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ABSTRACT

Recently, the problem of local minima in very high dimensional non-convex op-
timization has been challenged and the problem of saddle points has been intro-
duced. This paper introduces a dynamic type of normalization that forces the
system to escape saddle points. Unlike other saddle point escaping algorithms,
second order information is not utilized, and the system can be trained with an
arbitrary gradient descent learner. The system drastically improves learning in a
range of deep neural networks on various data-sets in comparison to non-CPN
neural networks.

1 SADDLE POINT PROBLEM

1.1 INTRODUCTION

Recently more and more attention has focused on the problem of saddle points in very high dimen-
sional non-convex optimization. Saddle points represent points in the optimization problem where
the first order gradients are all zero, but the stationary point is neither a maxima or a minima. The
saddle point of a function can be confirmed by using the eigenvalues of Hessian matrix. If the set of
eigenvalues contains at least one negative eigenvalue and at least one positive eigenvalue the point
is said to be a saddle point. One way to analyze the prevalence of saddle point is to assign a joint
probability density to the eigenvalues of the Hessian matrix at a critical point.

• If the eigenvalues are all negative, then the critical point is a local maximum
• If the eigenvalues are all positive, then the critical point is a local minimum.
• If the eigenvalues contain at least one positive and at least one negative eigenvalue then the

point is a saddle point.

If p(λ1, λ2, ..., λn) is the joint probability density function then the probability that the Hessian
matrix resembles a saddle point is, given that the Hessian is not singular is:
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Another way to interpret the expression above is to realize that each of the two n-integrals represents
the joint density summation of the two hyper-cubes, one in the direction of all the positive axis, and
the other in all the negative axis. Each respectively representing minimas and maximas.

Theorem 1 The space of eigenvalues of a non-singular Hessian matrix that represent minimas and
maximas in comparison to the total space, decreases by 2n asymptotically.
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The amount of unique hypercubes starting from the origin and spanning along the axis is 2n. The
amount of hypercubes representing minimas and maximas is two. Therefore the fraction of the
space that contains the eigenvalues that would indicate either a minima or a maxima is 21−n, where
n represents the dimensionality of the Hessian matrix.

What this shows is that as we increase the dimensionality of our optimization problem, the fraction
of the total space that represents either a local minima or maxima decreases exponentially by a factor
of two.

Although this interpretation gives some intuition behind the saddle point problem, we cannot con-
clusively say that the probability of a critical point being a saddle point increases exponentially
because we do not know the behavior of the joint probability function.

1.2 GRADIENT DESCENT BEHAVIOR AROUND SADDLE POINTS

To understand the shortcomings of first order gradient descent algorithms around saddle points we
will analyze the neighborhood a saddle point. Given a function f , the Taylor expansion around the
saddle point x is given by:

f(x+ δ) = f(x) +
1

2
δTHδ (2)

The first order term disappears because we are at a critical point. Denoting e1, e2, ..., en as the eigen-
vectors of the non-degenerate Hessian H , and λ1, λ2, ..., λn as the respective eigenvalues, we can
use the change of coordinates methods to rewrite the Taylor expansion in terms of the eigenvectors:
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From the last equation we can analyze the behavior of first order gradient descent algorithms. Specif-
ically by looking at the behavior with respect to the signs of the eigenvalues. If eigenvalue λi is pos-
itive then the optimization point will move toward the critical point x. If eigenvalue λi is negative
the optimization point will move away from the critical point.

This shows that the direction of the gradient descent algorithm is not the problem with gradient
descent algorithms around saddle points, but rather the step of the algorithm. This problem is some-
times amplified because of the plateaus surrounding the critical point, as shown in (Saad & Solla,
1996). Another complication visible from equation 2, is that if the step size is greater than maxλ−1,
the gradient descent algorithm will begin to diverge. Therefore one large eigenvalues of the surface
of the error function, will force the gradient descent algorithms to take very small steps in all the
other directions.

