

and sends retrieved ICEs to the server. The server 887

then performs a random selection from k ICEs to 888

construct an ICE set with k samples and feed this 889

ICE set into LLM for inference. 890

Uniform-budget. We equally assign a local bud- 891

get to each client. Assume the ICE number fed 892

to server-side LLM for inference is k, then each 893

client’s local budget is
⌈
k
C

⌉
, where C is the num- 894

ber of clients. On server-side aggregation, we use 895

reorder method as default. 896

Random-budget. We randomly assign a local 897

budget to each client with the constraint that the 898

overall local budget over C clients is k, where k 899

is the ICE number fed to server-side LLM. On 900

server-side aggregation, we use reorder method 901

as default. 902

∞-budget. The most inefficient way to do dis- 903

tributed non-IID ICL is to allow∞-budget on each 904

client, that is, sending all samples to the server side. 905

Then, the system performs centralized retrieval on 906

the collected dataset to obtain top-k ICEs and feed 907

them into LLM for inference. 908

D Experimental Setting 909

Dataset Explanation. In this study, we utilized 910

seven text classification tasks: four for sentiment 911

12



analysis, two for topic classification, and one for912

subjectivity classification. The dataset statistics are913

presented in Table 4.914

Dataset Type Training Test Class
SST-5 Sentiment 8,534 2,210 5

Amazon Sentiment 30,000 3,000 5
Yelp Sentiment 30,000 3,000 5
MR Sentiment 8,662 2,000 2

Yahoo Topic 29,150 3,000 10
AGNews Topic 29,914 3,000 4

Subj Subjectivity 8,000 2,000 2

Table 4: The statistics of the datasets used.

Given that the input instruction prompt can no-915

tably influence performance, we detail the prompts916

used for each dataset in Table 24. It is in the last917

page since prompts have long length. We follow918

the prompt settings described in (Li et al., 2023)919

and use the dataset uploaded by the paper’s author,920

available at https://huggingface.co/KaiLv.921

ICE number for LLM inference. Given an LLM,922

different datasets show different preferences on the923

choice of ICE number, i.e., k, used in ICL inference924

for better performance. For algorithms using ICL925

(except Zero-shot), SST5, MR, and Subj use 32926

ICEs for server-side LLM inference; Amazon uses927

8 ICEs for server-side LLM inference; Yelp, Ya-928

hoo, and Agnews use 4 ICEs for server-side LLM929

inference.930

Non-IID Setting. To keep similar non-IIDness931

levels across different datasets, we follow Table 5932

as non-IID hyper-parameters for each dataset.933

Hyper-parameters for our methods. For the934

main table results, the generated dataset results, and935

the different LLM architecture results, the hyper-936

parameters are shown in Table 6, Table 7 and Ta-937

ble 8, respectively. For the training of the budget938

model, we use 800 epochs, with a learning rate939

range {0.01, 0.003} and a batch size of 8.940

Multi-layer perceptron for budget allocator. We941

use the three-layer perceptron on top of the encoder942

E . The torch pseudo code is as follows:943

class SMLP(nn.Module):

def __init__(self, width=300,
num_classes=10,
data_shape=(768,)):

super().__init__()
self.flat = nn.Flatten()
self.l1

= nn.Linear(np.prod(data_shape),
width)

self.relu = nn.ReLU()
self.l2 = nn.Linear(width, width)
self.l3 = nn.Linear(width, num_classes)

def forward(self, x):
x = self.flat(x)
x = self.l1(x)
x = self.relu(x)
x = self.l2(x)
x = self.relu(x)
x = self.l3(x)
x = F.softmax(x)
return x

Dataset #Clients Partition
SST-5 4 noniid-#label=2

Amazon 2 noniid-#label=3
Yelp 2 noniid-#label=3
MR 4 noniid-#label=1

Yahoo 2 noniid-#label=5
AGNews 2 noniid-#label=2

Subj 4 noniid-#label=1

Table 5: Non-IID setting

Dataset ProxySetSize δ α QuantRatio
SST-5 500 3 0 0.5

Amazon 750 2 0 0.5
Yelp 750 2 2 0.5
MR 500 3 0 0.5

Yahoo 750 2 2 0.5
AGNews 750 2 2 0.5

Subj 500 3 0 0.3

Table 6: Hyper-parameters of our methods used in the
main table

Dataset ProxySetSize δ α QuantRatio
SST-5 500 3 4 0.5
Yelp 750 3 0 0.5
Subj 500 3 0 0.3

