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ABSTRACT

We consider the learning of algorithmic tasks by mere observation of input-output
pairs. Rather than studying this as a black-box discrete regression problem with
no assumption whatsoever on the input-output mapping, we concentrate on tasks
that are amenable to the principle of divide and conquer, and study what are its
implications in terms of learning.
This principle creates a powerful inductive bias that we leverage with neural
architectures that are defined recursively and dynamically, by learning two scale-
invariant atomic operations: how to split a given input into smaller sets, and how
to merge two partially solved tasks into a larger partial solution. Our model can be
trained in weakly supervised environments, namely by just observing input-output
pairs, and in even weaker environments, using a non-differentiable reward signal.
Moreover, thanks to the dynamic aspect of our architecture, we can incorporate
the computational complexity as a regularization term that can be optimized by
backpropagation. We demonstrate the flexibility and efficiency of the Divide-
and-Conquer Network on several combinatorial and geometric tasks: convex hull,
clustering, knapsack and euclidean TSP. Thanks to the dynamic programming
nature of our model, we show significant improvements in terms of generalization
error and computational complexity.

1 INTRODUCTION

Algorithmic tasks can be described as discrete input-output mappings defined over variable-sized
inputs, but this “black-box" vision hides all the fundamental questions that explain how the task can
be optimally solved and generalized to arbitrary inputs. Indeed, many tasks have some degree of scale
invariance or self-similarity, meaning that there is a mechanism to solve it that is somehow independent
of the input size. This principle is the basis of recursive solutions and dynamic programming, and
is ubiquitous in most areas of discrete mathematics, from geometry to graph theory. In the case
of images and audio signals, invariance principles are also critical for success: CNNs exploit both
translation invariance and scale separation with multilayer, localized convolutional operators. In our
scenario of discrete algorithmic tasks, we build our model on the principle of divide and conquer,
which provides us with a form of parameter sharing across scales akin to that of CNNs across space
or RNNs across time.

Whereas CNN and RNN models define algorithms with linear complexity, attention mechanisms
(Bahdanau et al., 2014) generally correspond to quadratic complexity, with notable exceptions
(Andrychowicz & Kurach, 2016). This can result in a mismatch between the intrinsic complexity
required to solve a given task and the complexity that is given to the neural network to solve it, which
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Figure 1: Divide and Conquer Network. The split phase is determined by a dynamic neural network
Sθ that splits each incoming set into two disjoint sets: {Xj+1,l, Xj+1,l+1} = Sθ(Xj,m), with
Xj,m = Xj+1,l t Xj+1,l+1. The merge phase is carried out by another neural networkMφ that
combines two partial solutions into a solution of the coarser scale: Yj,m =Mφ(Yj+1,l, Yj+1,l+1);
see Section 3 for more details.

may impact its generalization performance. Our motivation is that learning cannot be ‘complete’
until these complexities match, and we start this quest by first focusing on problems for which the
intrinsic complexity is well known and understood.

Our Divide-and-Conquer Networks (DiCoNet ) contain two modules: a split phase that is applied
recursively and dynamically to the input in a coarse-to-fine way to create a hierarchical partition
encoded as a binary tree; and a merge phase that traces back that binary tree in a fine-to-coarse way
by progressively combining partial solutions; see Figure 1. Each of these phases is parametrized by a
single neural network that is applied recursively at each node of the tree, enabling parameter sharing
across different scales and leading to good sample complexity and generalisation.

In this paper, we attempt to incorporate the scale-invariance prior with the desiderata to only require
weak supervision. In particular, we consider two setups: learning from input-output pairs, and
learning from a non-differentiable reward signal. Since our split block is inherently discrete, we resort
to policy gradient to train the split parameters, while using standard backpropagation for the merge
phase; see Section 5. An important benefit of our framework is that the architecture is dynamically
determined, which suggests using the computational complexity as a regularization term. As shown
in the experiments, computational complexity is a good proxy for generalisation error in the context
of discrete algorithmic tasks. We demonstrate our model on algorithmic and geometric tasks with
some degree of scale self-similarity: planar convex-hull, k-means clustering, Knapsack Problem and
euclidean TSP. Our numerical results on these tasks reaffirm the fact that whenever the structure of
the problem has scale invariance, exploiting it leads to improved generalization and computational
complexity over non-recursive approaches.

2 RELATED WORK

Using neural networks to solve algorithmic tasks is an active area of current research, but its models
can be traced back to context free grammars (Fanty, 1994). In particular, dynamic learning appears
in works such as Pollack (1991) and Tabor (2000). The current research in the area is dominated
by RNNs (Joulin & Mikolov, 2015; Grefenstette et al., 2015), LSTMs (Hochreiter & Schmidhuber,
1997), sequence-to-sequence neural models (Sutskever et al., 2014; Zaremba & Sutskever, 2014),
attention mechanisms (Vinyals et al., 2015b; Andrychowicz & Kurach, 2016) and explicit external
memory models (Weston et al., 2014; Sukhbaatar et al., 2015; Graves et al., 2014; Zaremba &
Sutskever, 2015). We refer the reader to Joulin & Mikolov (2015) and references therein for a more
exhaustive and detailed account of related work.

