
Workshop track - ICLR 2018

TOWARDS SPECIFICATION-DIRECTED PROGRAM RE-
PAIR

Richard Shin∗& Dawn Song
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720, USA
{ricshin,dawnsong}@cs.berkeley.edu

Illia Polosukhin
NEAR
illia@near.ai

ABSTRACT

Several recent papers have developed neural network program synthesizers by us-
ing supervised learning over large sets of randomly generated programs and spec-
ifications. In this paper, we investigate the feasibility of this approach for program
repair: given a specification and a candidate program assumed similar to a correct
program for the specification, synthesize a program which meets the specification.
Working in the Karel domain with a dataset of synthetically generated candidates,
we develop models that can make effective use of the extra information in can-
didate programs, achieving 40% error reduction compared to a baseline program
synthesis model that only receives the specification and not a candidate program.

1 INTRODUCTION

Several recent papers have proposed neural network-based approaches to program synthesis from
input/output examples (Parisotto et al., 2017; Devlin et al., 2017b; Bunel et al., 2018). In these
works, the goal is to generate a program in a domain-specific language from a small number of
input/output examples, that can also generalize to unseen examples. The models are trained from a
large corpus of programs and a set of input/output examples for each program.

In our work, we consider a variant of the above setting which we dub specification-directed program
repair, where, in addition to a set of input/output examples that specify the desired semantics, we
also get a candidate program which we assume is textually similar to a correct program. In real-
world applications of program synthesis, we may have access to a slightly erroneous program to
use as a candidate, and making effective use of this information would allow us to achieve greater
performance than possible with only a specification. For example, many programming tasks involve
solving problems similar to existing ones for which we already have solutions.

We demonstrate our methods in the Karel domain, also considered by past work in program synthesis
(Devlin et al., 2017a; Bunel et al., 2018). We show that candidate programs indeed contain useful
information for synthesizing programs that satisfy I/O examples; our methods achieve 40% error
reduction compared to a baseline program synthesis model that does not have access to a candidate
program.

Papers such as DeepFix (Gupta et al., 2017), sk p (Pu et al., 2016), SynFix (Bhatia & Singh, 2016),
Wang et al. (2018) and Devlin et al. (2017c) also consider the task of program repair. Unlike these
prior works, we focus entirely on semantic errors and do not consider syntactic ones, and consider a
very large number of possible task specifications and errors rather than a handful.

2 TASK AND MODEL DESCRIPTION

2.1 PROBLEM DEFINITION

In the program synthesis setting, we are given a set of input/output examples (I1, O1), · · · , (Ik, Ok)
and our goal is to find a program π such that π(I1) = O1, · · · , π(Ik) = Ok. k is typically small;

∗Work partially performed at NEAR.

1

Workshop track - ICLR 2018

I/O pairs

def run():
repeat(2):

turnRight()
move()

Program

Program
synthesis
(prior work)

def run():
repeat(2):

turnRight()
move()

Program

Spec-driven
program repair

(our task)
def run():

turnRight()
move()

Candidate program

+I/O pairs

def run():
ifelse(frontIsClear()):

move()
else:

turnLeft()
move()

Unwrap ifelse

def run():
move()
turnLeft()
move()

def run():
turnRight()
move()

def run():
repeat(2):

turnRight()
move()

Wrap with repeat

Figure 1: Left: illustration of our task. Right: example mutations used in Section 2.3, to create a
synthetic dataset with candidate programs.

for our experiments, we use k = 5. In a neural program synthesis approach, we use a dataset
containingN programs each with k input/output examples, for training a neural network to represent
pθ(π | (I1, O1), · · · , (Ik, Ok)) such that it will put high probability on programs which not only
satisfy all (Ii, Oi) but will generalize to other I/O examples.

In this work, we consider the setting of program repair. In addition to a set of input/output ex-
amples (I1, O1), · · · , (Ik, Ok), we are also given πcand, and our goal is to find a π such that
π(I1) = O1, · · · , π(Ik) = Ok and also generalizes to other unseen I/O examples. We assume
that there exists such a satisfactory π where dist(π, πcand) ≤ d for some distance measure between
programs.