A very similiar derivation and explanation was shows in (Dauphin et al., 2014)

2 CHARGED POINT NORMALIZATION

2.1 METAPHOR

The metaphor for our method goes as follows. The current point in our optimization is a small
positively charged point that is moving on the neutral surface of error. Our normalization works
by dynamically placing other positively charged points around the surface of error to ‘push’ our
optimization point away from undesirable positions. Optimally we would run the gradient descent
algorithm until convergence, check if the converged point is a saddle point, place a positively charged
point near the saddle point and continue the optimization. This metaphor was what gave inspiration
to the derivation of our normalization.
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2.2 INTRODUCTION

The general optimization problem is defined as:

L(f ;X,Y ) =

n∑
i=1

V (f(Xi),Yi) + λR(f) (4)

The formulation is static, given the same function and the same X and Y the loss will always be
equal. Our formulation introduces a dynamic normalization function R. Therefore the loss function
becomes defined as:

Lt(f ;X,Y ) =

n∑
i=1

V (f(Xi),Yi) + λRt(f) (5)

The function f contains dynamic parameters W t
1 ,W

t
2 , ...,W

t
n, while the function R contains pa-

rameters: β, p, φ and Ŵ t
1 , Ŵ

t
2 , ..., Ŵ

t
n, symbolizing the decay factor, norm, merge function and

merge values respectfully. The t term inW t
n represents the value ofWn at time t of the optimization

algorithm. Charged Point Normalization is now defined as:

Rt(f) =
e−βt∑n

i=1 ||W t
i − Ŵ t

i ||p
(6)

The update for the merge values is defined as:

Ŵ t+1
i = φ(Ŵ t

i ,W
t
i )

Ŵ 1
i =W 1

i + ε
(7)

where ε is a source of random error to ensure we do not have a division by zero. In our experiments
ε was a matrix of the same size as W 1

i with random entries sampled from a normal distribution with
a zero mean and a very small standard deviation.

What this type of normalization attempts to do is to reward the optimization algorithm for taking
steps that maximize the distance between the new point and the trailing point. This can be seen as a
more dynamic and adaptive version of momentum that kicks in when the optimization problem set-
tles down into a saddle point or long plateau. That being said, CPN can still be used with traditional
momentum methods, as shown by the experiments below.

2.3 CHOICE OF HYPERPARAMETER

The φ function can be any function that merges the two parameters into one parameter of the same
dimension. Throughout this whole paper we used the exponential moving average for our φ function.

φ(Ŵ t
i ,W

t
i ) = αŴ t + (1− α)W t

i

α ∈ (0, 1)
(8)

Although to keep up with the metaphor Coulomb’s inverse squared law did not work as well as
projected, through trial and error, the p value that worked the best was 1. The 1-norm simply is the
sum of absolute values.

3 EXPERIMENTS

3.1 INTRODUCTION

Charged Point Normalization was implemented in Theano (Bastien et al., 2012) and integrated with
the Keras (Chollet, 2015) library. We utilized the convolutional neural networks and recurrent net-
works in the keras library as well. All training and testing was run on a Nvidia GTX 980 GPU. We
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do not show results on a validation set, because we care about the efficiency and performance of the
optimization algorithm, not whether or not it overfits. The over-fitting of a model is not the fault of
the optimization routine but rather the fault of the field it is optimizing over. All comparisons be-
tween the standard and charged model, started with identical set’s of weights. Throughout all of our
experiments, we utilize a softmax layer as the final layer, and consequently all the losses measured
throughout this paper will be in terms of categorical cross-entropy. We used the train split of each
data-set.