Amongst these works, we highlight some that are particularly relevant to us. Neural GPU (Kaiser
& Sutskever, 2015) defines a neural architecture that acts convolutionally with respect to the input
and is applied iteratively o(n) times, where n is the input size. It leads to fixed computational
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machines with total Θ(n2) complexity. Neural Programmer-Interpreters (Reed & de Freitas, 2015)
introduce a compositional model based on a LSTM that can learn generic programs. It is trained
with full supervision using execution traces. Directly related, Cai et al. (2017) incorporates recursion
into the NPI to enhance its capacity and provide learning certificates in the setup where recursive
execution traces are available for supervision. Hierarchical attention mechanisms have been explored
in Andrychowicz & Kurach (2016). They improve the complexity of the model from o(n2) of
traditional attention to o(n log n), similarly as our models. Finally, Pointer Networks (Vinyals et al.,
2015b;a) modify classic attention mechanisms to make them amenable to adapt to variable input-
dependent outputs, and illustrate the resulting models on geometric algorithmic tasks. They belong to
the Θ(n2) category class.

3 PROBLEM SETUP

3.1 SCALE INVARIANT TASKS

We consider tasks consisting in a mapping T between a variable-sized input set X = {x1, . . . , xn},
xj ∈ X into an ordered set Y = {y1, . . . , ym(n)}, yj ∈ Y . This setup includes problems where the
output size m(n) differs from the input size n, and also problems where Y is a labeling of input
elements. In particular, we will study in detail the case where Y ⊆ X (and in particular Y ⊆ X ).

We are interested in tasks that are self-similar across scales, meaning that if we consider the recursive
decomposition of T as

∀ n , ∀X , |X| = n , T (X) = M(T (S1(X)), . . . , T (Ss(X))) ,

|Sj(X)| < n , ∪j≤s Sj(X) = X , (1)
where S splits the input into smaller sets, andM merges the solved corresponding sub-problems,
then bothM and S are significantly easier to approximate with data-driven models. In other words,
the solution of the task for a certain size n is easier to estimate as a function of the partial solutions
T (Sj(X)) than directly from the input. Under this assumption, the task T can thus be solved by
first splitting the input into s strictly smaller subsets Sj(X), solving T on each of these subsets,
and then appropriately merging the corresponding outputs together. In order words, T can be
solved by recursion. A particularly simple and illustrative case is the binary setup with s = 2 and
S1(X) ∩ S2(X) = ∅, that we will adopt in the following for simplicity.

3.2 WEAKLY SUPERVISED RECURSION

Our first goal is to learn how to perform T for any size n, by observing only input-output example
pairs (X l, Y l), l = 1 . . . L. Throughout this work, we will make the simplifying assumption of
binary splitting (s = 2), although our framework extends naturally to more general versions. Given
an input set X associated with output Y , we first define a split phase that breaks X into a disjoint
partition tree P(X):

P(X) = {Xj,k ; 0 ≤ j < J ; 0 ≤ k < nj} , with Xj,k = Xj+1,2k tXj+1,2k+1 , (2)
and X = X1,0 tX1,1. This partition tree is obtained by recursively applying a trainable binary split
module Sθ:

{X1,0, X1,1} = Sθ(X) , with X = X1,0 tX1,1 , (3)

{Xj+1,2k, Xj+1,2k+1} = Sθ(Xj,k) , with Xj,k = Xj+1,2k tXj+1,2k+1 , (j < J, k ≤ 2j) .

Here, J indicates the number of scales or depth of recursion that our model applies for a given input
X , and Sθ is a neural network that takes a set as input and produces a binary, disjoint partition as
output. Eq. (3) thus defines a hierarchical partitioning of the input that can be visualized as a binary
tree; see Figure 1. This binary tree is data-dependent and will therefore vary for each input example,
dictated by the current choice of parameters for Sθ.

The second phase of the model takes as input the binary tree partition P(X) determined by the split
phase and produces an estimate Ŷ . We traverse upwards the dynamic computation tree determined
by the split phase using a second trainable block, the merge moduleMφ:

YJ,k = M̃φ(XJ,k) , (1 ≤ k ≤ 2J) , (4)

Yj,k = Mφ(Yj+1,2k, Yj+1,2k+1) , (1 ≤ k ≤ 2j , j < J) , and Ŷ =Mφ(Y1,0, Y1,1) .
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Here we have denoted by M̃ the atomic block that transforms inputs at the leaves of the split
tree, and Mφ is a neural network that takes as input two (possibly ordered) inputs and merges
them into another (possibly ordered) output. In the setup where Y ⊆ X , we further impose that
Yj,k ⊆ Yj+1,2k ∪ Yj+1,2k+1 , to guarantee that the computation load does not diverge with J .

3.3 LEARNING FROM NON-DIFFERENTIABLE REWARDS

Another setup we can address with (1) consists in problems where one can assign a cost (or reward) to
a given partitioning of an input set. In that case, Y encodes the labels assigned to each input element.
We also assume that the reward function has some form of self-similarity, in the sense that one can
relate the reward associated to subsets of the input to the total reward.

In that case, (3) is used to map an input X to a partition P(X), determined by the leaves of the tree
{XJ,k}k, that is evaluated by an external black-box returning a cost L(P(X)). For instance, one
may wish to perform graph coloring satisfying a number of constraints. In that case, the cost function
would assign L(P(X)) = 0 if P(X) satisfies the constraints, and L(P(X)) = |X| otherwise.