Table 7: Hyper-parameters of our methods used for the
generated query and training samples experiment

Computation Environment. We run our experiments on 944
NVIDIA RTX A5000 GPU. Each experiment takes less than 945
half an hour on a single GPU. 946
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Model ProxySetSize δ α QuantRatio
GPT-Neo-1.3B 500 3 0 0.3
GPT-Neo-2.7B 500 3 0 0.3

Llama-2-7B 500 3 0 0.3
gpt-3.5-turbo 500 3 0 0.3

Table 8: Hyper-parameters of our methods used for
different LLM architectures experiment on Subj

E Generate paraphrased question947

To generate the paraphrased query and response, we use the948
following instruction.949

Please paraphrase the original sentence. Original sentence:
{In-context example} Paraphrase sentence: {Paraphrased sen-
tence}

Here is an example of input for the rephrasing LLM using the950
SST-5 dataset.951

Please paraphrase the original sentence. Original sentence: "a
stirring, funny and finally transporting re-imagining of beauty
and the beast and 1930s horror films" Paraphrased sentence:
A captivating, humorous, and ultimately uplifting reinterpreta-
tion of Beauty and the Beast combined with 1930s horror films.
Please paraphrase the original sentence. Original sentence:
"jonathan parker ’s bartleby should have been the be-all-end-
all of the modern-office anomie films" Paraphrased sentence:
Jonathan Parker’s "Bartleby" had the potential to be the defini-
tive film capturing the sense of alienation in modern office
settings. Please paraphrase the original sentence. Original sen-
tence: "a fan film that for the uninitiated plays better on video
with the sound turned down" Paraphrased sentence: A fan film
that, for those not familiar with the source material, is more
enjoyable when watched with the sound turned off. Please
paraphrase the original sentence. Original sentence: "appar-
ently reassembled from the cutting-room floor of any given
daytime soap" Paraphrased sentence: It appears to be pieced
together from the outtakes of any given daytime soap opera.
Please paraphrase the original sentence. Original sentence: ""
Paraphrased sentence:

Our paraphrased examples are summarized as follows.952

F Extra Experiments953

F.1 Per-client t-SNE visualization colored by954

oracle budgets955

Figure 5 presents the t-SNE visualization for per-client query956
embeddings, colored by oracle budget values.957

F.2 Budget Analysis Results958

Figure 6 presents the result of the budget analysis of our959
method.960

F.3 Robustness on Proxy Size961

Here, we present more detailed results on Subj with different962
proxy sizes over different values on budget allocator resolution963
δ in Figure 7.964
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Figure 5: t-SNE analysis of each client across two
datasets. Each figure demonstrates that the budgets
can be segregated by training a simple classifier, as they
exhibit clustered subgroup pattern.

C
om

m
. D

en
si

ty

0

0.5

1.0

Total Budget
30 40 50

(a) SST-5

Ground Truth

25% Overhead Comm.

C
om

m
. D

en
si

ty

0

0.5

1.0

Total Budget
30 35 40 45 50

(b) MR

Figure 6: Analyze the total amount of budget allocated
to clients under two datasets. Red and blue denote the
oracle and 25% larger total budgets compared to oracle
case.

Figure 7: Proxy size robustness over different bud-
get allocator resolution δ. The results of Subj using
GPT-Neo-2.7B.

F.4 More experiments for claim on Non-IID 965

leads to ICL performance drop 966

To further support our claim that Non-IIDness leads to ICL 967
performance drop under distributed setting, we introduce an 968
additional feature-based Non-IID setting, where clients are 969
split based on query length (number of words). For example, 970
for Subj with 4 clients setting, client 0 only has samples with 971
query length in range of [0, 13), client 1 within [13, 26), client 972
2 within [26, 31), and client 3 within [31,∞). We present the 973
results for this setting in Table 12. By comparing the result of 974
Uniform-budget (81.20%) and that of ∞-budget/centralized 975
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Original Paraphrased
a turgid little history lesson , humourless
and dull

A dry and tedious history lesson that is
devoid of humour or interest.

not so much a movie as a picture book for
the big screen .