3.2 SIMPLE DEEP NEURAL NETWORKS

3.2.1 MNIST: MULTILAYER PERCEPTRON

The first test conducted was using a multilayer perceptron on the MNIST dataset. The architecture of
the neural net contained layers with sizes 784→ 512→ 512→10. All intermediate layers contained
rectified linear activations (He et al., 2015), while the final layer is a softmax layer. Between layers,
dropout (Hinton et al., 2012) with a probability of 0.2 was added. We compare the standard batch
gradient descent algorithm with a step size of 0.001 and batchsize of 128, on the net described
above and the same net with Charged Point Normalization (CPN). The CPN hyper-parameters were:
β = 0.001, λ = 0.1 with the moving average parameter α = 0.95. The loss we were optimizing
over was categorical cross entropy.

3.2.2 MNIST:DEEP AUTOENCODER

The second test conducted on simple neural networks, was in the form of an autoencoder. The ar-
chitecture of the autoencoder contained layers with sizes 784→ 512→ 512→10→ 512→ 512→10.
All layers contained rectified linear activations. Between layers, dropout with a probability of 0.2
was added. The set up of the experiment is almost identical to the previous experiment. The only
difference being that in this case, we optimized for binary cross-entropy.
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3.2.3 NOTES

It is interesting to note that when the optimization problem is relatively simple, more specifically
if the optimization algorithm takes smooth steps, CPN allows the optimization algorithm to take
bigger steps in the correct direction. CPN does not display any periodic or chaotic behavior in this
scenario. This is not the case for more complicated optimization problems that will be presented
below.

3.3 CONVOLUTIONAL NEURAL NETWORKS

3.3.1 CIFAR10

The next experiment conducted was using a convolutional neural network on the CIFAR10
(Krizhevsky et al., a). The architecture was as such:

Convolution2D (32,3,3) → ReLU → Convolution2D (32,3,3) → ReLU → MaxPooling (2,2) →
Dropout (0.25)→ Convolution2D (64,3,3)→ ReLU→ Convolution2D (64,3,3)→ ReLU→Max-
Pooling (2,2)→Dropout (0.25)→Dense (512)→ReLU→Dropout (0.5)→Dense (10)→ Softmax

Convolution2D takes the parameters, number of filters, width and height respectfully. Dense take
one parameter describing the size of the layer. MaxPooling takes two parameters that signify the
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pool size. ReLU is the rectified linear function, while Softmax is the softmax activation function.
The optimization algorithm used was stochastic gradient descent with a learning rate of 0.01, decay
of 1e − 6, momentum of 0.9, with nesterov acceleration. The batch size used was 32. The hyper-
parameters for CPN were: β = 0.01, λ = 0.1 with the moving average parameter α = 0.95. 10,000
random images were used from the CIFAR10 data-set instead of the full dataset to speed up learning.
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It is interesting to note that CPN performs worse until the optimization algorithm reaches the ‘elbow’
of the curve, where then CPN continues along its path, while the standard algorithm begins to
converge. CPN also takes steps that are much less ‘optimal’ in the greedy sense, which is why both
the loss and accuracy curve behave partially chaotic.

3.3.2 CIFAR100

The CIFAR100 (Krizhevsky et al., b) setup was nearly identical to the CIFAR10 setup. The same
architecture of the neural network was used. The only difference was in the λ parameter in the
normalization term, which in this case was equal to 0.01. 20, 000 random images were used.
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The same behavior as in the CIFAR10 experiment was exhibited. The elbow of the loss curve was
the point where CPN began to outperform standard optimization.

3.4 RECURRENT NEURAL NETWORKS

3.4.1 INTRODUCTION

Recurrent neural networks are notorious for being hard to train, and having a tendency to generally
underfit (Pascanu et al., 2012).
In this section we show that CPN successfully escapes saddle points presented in recurrent neural
networks.
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Sentence Embedding Question Embedding