In its basic form, since P(X) belongs to a discrete space of set partitions of size super-exponential
in |X| and the cost is non-differentiable, optimizing L(P(X)) over the partitions of X is in gen-
eral intractable. However, for tasks with some degree of self-similarity, one can expect that the
combinatorial explosion can be avoided. Indeed, if the cost function L is subadditive, i.e.,

L(P(X)) ≤ L(P(X1,0)) + L(P(X1,1)) , with P(X) = P(X1,0) t P(X1,1) ,

then the hierarchical splitting from (3) can be used as an efficient greedy strategy, since the right hand
side acts as a surrogate upper bound that depends only on smaller sets. In our case, since the split
phase is determined by a single block Sθ that is recursively applied, this setup can be cast as a simple
fixed-horizon (J steps) Markov Decision Process, that can be trained with standard policy gradient
methods; see Section 5.

3.4 COMPUTATIONAL COMPLEXITY AS REGULARIZATION

Besides the prospect of better generalization, the recursion (1) also enables the notion of computational
complexity regularization. Indeed, in tasks that are scale invariant the decomposition in terms of
M and S is not unique in general. For example, in the sorting task with n input elements, one may
select the largest element of the array and query the sorting task on the remaining n− 1 elements, but
one can also attempt to break the input set into two subsets of similar size using a pivot, and query
the sorting on each of the two subsets. Both cases reveal the scale invariance of the problem, but the
latter leads to optimal computational complexity ( Θ(n log n) ) whereas the former does not (Θ(n2)).
Therefore, in a trainable divide-and-conquer architecture, one can regularize the split operation to
minimize computational complexity; see Appendix A.

4 NEURAL MODELS FOR S ANDM

4.1 SPLIT

The split block Sθ receives as input a variable-sized set X = (x1, . . . , xn) and produces a binary
partition X = X0 tX1. We encode such partition with binary labels z1 . . . zn, zm ∈ {0, 1}, m ≤ n.
These labels are sampled from probabilities pθ(zm = 1 |X) that we now describe how to parametrize.
Since the model is defined over sets, we use an architecture that certifies that pθ(zm = 1 | X) are
invariant by permutation of the input elements. The Set2set model (Vinyals et al., 2015a) constructs a
nonlinear set representation by cascading R layers of

h(1)
m = ρ (B1,0xm +B2,0µ(X)) , h(r+1)

m = ρ

B1,rh
(r)
m + n−1B2,r

∑
m′≤n

h
(r)

m′

 , (5)

with m ≤ n , r ≤ R , h
(r)
m ∈ Rd , and pθ(zm = 1 | X) = Sigm(bTh

(R)
m ). The parameters of

Sθ are thus θ = {B0, B1,r, B2,r, b}. In order to avoid covariate shifts given by varying input set
distributions and sizes, we consider a normalization of the input that standardizes the input variables
xj and feeds the mean and variance µ(X) = (µ0, σ) to the first layer. If the input has some structure,
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for instance X is the set of vertices of a graph, a simple generalization of the above model is to
estimate a graph structure specific to each layer:

h(1)
m = ρ (B1,0xm +B2,0µ(X)) , h(r+1)

m = ρ

B1,rh
(r)
m + n−1B2,r

∑
m′≤n

A
(r)

m,m′h
(r)

m′

 , (6)

where A(r) is a similarity kernel computed as a symmetric function of current hidden variables:
A

(r)
m,m′ = ϕ(h

(r)
m , h

(r)
m′ ). This corresponds to the so-called graph neural networks (Scarselli et al.,

2009; Duvenaud et al., 2015) or neural message passing Gilmer et al. (2017).

Finally, the binary partition tree P(X) is constructed recursively by first computing pθ(z | X),
then sampling from the corresponding distributions to obtain X = X0 t X1, and then applying
Sθ recursively on X0 and X1 until the partition tree leaves have size smaller than a predetermined
constant, or the number of scales reaches a maximum value J . We denote the resulting distribution
over tree partitions by P(X) ∼ Sθ(X).

4.2 MERGE

4.2.1 MERGE MODULE

The merge blockMφ takes as input a pair of sequences Y0, Y1 and produces an output sequence O.
Motivated by our applications, we describe first an architecture for this module in the setup where the
output sequence is indexed by elements from the input sequences, although our framework can be
extended to more general setups seamlessly. in Section C.

Given an input sequence Y , the merge module computes a stochastic matrix ΓY (where each row is a
probability distribution) such that the output O is expressed by binarizing its entries and multiplying
it by the input:

O =Mφ(Y0, Y1) = Γ̄

(
Y0
Y1

)
, with Γ̄s,i =

{
1 if i = arg maxi′ ps(i

′) .
0 otherwise. (7)

Since we are interested in weakly supervised tasks, the target output only exists at the coarsest scale
of the partition tree. We thus also consider a generative versionMg

φ of the merge block that uses
its own predictions in order to sample an output sequence. The initial merge operation at the finest
scale M̃ is defined as the previous merge module applied to the input (XJ,k, ∅). This merge module
operation can be instantiated with Pointer Networks (Vinyals et al., 2015b) and with Graph Neural
Networks/ Neural Message Passing (Gilmer et al., 2017; Kearnes et al., 2016; Bronstein et al., 2016).