The movie is more of a picture book than a
full-fledged movie for the big screen.

now it ’s just tired . It is now simply outdated.

Table 9: Paraphrased examples of SST-5 dataset

Original Paraphrased
for all the wit and hoopla , festival in cannes
offers rare insight into the structure of rela-
tionships .

Festival in Cannes offers rare insight into
the structure of relationships.

eldom has a movie so closely matched the
spirit of a man and his work .

A movie seldom has a movie so closely
matched the spirit of a man and his work.

those of you who are not an eighth grade
girl will most likely doze off during this
one .

8th graders and younger will most likely
doze off during this one.

Table 10: Paraphrased examples of Subj dataset

setting (91.40%), we can still conclude that this kind of Non-976
IID setting also leads to performance drop, and our method977
helps to improve the performance under this Non-IID setting.978

Algorithm Subj
Zero-shot 50.55

Proxy-only 71.09

Singleton 76.22

Social Learning 79.60

Uniform-budget 81.20

Random-budget 81.75

∞-budget 91.40

Ours 82.80

Table 12: Performance on query length based Non-IID
setting.

We also include results under this query-length-based Non-979
IID setting for SST-5 with 8 clients, comparing IID vs. Non-980
IID performance following the same setting as in Figure 3.981
Again, performance degrades under Non-IID conditions, sup-982
porting our original claim.983

Setting Accuracy
Centralized 43.26

IID 44.52

Non-IID class-based 10.72

Non-IID query-length based 32.30

Table 13: Performance comparison under different set-
tings for SST-5. Non-IID class-based: 8 clients dis-
tributed setting following Non-IID setting in Figure 3.
Non-IID query-length based: 8 clients distributed set-
ting under query length based Non-IID.

F.5 Non-Extreme Non-IID on Binary 984

Classification Tasks 985

We conduct the experiment on Dirichlet distribution Dir(α) 986
Non-IID partition on Subj and MR under the setting of 4 987
clients with αDir = 1.5. The per-client sample distribution 988
is shown in Figure 8, and the performance results are shown 989
in Table 14. 990

Algorithm
Dataset

MR Subj
Zero-shot 73.95 50.55

Proxy-only 70.40 71.09

Singleton 64.16 73.80

Social Learning 58.85 76.95

Uniform-budget 52.85 77.80

Random-budget 53.50 77.85

∞-budget 77.20 91.40

Ours 75.53 82.80

Table 14: MR, Subj results under Dirichlet distribution
Non-IID.
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(a) MR

(b) Subj

Figure 8: Per-client sample distribution under Dirichlet
distribution Non-IID setting.

To further show the robustness of our method under Dirich-991
let distribution based Non-IID, we perform experiments on992
Subj for more αDir . As shown in Table 15, our method shows993
robustness even when αDir = 0.3 (which we consider as an994
extreme Non-IID case), and beats other baselines (except the995
oracle ∞-budget case). And as αDir increases (becoming996
more IID), the performance of our method also increases as997
expected.998

Algorithm
αDir

0.3 1.5 3.0
Zero-shot 50.55

Proxy-only 71.09

Singleton 67.50 73.80 74.93

Social Learning 67.10 76.95 78.95

Uniform-budget 67.85 77.80 79.65

Random-budget 67.80 77.85 80.00

∞-budget 91.40

Ours 82.07 82.80 83.73

Table 15: Results for Dirichlet distribution Non-IID
under different αDir on Subj.

F.6 t-SNE under Non-IID with Task Shifting999

& Feature Skew1000

Dataset Amazon and Yelp are 5-class sentiment classification1001
tasks with exactly the same label space, while different text1002
query distributions. Based on this, we design a special Non-1003
IID setting with task shifting & feature skew between clients:1004
client 1 only contains 10, 000 Amazon training samples, and1005
client 2 only contains 10, 000 Yelp training samples. Thus,1006

(a) Client 1 with only Yelp samples

(b) Client 2 with only Amazon samples

Figure 9: t-SNE analysis on the test set consisting of
both Yelp & Amazon samples. Data points are colored
based on local oracle budget values.