RNN RNN

Concat

Dense

Figure 1: Architecture for BABI Test

3.4.2 BABI
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We selected the path-finding problem of the BABI dataset due to it being the most difficult task.
The architecture consisted of two recurrent networks and one standard neural network. Each of
the recurrent neural networks had a structure: Embedding→ RNN. The embedding, sentence and
query hidden layer size was set to 3. The final network concatenated the two recurrent network
outputs and fed the result into a dense layer with an output size of vocabsize. Refer to figure 1 for
a diagram. We ran our experiment with two different recurrent neural network structures: Gated
Recurrent Units (GRU) (Chung et al., 2014) and Long Short Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) . The ADAM (Kingma & Ba, 2014) optimization algorithm was used for both
recurrent structures with the parameters: α = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e − 08. For the
LSTM architecture, CPN hyper-parameters were: β = 0.0025, λ = .03, α = 0.95. For the GRU
architecture, CPN hyper-parameters were: β = 0.1, λ = .1, α = 0.95.
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From the accuracy graphs we can see the CPN causes the recurrent network to escape the saddle
point earlier than a recurrent network with no CPN.

4 NORMALIZATION BEHAVIOR

4.1 EXPLORATION VS EXPLOITATION

In a standard gradient descent with no normalization, the updates taken by the algorithm are al-
ways greedy, in terms of always minimizing the loss of the model. Their is no exploration done;
gradient descent is by nature a greedy algorithm, optimizing only locally. What CPN allows the
gradient descent to do, is to move in non-optimal directions early on in the optimization routine,
while still allowing for precise finetuning at the end of the model. This trade-off is controlled by the
β parameter.

4.2 BEHAVIOR AROUND SADDLE POINTS

A vanilla neural network with one single hidden layer was trained on a down sampled 8× 8 version
of the MNIST dataset (Lecun et al., 1998). Full gradient descent was ran on the 10, 000 random
images until convergence. We compare the differences between the eigenvalue distributions between
the neural network with CPN and the neural network without it. Recall the tighter the range of
the eigenvalues is, the larger steps the gradient descent algorithm can take without worrying about
divergence as explained in section 1.2.

The graph above shows a kernel density estimation done on the input to hidden and hidden to output
Hessian’s at the near critical point. There are both negative and positive eigenvalues, especially
in the hidden to output weights, therefore it is safe enough to say that we are at a saddle point
(Turlach, 1993). The first graph represents the CPN neural network while next graph represents a
non-normalized neural network. The CPN network shows a tighter distribution as well as more of
the eigenvalues being focused near 0.

4.3 TOY EXAMPLE

To ensure that the normalization is actually repelling the optimization point from saddle points, and
that the results achieved in the experimental section are not due to some confounding factors we
utilize a low-dimensional experiment to show the repelling effects of CPN.

We utilize the monkey saddle as the optimization surface. The monkey saddle has a saddle point
surrounded by plateaus in all directions. It is defined as x3 − 3xy2. Referring to section 1.2, we
discussed that the direction of gradient descent algorithms was not the shortcoming of gradient
descent algorithms around saddle points,but rather the problem was with the step size. What CPN
should in theory do is allow the optimization routine to take larger steps.
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Table 1: Hyper-parameters for Toy-Problem

Algorithm CPN
LR Momentum ρ β1 β2 α β λ

SGD 0.01 0 NA NA NA 0.1 1.0 0.1
SGD Accelerated 0.01 0.9 NA NA NA 0.1 1.0 0.1

AdaGrad 0.01 NA NA NA NA .5 1.0 0.001
AdaDelta 1.00 NA 0.95 NA NA .5 1.0 0.001

Adam 0.01 NA NA 0.9 0.999 .5 1.0 0.001

Table 2: Final Loss After 120 Iterations for Toy-Problem

Non-CPN CPN
SGD −2.00428E − 12 −8.192E9

SGD Accelerated −2.04018E − 12 −8.192E9
AdaGrad −1.75024E − 11 −0.00463
AdaDelta −2.46194E − 12 −2.22216

Adam −12.8413 −12.9671

Below are two figures. The first one shows the behavior of a five common gradient descent al-
gorithms starting at a point near the saddle point (point: (x = 0.0001, y = −0.0001)) (Zeiler,
2012), (Duchi et al., 2010). The next figure shows the same algorithms starting at the same point but
utilizing CPN. All visualization were done using the matplotlib library (Hunter, 2007).