Pointer Networks We consider a Pointer Network (PtrNet) (Vinyals et al., 2015b) to our input-
output interface as our merge blockMφ. A PtrNet is an auto-regressive model for tasks where the
output sequence is a permutation of a subsequence of the input. The model encodes each input
sequence Yq = (x1,q, . . . , xnq,q), q = 0, 1, into a global representation eq := eq,nq , q = 0, 1,
by sequentially computing e1,q, . . . , enq,q with an RNN. Then, another RNN decodes the output
sequence with initial state d0 = ρ(A0e0 +A1e1), as described in detail in Appendix D. The trainable
parameters φ regroup to the RNN encoder and decoder parameters.

Graph Neural Networks Another use case of our Divide and Conquer Networks are problems
formulated as paths on a graph, such as convex hulls or the travelling salesman problem. A path on
a graph of n nodes can be seen as a binary signal over the n × n edge matrix. Leveraging recent
incarnations of Graph Neural Networks/ Neural Message Passing that consider both node and edge
hidden features (Gilmer et al., 2017; Kearnes et al., 2016; Bronstein et al., 2016), the merge module
can be instantiated with a GNN mapping edge-based features from a bipartite graph representing two
partial solutions Y0, Y1, to the edge features encoding the merged solution. Specifically, we consider
the following update equations:

V (k+1)
m = ρ

(
β1V

(k)
m +

∑
m′

A
(k)
m,m′V

(k)
m′

)
(8)

A
(k+1)
m,m′ = ϕ(V (k+1)

m , V
(k+1)
m′ ) , (9)

where ϕ is a symmetric, non-negative function parametrized with a neural network.
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4.2.2 RECURSIVE MERGE OVER PARTITION TREE

Given a partition tree P(X) = {Xj,k}j,k, we perform a merge operation at each node (j, k). The
merge operation traverses the tree in a fine-to-coarse fashion. At the leaves of the tree, the sets XJ,k

are transformed into YJ,k as YJ,k =Mg
φ(XJ,k, ∅) , and, while j > 0, these outputs are recursively

transformed along the binary tree as Yj,k = Mg
φ(Yj+1,2k, Yj+1,2k+1) , 0 < j < J , using the

auto-regressive version, until we reach the scale with available targets: Ŷ = Mφ(Y1,0, Y1,1) . At
test-time, without ground-truth outputs, we replace the lastMφ by its generative versionMg

φ.

4.2.3 BOOTSTRAPPING THE MERGE PARTITION TREE

The recursive merge defined at (4.2.2) can be viewed as a factorized attention mechanism over the
input partition. Indeed, the merge module outputs (21) include the stochastic matrix Γ = (p1, . . . , pS)
whose rows are the ps probability distributions over the indexes. The number of rows of this matrix
is the length of the output sequence and the number of columns is the length of the input sequence.
Since the merge blocks are cascaded by connecting each others outputs as inputs to the next block,
given a hierarchical partition of the input P(X), the overall mapping can be written as

Ŷ =

(
J∏
j=0

Γ̃j

) YJ,0...
YJ,nJ

 ,with Γ̃0 = Γ̄0,0 , Γ̃1 =

(
Γ̄1,0 0

0 Γ̄1,1

)
, Γ̃J =

 Γ̄J,0 0 · · ·

0 Γ̄J,1
. . .

0 · · · Γ̄J,nJ

 .

(10)
It follows that the recursive merge over the binary tree is a specific reparametrization of the

global permutation matrix, in which the permutation matrix has been decomposed into a product of
permutations dictated by the binary tree, indicating our belief that many routing decisions are done
locally within the original set. The model is trained with maximum likelihood using the product of
the non-binarized stochastic matrices. Lastly, in order to avoid singularities we need to enforce that
log ps,ts is well-defined and therefore that ps,ts > 0. We thus regularize the quantization step (21)
by replacing 0, 1 with ε1/J , 1− nε1/J respectively. We also found useful to binarize the stochastic
matrices at fine scales when the model is close to convergence, so gradients are only sent at coarsest
scale. For simplicity, we use the notation pφ(Y | P(X)) =

∏J
j=0 Γ̃j = Mφ(P(X)), where now the

matrices Γ̃j are not binarized.

5 TRAINING

This section describes how the model parameters {θ, φ} are estimated under two different learning
paradigms. Given a training set of pairs {(X l, Y l)}l≤L, we consider the loss

L(θ, φ) =
1

L

∑
l≤L

EP(X)∼Sθ(X) log pφ(Ŷ = Y l | P(X l)) ,with pφ(Y | P(X)) = Mφ(P(X)) .

(11)

Section 4.2 explained how the merge phase Mφ is akin to a structured attention mechanism. Equations
(10) show that, thanks to the parameter sharing and despite the quantizations affecting the finest
leaves of the tree, the gradient

∇φ log pθ,φ(Y | X) = EP(X)∼Sθ(X)∇φ logMφ(P(X)) (12)

is well-defined and non-zero almost everywhere. However, since the split parameters are separated
from the targets through a series of discrete sampling steps, the same is not true for∇θ log pθ,φ(Y |X).
We therefore resort to the identity used extensively in policy gradient methods. For arbitrary F
defined over partitions X , and denoting by fθ(X ) the probability density of the random partition
Sθ(X), we have

∇θEP(X)∼Sθ(X)F (P(X)) =
∑
X

F (X )∇θfθ(X ) =
∑
X

F (X )fθ(X )∇θ log fθ(X ) = EX∼Sθ(X)F (X )∇θ log fθ(X )

≈ 1

S

∑
X̃(s)∼Sθ(X)

F (X (s))∇θ log fθ(X (s)) . (13)
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Since the split variables at each node of the tree are conditionally independent given its parent, we
can compute log fθ(P(X)) as

log fθ(P(X)) =

J∑
j=1

∑
k≤nj

∑
m≤|Xj,k|

log pθ(zm,j,k | Xj−1,k/2) .