we consider this special setting to be a task-shifting Non-IID. 1007
Also, since each client consists of samples from all classes of 1008
each task, we consider this setting as feature-skew Non-IID 1009
with class balance. We calculate the oracle budget values 1010
for a mixed test set consisting of 1, 000 Yelp test samples 1011
and 1, 000 Amazon test samples. Then we perform t-SNE 1012
analysis on sample embeddings of this mixed test set, colored 1013
using oracle local budget values. As shown in Figure 9, under 1014
Non-IID with task shifting & feature skew, there still exists 1015
clear clustering pattern between query embedding and oracle 1016
budget values. This indicates our method still can work with 1017
task shifting and feature skew. 1018

F.7 Distribution Shift between Proxy Set and 1019

Test Set 1020

It is critical to control the distribution shifting between proxy 1021
set and test set. We conduct experiments on two settings for 1022
proxy set distribution different from test set. 1023

From the same dataset but different label distri- 1024
bution. The most simple case of “different distribution” 1025
can come from the different label distribution skew between 1026
proxy set and test set. For this setting, we experiment on Subj 1027
with a proxy set only containing samples of one class. As 1028
shown in the last line of Table 16, when the label skew exists, 1029
the performance of our method does decrease compared with 1030
the setting using the ideal proxy set (from 82.36% to 70.17%). 1031
However, it is still higher than some baselines, like zero-shot, 1032
singleton, uniform-budget, random-budget. 1033

Similar task but different dataset. A more extreme 1034
case for proxy set different from test set can be, proxy set share 1035
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same task with the test set, but are from different datasets. For1036
this setting, we conduct the following experiment:1037

• use Amazon as proxy set for Yelp Non-IID setting (eval-1038
uate on Yelp test set)1039

• use Yelp as proxy set for Amazon Non-IID setting (eval-1040
uate on Amazon test set)1041

Since Yelp and Amazon share the similar task, we can consider1042
this setting as using available dataset with similar task with the1043
test set to construct the proxy set. We present the result in the1044
the last line in Table 17. It shows that for the Amazon setting,1045
using Yelp as a proxy set, the performance drop of our method1046
is slight, and our method still outperforms other baselines,1047
except in the ideal case where we use Amazon samples as a1048
proxy set. While for Yelp setting using Amazon as proxy set,1049
our method surprisingly shows even better performance than1050
the ideal case, where use Yelp as proxy set.1051

Algorithm Subj
Zero-shot 50.55

Proxy-only 71.09

Singleton 50.00

Social Learning 71.37

Uniform-budget 63.20

Random-budget 65.37

∞-budget 91.30

Ours 82.36

Ours-proxy-label-skew 70.17

Table 16: Comparison with proxy set with label skew
compared to the test set. The last line is the performance
for this setting.

Algorithm
Dataset

Amazon Yelp
Zero-shot 24.70 31.23

Proxy-only 28.43 31.85

Singleton 24.03 29.44

Social Learning 28.42 29.25

Uniform-budget 25.63 26.60

Random-budget 25.69 27.72

∞-budget 32.70 34.80

Ours 31.54 35.48

Ours-diff-proxy 31.27 37.33

Table 17: Comparison with using different dataset to
construct proxy set for budget allocator training. The
last line is the performance for this setting.

F.8 Results for other types of LLMs1052

The results for other types of LLMs are presented in Table 18.1053

Algorithm
Architecture

GPT-Neo-1.3B GPT-Neo-2.7B Llama-2-7B gpt-3.5-turbo
Zero-shot 51.30 50.55 49.10 57.57

Proxy-only 80.18± 1.87 71.09± 1.34 88.13± 0.74 88.44± 0.69

Singleton 50.00± 0.00 50.00± 0.00 52.89± 3.43 60.81± 6.31

Social Learning 68.55± 0.64 71.37± 0.71 88.82± 0.50 87.53± 0.46

Uniform-budget 44.40 63.20 54.00 81.23
Random-budget 43.68± 0.80 65.37± 0.80 55.60± 0.41 81.47± 1.81

∞-budget 92.05 91.40 92.30 92.23
Ours 85.73± 0.94 82.36± 0.91 91.58± 0.14 91.33± 0.72

Table 18: Default non-IID setting of Subj using different
LLMs. 32 ICEs for server LLM inference.