2.2 KAREL DOMAIN

Karel is an educational programming language (Pattis, 1981) that has been used in introductory
Stanford classes and also in past program synthesis and induction work (Bunel et al., 2018; Devlin
et al., 2017a). In Karel, a program consists of instructions for an agent inside a grid. At each cell,
the grid (which is between 2 × 2 and 16 × 16) can contain either an obstacle, or between 0 and
10 markers. The agent starts at some cell in the grid (which may contain markers but no obstacle),
and has move, turnLeft, turnRight as actions to move, and pickMarker, putMarker
to manipulate markers. The language contains if, ifElse, while constructs with conditionals
{front,left,right}IsClear, markersPresent, and their negations. repeat allows for
a fixed number of repetitions. There are no functions or variables.

2.3 DATA GENERATION

We used a Karel dataset made publicly available by Devlin et al. (2017a).1, containing 1,116,854
training examples and 2,500 test examples. Each example is {π(i), ((I1, O1)

(i), · · · , (I6, O6)
(i))};

5 of the I/O pairs are given to the model and the remaining 1 is held out for testing.

In order to create a candidate program π
(i)
cand for training our model, we apply random mu-

tations to π(i), where each mutation preserves the syntactic validity of the program. Specif-
ically, we consider the following mutations: insert/delete/replace an action; wrap or unwrap
with if/ifelse/while/repeat, sampling a random condition if necessary; replace the con-
ditional/number of repetitions in if/ifelse/while/repeat. We consider applying 1, 2, or 3
mutations in sequence to π(i), to create π(i)

cand that differ from π(i) by varying amounts.

2.4 MODELS

Given a candidate program πcand consisting of tokens t1, · · · , tn, we first embed each token and then
apply a 2-layer bidirectional LSTM to obtain an encoding e1, · · · , en. Following Bunel et al. (2018),

1https://msr-redmond.github.io/karel-dataset/

2

https://msr-redmond.github.io/karel-dataset/

Workshop track - ICLR 2018

m = 1, top 1 m = 2, top 1 m = 3, top 1 m = 3, top 64

Model type Train dist. Gen. Exact Gen. Exact Gen. Exact Gen. Exact

Tokens m = 1 79.28% 75.88% 23.92% 16.56% 12.52% 8.12% 40.28% 20.72%
Tokens m = 1, 2 83.24% 76.16% 72.68% 63.76% 50.36% 41.04% 89.12% 80.16%
Tokens m = 1, 2, 3 83.32% 73.72% 77.28% 65.92% 69.12% 57.04% 93.96% 86.72%
Edits m = 1 73.92% 71.56% 15.00% 7.80% 7.60% 3.64% 13.48% 4.36%
Edits m = 1, 2 79.40% 73.36% 68.24% 61.00% 32.32% 24.28% 74.32% 59.40%
Edits m = 1, 2, 3 79.32% 71.28% 70.88% 61.40% 60.44% 50.04% 92.28% 84.56%

Prog. synthesis baseline 70.36 % 39.04% 70.36% 39.04% 70.36% 39.04% 85.80% 58.12%
Random mutations 5.08% 2.56% 0.72% 0.24% 0.4% 0.04% 12.24% 2.92%

Table 1: Accuracies of our models. m indicates the number of sequential mutations applied to gen-
erate candidate πcand; columns indicate the value ofm at test time. “Gen.” means the output program
passed all tests and “Exact” means the output program textually matched the π in the data. The bot-
tom row shows how often we can recover a correct program when we apply m random mutations to
candidate programs; for “m = 3, top 64”, we attempt m = 3 mutations 64 times and report when
any of the 64 attempts succeed.

we encode the I/O pairs using a convolutional neural network. An output LSTM which receives the
I/O pair embedding g at each timestep creates the synthesized program π̂.

We considered two variants of the model. In the first (token output), we apply attention
over ei to transfer its information to the output LSTM. At each step, we compute hi, õi =
LSTM(hi−1, [ti−1 si−1 g]); si = Attention({e1, · · · , en}, õi); oi = Wo[ôi si]

T + b; pi =
Softmax(Wpoi). h0 (initial LSTM state) and s0 (initial attention context) are set to 0. pi ∈ [0, 1]|V |

is a probability distribution over over possible program tokens.