By plugging F (P(X)) = log pφ(Y | P(X)) we thus obtain an efficient estimation of
∇θEP(X)∼Sθ(X) log pφ(Y | P(X)).

From (13), it is straightforward to train our model in a regime where a given partition P(X) of an
input set is evaluated by a black-box system producing a reward R(P(X)). Indeed, in that case, the
loss becomes

L(θ) =
−1

L

∑
l≤L

EP(X)∼Sθ(X)R(P(X)) , (14)

which can be minimized using (13) with F (P(X)) = R(P(X)).

6 EXPERIMENTS

We present experiments on three representative algorithmic tasks: convex hull, clustering and
knapsack. We also report additional experiments on the Travelling Salesman Problem in the Appendix.
The hyperparameters used for each experiment can be found at the Appendix. 1

6.1 CONVEX HULL

The convex hull of a set of n points X = {x1, . . . , xn} is defined as the extremal set of points of the
convex polytope with minimum area that contains them all. The planar (2d) convex hull is a well
known task in discrete geometry and the optimal algorithm complexity is achieved using divide and
conquer strategies by exploiting the self-similarity of the problem. The strategy for this task consists
of splitting the set of points into two disjoint subsets and solving the problem recursively for each. If
the partition is balanced enough, the overall complexity of the algorithm amounts to Θ(n log n). The
split phase usually takes Θ(n log n) because each node involves a median computation to make the
balanced partition property hold. The merge phase can be done in linear time on the total number of
points of the two recursive solutions, which scales logarithmically with the total number of points
when sampled uniformly inside a polytope (Dwyer, 1988).

Figure 2: DiCoNet outputs at test time for n = 50. The colors indicate the partitions at a given scale.
Scales go fine-to-coarse from left to right. Left: Split has already converged using the rewards coming
from the merge. It gives disjoint partitions to ease the merge work. Right: DiCoNet with random
split phase. Although the performance degrades due to the non-optimal split strategy, the model is
able to output the correct convex hull for most of the cases.

1Publicly available code to reproduce all results are at https://github.com/alexnowakvila/
DiCoNet
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We test the DiCoNet on the setting consisting of n points sampled in the unit square [0, 1]2 ⊂ R2.
This is the same setup as Vinyals et al. (2015b). The training dataset has size sampled uniformly
from 6 to 50. The training procedure is the following; we first train the baseline pointer network until
convergence. Then, we initialize the DiCoNet merge parameters with the baseline and train both split
and merge blocks. We use this procedure in order to save computational time for the experiments,
however, we observe convergence even when the DiCoNet parameters are initialized from scratch.
We supervise the merge block with the product of the continuous Γ matrices. For simplicity, instead
of defining the depth of the tree dynamically depending on the average size of the partition, we fix it
to 0 for 6-12, 1 for 12-25 and 2 for 25-50; see Figure 2 and Table 1.

n=25 n=50 n=100 n=200
Baseline 81.3 65.6 41.5 13.5

DiCoNet Random Split 59.8 37.0 23.5 10.29
DiCoNet 88.1 83.7 73.7 52.0

DiCoNet + Split Reg 89.8 87.0 80.0 67.2

Table 1: ConvHull test accuracy results with the baseline PtrNet and different setups of the DiCoNet
. The scale J has been set to 3 for n=100 and 4 for n=200. At row 2 we observe that when the
split block is not trained we get worse performance than the baseline, however, the generalization
error shrinks faster on the baseline. When both blocks are trained jointly, we clearly outperform
the baseline. In Row 3 the split is only trained with REINFORCE, and row 4 when we add the
computational regularization term (See Supplementary) enforcing shallower trees.

6.2 K-MEANS CLUSTERING

We tackle the task of clustering a set of n points with the DiCoNet in the setting described in (14).
The problem consists in finding k clusters of the data with respect to the Euclidean distance in Rd.
The problem reduces to solving the following combinatorial problem over input partitions P(X):

min
P(X)

−R(P(X)) = min
P(X)

∑
i∈P(X)

niσ
2
i , (15)

where σ2
i is the variance of each subset of the partition P(X), and ni its cardinality. We only

consider the split block for this task because the combinatorial problem is over input partitions.
We use a GNN (6) for the split block. The graph is created from the points in Rd by taking
wij = exp (−‖xi − xj‖22/σ2) as weights and instantiating the embeddings with the euclidean
coordinates. We test the model in two different datasets. The first one, which we call "Gaussian", is
constructed by sampling k points in the unit square of dimension d, then sampling n

k points from
gaussians of variance 10−3 centered at each of the k points. The second one is constructed by
picking 3x3x3 random patches of the RGB images from the CIFAR-10 dataset. The baseline is a
modified version of the split block in which instead of computing binary probabilities we compute
a final softmax of dimensionality k in order to produce a labelling over the input. We compare its
performance with the DiCoNet with binary splits and log k scales where we only train with the
reward of the output partition at the leaves of the tree, hence, DiCoNet is optimizing k-means (15)
and not a recursive binary version of it. We show the corresponding cost ratio with Lloyd’s and
recursive Lloyd’s (binary Lloyd’s applied recursively); see Table 2. In this case, no split regularization
has been added to enforce balanced partitions.