F.9 Hyperparameter sensitivity results 1054

The results for the sensitivity of δ and α are presented in Fig- 1055
ure 11. The results for the sensitivity of proxy set size are 1056
shown in Figure 12. 1057
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Figure 10: Additional budget α analysis. The orange
dash line is the second-best baseline.
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Figure 11: Budget allocator resolution δ analysis. The
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Figure 12: Proxy size analysis. Results for Subj using
GPT-Neo-2.7B.

1058

We also present the impact of client numbers in Table 19, 1059
and our method stays robust even when the client number 1060
increases to 8. 1061

Algorithm
Client Number

2 4 8
Ours 81.07 82.36 82.40

Table 19: Results for sensitivity on client numbers using
Subj.

F.10 Results for paraphrasing 1062

The results for paraphrasing-based privacy protection solution 1063
are presented in Table 20. 1064
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Algorithm
Dataset

Avg
SST-5 Yelp Subj

Zero-shot 27.96 31.40 51.55 36.97

Proxy-only 39.39± 1.33 31.78± 1.75 73.46± 1.46 48.21

Singleton 25.31± 3.89 30.78± 4.88 50.08± 0.10 35.39

Social Learning 33.09± 0.68 28.80± 0.33 74.82± 0.93 45.47

Uniform-budget 27.06 26.60 63.30 38.99

Random-budget 27.29± 0.51 27.70± 0.46 63.88± 0.81 39.62

∞-budget 41.63 37.23 90.75 56.54

Ours 40.37± 0.27 36.52± 0.89 83.82± 1.00 53.57

Table 20: Analysis of the generated query and training
samples. We paraphrase the datasets using small-sized
LLMs and conduct the experiments as in Table 1 under
the same experimental settings.

F.11 Experiment for dataset with more classes1065

To show the efficacy of our method on datasets with more1066
classes (more than 2), we add TREC (Hovy et al., 2001) (61067
classes) under 4-client Non-IID setting. As shown in Ta-1068
ble 21, our method outperforms other baselines except the1069
upperbound ∞-budget.1070

Algorithm TREC
Zero-shot 31.40

Proxy-only 78.60

Singleton 28.00

Social Learning 83.20

Uniform-budget 69.20

Random-budget 64.60

∞-budget 91.40

Ours 87.40

Table 21: Performance on TREC under 4-client Non-
IID setting.

F.12 Hitting ratio comparison between the1071

trained allocator and random budget1072

allocator1073

We measure the accuracy of predicted budget level (our1074
method) and the random budget level for two cases, to demon-1075
strate the ‘hitting rate’ of budget assignment. As shown in Ta-1076
ble 22 and Table 23, our method achieves a better hitting rate1077
compared with the random budget.1078

Client 1 Client 2 Client 3 Client 4
Our 79 60 71 78

Random 59 50 53 46

Table 22: Per-client hitting ratio comparison when
δ = 2 (per client budget value is ’low’ or ’high’), the
accuracy (hitting ratio) of different budget assignments.

Client 1 Client 2 Client 3 Client 4
Our 60 74 60 68

Random 54 52 53 51

Table 23: Per-client hitting ratio comparison when
δ = 3 (per client budget value is ’low’, ’medium’ or
’high’), the accuracy (hitting ratio) of different budget
assignments.

G Concrete Example of Distributed 1079

Non-IID ICL Scenario 1080

A concrete example of distributed Non-IID ICL scenario can 1081
be the medical diagnosis task based on ICL cooperating with 1082
multiple medical institutions. Now, we have several medi- 1083
cal institutions, with each institution owning some medical 1084
records (each sample consisting of the patient’s symptoms 1085
description in text and the corresponding diagnosed disease, 1086
that is, the query x and label y). These medical institutions 1087
normally do not have enough local computation power to sup- 1088
port LLM computation requiring large GPU resources, while 1089
they can do some small-cost local computation like retrieval 1090
processes to find similar queries. At the same time, there 1091
will be a platform operating like a server in this system, with 1092
enough computation resources to support LLM inference and 1093
in charge of cooperation management between these institu- 1094
tions. Once the system (including the server platform and 1095
cooperating institutions) is deployed, the platform can provide 1096
consulting diagnosis services to other patients, doctors, or 1097
even other medical institutions based on pay-by-use knowl- 1098
edge pricing strategies. That is, the price is decided by the 1099
number of samples involved in the whole diagnosis procedure. 1100
Also, due to medical privacy concerns, the server platform 1101
can use local samples to perform inference while not allow 1102
caching these samples. Thus, these local retrieved samples 1103
cannot be cached to construct a retrieval pool on server plat- 1104
form. For the specific example of platform that supports LLM, 1105
OpenAI now provides ChatGPT Enterprise 3, which allows the 1106
deployment requirement that the platform should not cache 1107
and utilize private data for further training. 1108