In the second (edit output), we explicitly make use of the fact that we would like to make small
modifications to existing code, and train the model to output edits. At step i, we have a pointer
ki to the tokens of πcand, and choose an action among keep (copy πcand[ki] to the output), delete,
insert a token t, or replace πcand[ki] with t; there are 2 + 2|V | actions where |V | is the vocabulary
size. We set ki+1 = ki unless the last action was insert. The computation each step is hi, oi =
LSTM(hi−1, [ti−1 ai−1 eki g]); ti−1 is an embedding for the program token from the last step (or
a null token if the last action was delete) and ai−1 is the last edit operation (one of 2+2|V |). Because
there is no need to compute attention weights in this approach, the forward pass takesO(q+p) rather
than O(q + q · p) time, where q and p are the number of tokens in the candidate and true programs,
respectively. In practice, we found it is 3–4× faster to train than the first variant.

3 EXPERIMENTAL RESULTS

Table 1 summarizes our main experimental results. To measure the value of using πcand, we compare
against our baseline program synthesis model (which does not have access to πcand). When using
πcand with m = 1, our best program repair model achieves 83.32% top-1 generalization accuracy
compared to 70.36% of the program synthesis model; a 40% reduction in error rate. When m = 3
(and therefore πcand is less useful), the top-1 generalization accuracy of 69.12% is lower than the
baseline’s 70.36%, but the exact match rate of 57.04% is higher than the baseline’s 39.04%; top-64
generalization accuracy of 93.96% also beats the baseline’s 85.80%.

The edit-output model performs similar to but consistently worse than the token-output model, al-
though it has the advantage of lower computational cost. Interestingly, when testing with m = 1
mutations to create πcand, the models trained with the exact same data distribution (m = 1) perform
worse than those trained with a wider variety of mutations (m = 1, 2, 3). We also found that using
the ei (embeddings of the candidate program) at each step of decoding was highly critical for the
model to work; variants without (not in table) either failed to learn or achieved very similar results to
the baseline program synthesis model, indicating that it is not using information from the candidate
program.

For all methods, we used a beam search with beam size 64. For top 1 accuracy, we only consider
the most likely output of the beam search; for top 64, we check whether any of the 64 outputs are
correct.

3

Workshop track - ICLR 2018

REFERENCES

Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in programming assign-
ments using recurrent neural networks. CoRR, abs/1603.06129, 2016. URL http://arxiv.
org/abs/1603.06129.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leverag-
ing grammar and reinforcement learning for neural program synthesis. International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1Xw62kRZ.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. In Advances in Neural Information Processing Systems, pp. 2077–2085,
2017a.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International Conference
on Machine Learning, pp. 990–998, 2017b.

Jacob Devlin, Jonathan Uesato, Rishabh Singh, and Pushmeet Kohli. Semantic code repair us-
ing neuro-symbolic transformation networks. CoRR, abs/1710.11054, 2017c. URL http:
//arxiv.org/abs/1710.11054.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. DeepFix: Fixing common c language
errors by deep learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017. URL
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Rep-
resentations, 2017.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley &
Sons, Inc., 1981.

Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. Sk p: A neural
program corrector for moocs. In Companion Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Systems, Programming, Languages and Applications: Software for Hu-
manity, SPLASH Companion 2016, pp. 39–40, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4437-1. doi: 10.1145/2984043.2989222. URL http://doi.acm.org/10.1145/
2984043.2989222.

Ke Wang, Zhendong Su, and Rishabh Singh. Dynamic neural program embeddings for pro-
gram repair. International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJuWrGW0Z.

4

http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
https://openreview.net/forum?id=H1Xw62kRZ
https://openreview.net/forum?id=H1Xw62kRZ
http://arxiv.org/abs/1710.11054
http://arxiv.org/abs/1710.11054
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
http://doi.acm.org/10.1145/2984043.2989222
http://doi.acm.org/10.1145/2984043.2989222
https://openreview.net/forum?id=BJuWrGW0Z
https://openreview.net/forum?id=BJuWrGW0Z

	Introduction
	Task and model description
	Problem definition
	Karel domain
	Data generation
	Models

	Experimental results