6.3 KNAPSACK

Given a set of n items, each with weight wi ≥ 0 and value vi ∈ R, the 0-1 Knapsack problem
consists in selecting the subset of the input set that maximizes the total value, so that the total weight
does not exceed a given limit:

maximizexi
∑
i xivi

subject to xi ∈ {0, 1},
∑
i xiwi ≤W .

(16)
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Gaussian (d=2) Gaussian (d=10) CIFAR-10 patches
k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16

Baseline / Lloyd 1.8 3.1 3.5 1.14 5.7 12.5 1.02 1.07 1.41
DiCoNet / Lloyd 2.3 2.1 2.1 1.6 6.3 8.5 1.04 1.05 1.2

Baseline / Rec. Lloyd 0.7 1.5 1.7 0.15 0.65 1.25 1.01 1.04 1.21
DiCoNet / Rec. Lloyd 0.9 1.01 1.02 0.21 0.72 0.85 1.02 1.02 1.07

Table 2: We have used n = 20 · k points for the Gaussian dataset and n = 500 for the CIFAR-10
patches. The baseline performs better than the DiCoNet when the number of clusters is small but
DiCoNet scales better with the number of clusters. When Lloyd’s performs much better than its
recursive version ("Gaussian" with d = 10), we observe that DiCoNet performance is between the
two. This shows that although having a recursive structure, DiCoNet is acting like a mixture of both
algorithms, in other words, it is doing better than applying binary clustering at each scale. DiCoNet
achieves the best results in the CIFAR-10 patches dataset, where Lloyd’s and its recursive version
perform similarly with respect to the k-means cost.

It is a well-known NP-hard combinatorial optimization problem, which can be solved exactly
with dynamic programming using O(nW ) operations, referred as ‘pseudo-polynomial’ time in the
literature. For a given approximation error ε > 0, one can use dynamic programming to obtain a
polynomial time approximation within a factor 1− ε of the optimal solution (Martello et al., 1999).
A remarkable greedy algorithm proposed by Dantzig sorts the input elements according to the ratios
ρi = vi

wi
and picks them in order until the maximum allowed weight is attained. Recently, authors

considered LSTM-based models to approximate knapsack problems (Bello et al., 2016).

We instantiate our DiCoNet in this problem as follows. We use a GNN architecture as our split module,
which is configured to select a subset of the input that fills a fraction α of the target capacity W . In
other words, the GNN split module accepts as input a problem instance {(x1, w1), . . . , (xn, wn)}
and outputs a probability vector (p1, . . . , pn). We sample from the resulting multinomial distribution
without replacement until the captured total weight reaches αW . We then fill the rest of the capacity
(1− α)W recursively, feeding the remaining unpicked elements to the same GNN module. We do
this a number J of times, and in the last call we fill all the capacity, not just the α fraction. The
overall DiCoNet model is illustrated in Figure 3.

We generate 20000 problem instances of size n = 50 to train the model, and evaluate its performance
on new instances of size n = 50, 100, 200. The weights and the values of the elements follow
a uniform distribution over [0, 1], and the capacities are chosen from a uniform distribution over
[0.2n, 0.3n]. This dataset is similar to the one in (Bello et al., 2016), but has a slightly variable
capacity, which we hope will help the model to generalize better. We choose α = 0.5 in our
experiments. We train the model using REINFORCE (13), and to reduce the gradient variances we
consider as baseline the expected reward, approximated by the average of a group of samplings.

Table 3 reports the performance results, measured with the ratio Vopt

Vout
(so the lower the better). The

baseline model is a GNN which selects the elements using a non-recursive architecture, trained using
Reinforce. We verify how the non-recursive model quickly deteriorates as n increases. On the other
hand, the DiCoNet model performs significatively better than the considered alternatives, even for
lengths n = 100. However, we observe that the Dantzig greedy algorithm eventually outperforms the
DiCoNet for sufficiently large input n = 200, suggesting that further improvements may come from
relaxing the scale invariance assumption, or by incorporating extra prior knowledge of the task.

This approach of the knapsack problem does not perform as good as (Bello et al., 2016) in obtaining
the best approximation. However, we have presented an algorithm that relies on a rather simple
5-layer GNN, applied a fixed number of times (with quadratic complexity respect to n, whereas the
pointer network-based LSTM model is cubic), which has proven to have other strengths, such as the
ability to generalize to larger ns that the one used for training. Thus, this approach illustrates well
the aim of the DiCoNet . We believe that it would also be interesting for future work to combine the
strengths of both aproaches.
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n=50 n=100 n=200
cost ratio splits cost ratio splits cost ratio splits

Baseline 19.82 1.0063 0 38.79 1.0435 0 74.71 1.0962 0
DiCoNet 19.85 1.0052 3 40.23 1.0048 5 81.09 1.0046 7
Greedy 19.73 1.0110 - 40.19 1.0057 - 81.19 1.0028 -

Optimum 19.95 1 - 40.42 1 - 81.41 1 -

Table 3: Performance Ratios of different models trained with n = 50 (and using 3 splits in the
DiCoNet ) and tested for n ∈ {50, 100, 200} (and different number of splits). We report the number
of splits that give better performances at each n for the DiCoNet . Note that for n = 50 the model does
best with 3 splits, the same as in training, but with larger n more splits give better solutions, as would
be desired. Observe that even for n = 50, the DiCoNet architecture significatively outperforms the
non-recursive model, highlighting the highly constrained nature of the problem, in which decisions
over an element are highly dependent on previously chosen elements. Although the DiCoNet clearly
outperforms the baseline and the Dantzig algorithm for n ≤ 100, its performance eventually degrades
at n = 200; see text.