H Discussion on Relation with 1109

Distributed RAG 1110

Here, we discuss the differences between our approach and 1111
existing distributed RAG studies to provide additional clarity 1112
and context for our contribution. 1113

In developing this work, we carefully considered related 1114
studies in distributed RAG. However, the challenges addressed 1115
by existing distributed RAG works differ from those tack- 1116
led in our paper. For instance, (Wang et al., 2024) focuses 1117
on the creation of datasets for distributed RAG frameworks 1118
and explores LLM-based labeling techniques for engineering 1119
pipelines. Their research scope and methodology are distinct 1120
from ours and are not directly applicable to our specific prob- 1121
lem setting. Similarly, (Li et al., 2024) addresses resource 1122
consumption and real-time response challenges in distributed 1123
RAG, emphasizing local retrieval efficiency and answer accu- 1124
racy. However, it does not account for the non-IID property 1125
in distributed settings. Additionally, (Li et al., 2024) permits 1126
LLM deployment on partial local institutions, which is funda- 1127
mentally different from our setting. 1128

Real-world distributed non-IID RAG scenarios present a 1129
more complex framework involving numerous challenges that 1130
must be addressed for effective deployment. For example: 1131

3https://openai.com/enterprise-privacy/
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• How can we effectively decompose a user query into1132
subqueries while considering local knowledge distribu-1133
tion?1134

• What is the best way to assign these subqueries to clients1135
with varying local expertise?1136

• How should we merge knowledge retrieved from mul-1137
tiple clients with overlapping expertise, and should we1138
assign confidence levels to different clients for the same1139
subqueries?1140

• How can the local retrieval process be accelerated when1141
dealing with large local databases?1142

These challenges represent broader avenues for exploration1143
in distributed non-IID RAG. While our current work cannot1144
be directly compared with existing distributed RAG studies1145
due to different settings, we believe it offers an interesting1146
starting point for addressing such challenges. Specifically,1147
our approach focuses on how to enable cooperation among1148
clients with varying distributions of knowledge. By assigning1149
preferences to clients based on their local knowledge distri-1150
butions and employing an MLP to learn these distributions1151
without transmitting complete local knowledge to a central1152
server, we offer an intuitive method that could inspire future1153
advancements in distributed non-IID RAG.1154
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Original Paraphrased
A friend of mine suggested we go here to-
day before our movie. I was planning on
suggesting another place, but she got their
early and got a table DARN!I don’t hate
Red Robin...I think I avoid it because I am
not a big fan of hamburgers. Seems like
more of a place for straight guys and kids
if you ask me, but my experience today
wasn’t to bad.Our waiter was really nice
however I think that may have been a re-
sult of my push up bra.Ordered the Crispy
Chicken Salad which also had hard boiled
egg, bacon, and veggies and was very good.
I’ll probably get that again next time some-
one drags me here. Get it with that Italian
dressing. Yummy! My friend ordered us
onion rings as an appetizer I hate onions,
but those were goood! Not my first choice
but good crowd pleaser with more decent
food than most chains.

I was considering going to Red Robin with
a friend, but I decided to go somewhere
else instead. I was not a big fan of ham-
burgers, but I was drawn to Red Robin be-
cause of the free tastings. I was pleasantly
surprised by the friendliness of the staff, es-
pecially the waiter who was very attentive
and helpful. I ordered the Crispy Chicken
Salad, which was very good. I’ll probably
go back there next time someone drags me
there.