The hyper-parameters used, were all the default hyper-parameters in the keras library apart from
Adam (to make it visible on the graphs). All hyper-parameters are available in Table 1. SGD
Accelerated refers to the standard SGD algorithm using momentum and nesterov acceleration. The
CPN parameters were chosen using a very small discrete grid-search. In reality just about any
reasonable arbitrary parameters can be chosen in order for CPN to work in this experiment, a grid-
search was not neccessary to find a solution. This is why we reuse two sets of hyper-parameters for
this toy problem. (Nesterov, 1983).

Figure 2: Non-CPN Optimization Paths Figure 3: CPN Optimization Paths

Each algorithm performed better when coupled with CPN than without, the loss was computed using
the monkey saddle equation above. All the losses for both CPN and Non-CPN are available in Table
2. CPN allowed the optimization algorithms to escape the saddle point quickly even though the
gradient near the starting point of the optimization was near zero.

• Without CPN only the Adam algorithm escaped the plateau in less than a 1000 iterations.
• With CPN every algorithm apart from AdaGrad successfully escaped the plateau in less

than 120 iterations, most notable being SGD Accelerated, which escaped in just 8 iterations.

From this toy example we can conclude that CPN does in fact repel the optimization algorithm away
from saddle points, and therefore the results from the experiments are due to this phenomena and
most likely no other confounding factors.
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4.4 PERIODICITY AND TERMINAL BEHAVIOR

As shown in the experiments done on the CIFAR datasets, CPN has a tendency to force the opti-
mization algorithm to act more chaotically. The exponential term in the normalization term is there
to ensure that the optimization algorithm does not get stuck in an periodic path. It is trivial to see
that as the time of the optimization goes toward infinity the impact of the normalization will tend
toward 0. Therefore if the optimization algorithm does not reach a local minimum, but is rather in
an elliptical path, assuming that the λ term is not great enough to push the point out of the local
minimum, the optimization algorithm will eventually reach the local minimum.

5 NOTES ON HYPER-PARAMETERS

Due to restrictions on our hardware resources, we did not have enough time to run a comprehen-
sive study on the behavior of CPN with respect to its hyper-parameters. Throughout this paper the
selection of hyper-parameters was kept rather simple. We selecting the hyper-parameters in a fea-
sible range, and then adjusted them by either by hand around 4-8 times, or similarly by running a
basic discrete grid-search that ran over that same amount of hyper-parameters. So in no way are the
hyper-parameters for CPN chosen in this paper optimal for the various setups explained, but yet the
results we found were somewhat substantial, which we find quite optimistic.

6 WEAKNESSES

• CPN with a exponential moving average for the φ function, introduces 2 extra hyper-
parameters, not including the normalization scalar λ.

• In terms of implementation; CPN doubles the amount of memory needed for the optimiza-
tion problem, as a trailing copy of the parameters must be kept.

• The fraction term in CPN will generally contain small floating points in both numerator
and denominator and this can sometimes lead to numerical instability.

• If saddle points are reached at a really late time in the optimization algorithm, the expo-
nential decay will nullify the effects of CPN. A possible solution would be to substitute the
exponential decay term with some type of periodic decay.

7 CONCLUSION

In this paper we introduced a new type of dynamic normalization that allows gradient based opti-
mization algorithms to escape saddle points. We showed empirical results on standard data-sets, that
show CPN successful escapes saddle points on various neural network architectures. We discussed
the theoretical properties of first order gradient descent algorithms around saddle points as well as
discussed the influence of the largest eigenvalue on the step taken. Empirical results were shown
that confirmed the hunch that the hessian of charged point normalized neural networks contains
eigenvalues which are less in magnitude than their non-normalized counterpart.
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