Figure 3: DiCoNet Architecture for the Knapsack problem. A GNN Split module selects a subset of
input elements until a fraction α of the allowed budget is achieved; then the remaining elements are
fed back recursively into the same Split module, until the total weight fills the allowed budget.

7 CONCLUSIONS

We have presented a novel neural architecture that can discover and exploit scale invariance in
discrete algorithmic tasks, and can be trained with weak supervision. Our model learns how to split
large inputs recursively, then learns how to solve each subproblem and finally how to merge partial
solutions. The resulting parameter sharing across multiple scales yields improved generalization and
sample complexity.

Due to the generality of the DiCoNet , several very different problems have been tackled, some
with large and others with weak scale invariance. In all cases, our inductive bias leads to better
generalization and computational complexity. An interesting perspective is to relate our scale
invariance with the growing paradigm of meta-learning; that is, to what extent one could supervise
the generalization across problem sizes.

In future work, we plan to extend the results of the TSP by increasing the number of splits J , by
refining the supervised DiCoNet model with the non-differentiable TSP cost, and by exploring
higher-order interactions using Graph Neural Networks defined over graph hierarchies (Lovász et al.,
1989). We also plan to experiment on other NP-hard combinatorial tasks.
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A REGULARIZATION WITH COMPUTATIONAL COMPLEXITY

As discussed previously, an added benefit of dynamic computation graphs is that one can consider
computational complexity as a regularization criteria. We describe how computational complexity
can be controlled in the split module.

A.1 SPLIT REGULARIZATION

We verify from Subsection 4.1 that the cost of running each split block S is linear on the input size. It
results that the average case complexity CS(n) of the whole split phase on an input of size n satisfies
the following recursion:

ECS(n) = E{CS(αsn) + CS((1− αs)n)}+ Θ(n) , (17)

where αs are the fraction of input elements that are respectively sent to each output. Since this
fraction is input-dependent, the average case is obtained by taking expectations with respect to the
underlying input distribution. Assuming without loss of generality that E(αs) ≥ 0.5, we verify that
the resulting complexity is of the order of ECS(n) ' n logn

log Eα−1
s

, which confirms the intuition that
balanced partition trees (αs = 0.5) will lead to improved computational complexity. We can enforce
αs to be close to 0.5 by maximizing the variance of the split probabilities pθ(z |X) computed by Sθ:

R(S) = −

M−1 ∑
m≤M

pθ(z | X)2 −M−2
(∑

m

pθ(z | X)

)2
 . (18)
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B TRAINING DETAILS

The split parameters are updated with the RMSProp algorithm with initial learning rate of 0.01 and
the merge parameters with Adam with initial learning rate of 0.001. Learning rates are updated as
lr/k where k is the epoch number.

B.1 CONVEX-HULL

Training and test datasets have 1M and 4096 examples respectively. We use a batch size of 128. The
split block has 5 layers with 15 hidden units. The merge block is a GRU with 512 hidden units. The
number of scales of the DCN depends on the input size. Use 0 for 6-12, 1 for 12-25 and 2 for 25-50
for training. Use 1 for 25, 2 for 50, 3 for 100 and 4 for 200 at test time. The merge block is trained
using the product of the continuous Γ matrices.

B.2 CLUSTERING

Training and test datasets have 20K and 1K examples respectively. We use a batch size of 256. The
GNN used as split block has 20 layers and feature maps of dimensionality 32.

B.3 KNAPSACK

Training and test datasets have 20K and 1K examples respectively. The test dataset for n = 200
has only 100 examples, because of the difficulty to find the optimum by the pseudo-polynomic time
algorithm. We use a batch size of 512. The GNN used as split block has 5 layers and feature maps of
dimensionality 32.

B.4 TSP

Training and test datasets have 20K and 1K examples respectively. We use a batch size of 32. Both
the split and the merge have 20 layers with 20 hidden units. The number of scales of the DCN is
fixed to 1, both for training and test time.

C TRAVELLING SALESMAN PROBLEM

The TSP is a prime instance of a NP-hard combinatorial optimization task. Due to its important
practical applications, several powerful heuristics exist in the metric TSP case, in which edges satisfy
the triangular inequality. This motivates data-driven models to either generalize those heuristics to
general settings, or improve them. Data-driven approaches to the TSP can be formulated in two
different ways. First, one can use both the input graph and the ground truth TSP cycle to train the
model to predict the ground truth. Alternatively, one can consider only the input graph and train
the model to minimize the cost of the predicted cycle. The latter is more natural since it optimizes
the TSP cost directly, but the cost of the predicted cycle is not differentiable w.r.t model parameters.
Some authors have successfully used reinforcement learning techniques to address this issue (Dai
et al., 2017), (Bello et al., 2016), although the models suffer from generalization to larger problem
instances.