Huge rooms. Soft towels. Comfortable
bed with tons of pillows. Three things
that make me happy when I’m traveling.
What’s wrong with this place, then? First
of all, the location is central to nothing
aside from the mall which houses several
chain restaurants. Second, the staff could
not care less about pretty much anything.
While the woman who checked us in was
helpful and friendly, that was the end of
that. Despite requesting my Hilton status
"amenities" (just a package of snacks and
water...not much), I never received it. I
was also charged $30 for internet when I
shouldn’t have paid a thing (got the bill
corrected at check out). And housekeep-
ing didn’t leave enough towels or replace
the water. Considering we paid over 200 a
night, the blase attitude of the staff is very
disappointing.

3 things that make me happy when I travel
are: spacious rooms, friendly staff, and a
comfortable bed with lots of pillows. How-
ever, the location is inconvenient, the staff
is indifferent, and the amenities are subpar.

You can either pay $5.50 for 3-day movie
rentals or get a $40 membership and pay
$2 for 3-day/$3 for 7-day rentals. They
also offer 2-for-1 movies for students on
Tuesday and Thursday. The reason I give
3 stars is because that deal isn’t valid for
people with memberships!? I learnt this
30 seconds after paying for a membership.
I’m a student and could have paid $2.75 for
movies twice a week. Instead I paid $40
(way too much) for a membership to pay
.75 cents less than the other students. Good
movie selection and shop but don’t fall for
their rip off of a membership unless you
rent daily.

3-day movie rentals cost either $5.50 or
$40 for a membership. They offer a deal for
students on Tuesdays and Thursdays, but
it’s not valid for those with memberships.

Table 11: Paraphrased examples of Yelp dataset
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Dataset Prompt Label Label Template Example
AGNews Topic of the text: {World, Sports,

Business, Technol-
ogy }

Topic: Label REDMOND, Wash. - Microsoft Corp.
and cable television provider Comcast
Corp. said Monday they would begin
deploying set-top boxes powered by Mi-
crosoft software starting next week. \n
Topic: Business \\...Oil demand is rising
faster than predicted this year as OPEC
pumps more low-quality oil in a failed
bid to reduce record prices, according to
International Energy Agency, an adviser
to 26 industrialized nations. \n Topic:

MR Sentiment of the
sentence:

{great, terrible} It was Label "Analyze That" is one of those crass,
contrived sequels that not only fails on
its own but makes you second-guess
your affection for the original. \n It
was terrible ...about the only thing to
give the movie points for is bravado—to
take an entirely stale concept and push
it through the audience’s meat grinder
one more time.\n It was

SST-5 Sentiment of the
sentence:

{great, good, okay,
bad, terrible}

It was Label a strong, funny, and finally transporting
re-imagining of Beauty and the Beast
and 1930s horror films \n It was great
...no movement, no yuks, not much of
anything. \n It was

Subj Subjectivity of the
sentence:

{subjective, objec-
tive}

It’s Label gangs, despite the gravity of its subject
matter, is often as fun to watch as a
good spaghetti western. \n It’s subjec-
tive ...smart and alert, Thirteen Conver-
sations About One Thing is a small gem.
\n It’s

Amazon Sentiment of the
sentence:

{great, good, okay,
bad, terrible}

It was Label Love the originality of this music. Be-
cause she is ever-changing, Madonna is
never boring. "Music" makes you want
to dance - totally energizing! Wish the
"Music" video was half as impressive
as this work of art. ... The case for the
DVDs were a bit damaged. The damage
did not compromise the DVDs, ... \n It’s

Yelp Subjectivity of the
sentence:

{subjective, objec-
tive}

It’s Label My family visited ceasars palace and
ate here. Our waiting time was only
ten minutes despite all the people. Our
server was the best. He recommended
several great dishes. The food was
higher than our expections....his place
is great. The staff is really friendly and
the chile verde burrito is fantastic. You
know a ... \n It’s

Yahoo Topic of the sen-
tence

{Society & Culture,
Science & Mathe-
matics, Health, Edu-
cation & Reference,
Computers & Inter-
net, Sports, Busi-
ness & Finance, En-
tertainment & Mu-
sic, Family & Rela-
tionships, Politics &
Government}

It’s Label who sang message in a bottle? Answer:
Sting (the Police) ...Neuroscience Ques-
tion? Answer: no it is called motor neu-
roprostheses. \n Topic:

Table 24: Prompt and instructions used for each dataset. We denote examples in blue and queries in red.
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