Here we concentrate on that generalization aspect and therefore focus on the supervised setting using
ground truth cycles. We compare a baseline model that used the formulation of TSP as a Quadratic
Assignment Problem to develop a Graph Neural Network (Nowak et al., 2017) with a DiCoNet model
that considers split and merge modules given by separate GNNs. More precisely, the split module is
a GNN that receives a graph and outputs binary probabilities for each node. This module is applied
recursively until a fixed scale J and the baseline is used at every final sub-graph of the partition,
resulting in signals over the edges encoding possible partial solutions of the TSP. Finally, the merge
module is another GNN that receives a pair of signals encoded as matrices from its leaves and returns
a signal over the edges of the complete union graph.

As in Nowak et al. (2017), we generated 20k training examples and tested on 1k other instances.
Each one generated by uniformly sampling {xi}20i=1 ∈ [0, 1]2. We build a complete graph with
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Ai,j = dmax − d2(xi, xj) as weights. The ground truth cycles are generated with Helsgaun (2006),
which has an efficient implementation of the Lin-Kernighan TSP Heuristic. The architecture has 20
layers and 20 feature maps per layer, and alternates between learning node and edge features. The
predicted cycles are generated with a beam search strategy with beam size of 40.

n=10 n=20 n=40 n=80
acc cost ratio acc cost ratio acc cost ratio acc cost ratio

BS1 78.71 2.89 1.01 27.36 4.74 1.24 15.06 9.12 1.77 13.76 15.07 2.15
BS2 19.45 3.68 1.29 54.34 4.04 1.05 28.42 6.29 1.22 15.72 11.23 1.60

DiCoNet 41.82 3.15 1.11 43.86 4.06 1.06 35.46 6.01 1.18 29.44 9.01 1.28

Table 4: DiCoNet has been trained for n = 20 nodes and only one scale (J = 1). We used the
pre-trained baseline for n = 10 as model on both leaves. BS1 and BS2 correspond to the baseline
trained for n = 10 and n = 20 nodes respectively. Although for small n, both baselines outperform
the DiCoNet , the scale invariance prior of the DiCoNet is leveraged at larger scales resulting in better
results and scalability.

In Table 4 we report preliminary results of the DiCoNet for the TSP problem. Although DiCoNet and
BS2 have both been trained on graphs of the same size, the dynamic model outperforms the baseline
due to its powerful prior on scale invariance.

Although the scale invariance of the TSP is not as clear as in the previous problems (it is not
straightforward how to use two TSP partial solutions to build a larger one), we observe that some
degree of scale invariance it is enough in order to improve on scalability. As in previous experiments,
the joint work of the split and merge phase is essential to construct the final solution.

D DETAILS OF POINTER NETWORK MODULE

The merge blockMφ takes as input a pair of sequences Y0, Y1 and produces an output sequence O.
We describe first the architecture for this module, and then explain on how it is modified to perform
the finest scale computation M̃φ. We modify a Pointer Network (PtrNet) (Vinyals et al., 2015b) to
our input-output interface as our merge blockMφ. A PtrNet is an auto-regressive model for tasks
where the output sequence is a permutation of a subsequence of the input. The model encodes each
input sequence Yq = (x1,q, . . . , xnq,q), q = 0, 1, into a global representation eq := eq,nq , q = 0, 1,
by sequentially computing e1,q, . . . , enq,q with an RNN. Then, another RNN decodes the output
sequence with initial state d0 = ρ(A0e0 +A1e1). The trainable parameters φ regroup to the RNN
encoder and decoder parameters.

Suppose first that one has a target sequence T = (t1 . . . tS) for the output of the merge. In that case,
we use a conditional autoregressive model of the form{

eq,i = fenc(eq,i−1, yq,i) i = 1, . . . , nq , q = 0, 1 ,
ds = fdec(ds−1, ts−1) s = 1, . . . , S

(19)

The conditional probability of the target given the inputs is computed by performing attention over
the embeddings eq,i and interpreting the attention as a probability distribution over the input indexes:{

usq,i = φTV tanh (φeeq,i + φdds) s = 0, . . . S , q = 0, 1 , i ≤ nq ,
ps = softmax(us· ) .

, (20)

leading to Γ = (p1, . . . , pS) . The output O is expressed in terms of Γ by binarizing its entries and
multiplying it by the input:

, O =Mφ(Y0, Y1) = Γ̄

(
Y0
Y1

)
, with Γ̄s,i =

{
1 if i = arg maxi′ ps(i

′) .
0 otherwise. (21)

However, since we are interested in weakly supervised tasks, the target output only exists at the
coarsest scale of the partition tree. We thus also consider a generative versionMg

φ of the merge block
that uses its own predictions in order to sample an output sequence. Indeed, in that case, we replace
equation (19) by {

eq,i = fenc(eq,i−1, yq,i) i = 1, . . . , nq , q = 0, 1 ,
ds = fdec(ds−1, yos−1

) s = 1, . . . , S
(22)

14



Published as a conference paper at ICLR 2018

where os is computed as os = xarg max ps , s ≤ S. The initial merge operation at the finest scale M̃
is defined as the previous merge module applied to the input (XJ,k, ∅). We describe next how the
successive merge blocks are connected so that the whole system can be evaluated and run.

E CONVEX HULL EXPERIMENTS

Figure 4: Output examples of the DCN at test time. Top: Baseline. Middle: DCN 1 scale. Bottom:
DCN 2 scales.
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