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ABSTRACT

Many state-of-the-art word embedding techniques involve factorization of a co-
occurrence based matrix. We aim to extend this approach by studying word em-
bedding techniques that involve factorization of co-occurrence based tensors (N -
way arrays). We present two new word embedding techniques based on tensor
factorization, and show that they outperform multiple commonly used embedding
methods when used for various NLP tasks on the same training data. Also, to
train one of the embeddings, we present a new joint tensor factorization problem
and an approach for solving it. Furthermore, we modify the performance metrics
for the Outlier Detection task (Camacho-Collados & Navigli (2016)) to measure
the quality of higher-order relationships that a word embedding captures. Our
tensor-based methods significantly outperform existing methods at this task when
using our new metric. Finally, we demonstrate that vectors in our embeddings can
be composed multiplicatively to create different vector representations for each
meaning of a polysemous word in a way that cannot be done with other common
embeddings. We show that this property stems from the higher order information
that the vectors contain, and thus is unique to our tensor based embeddings.

INTRODUCTION

Word embeddings have been used to improve the performance of many NLP tasks including lan-
guage modelling (Bengio et al. (2003)), machine translation (Bahdanau et al. (2014)), and sentiment
analysis (Kim (2014)). The broad applicability of word embeddings to NLP implies that improve-
ments to their quality will likely have widespread benefits for the field.

The word embedding problem is to learn a mapping η : V → Rk (k ≈ 100-300 in most applica-
tions) that encodes meaningful semantic and/or syntactic information. For instance, in many word
embeddings, η(car) ≈ η(truck), since the words are semantically similar.

More complex relationships than similarity can also be encoded in word embeddings. For example,
we can answer analogy queries of the form a : b :: c : ? using simple arithmetic in many state-
of-the-art embeddings (Mikolov et al. (2013)). The answer to bed : sleep :: chair : x is given by
the word whose vector representation is closest to η(sleep) − η(bed) + η(chair) (≈ η(sit)). Other
embeddings may encode such information in a nonlinear way (Jastrzebski et al. (2017)).

Mikolov et al. (2013) demonstrates the additive compositionality of their word2vec vectors: one
can sum vectors produced by their embedding to compute vectors for certain phrases rather than
just vectors for words. Later in this paper, we will show that our embeddings naturally give rise to a
form of multiplicative compositionality that has not yet been explored in the literature.

Almost all recent word embeddings rely on the distributional hypothesis (Harris), which states that
a word’s meaning can be inferred from the words that tend to surround it. To utilize the distri-
butional hypothesis, many embeddings are given by a low-rank factor of a matrix derived from
co-occurrences in a large unsupervised corpus. For examples of this, see Pennington et al. (2014);
Murphy et al. (2012); Levy & Goldberg (2014) and Salle et al. (2016). Approaches that rely on
matrix factorization only utilize pairwise co-occurrence information in the corpus. We aim to gener-
alize this approach by creating word embeddings given by factors of tensors containing higher order
co-occurrence data.
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RELATED WORK

Some common word embeddings related to co-occurrence based matrix factorization include GloVe
(Pennington et al. (2014)), word2vec (Levy & Goldberg (2014)), LexVec (Salle et al. (2016)), and
NNSE (Murphy et al. (2012)). In contrast, our work studies word embeddings given by factorization
of tensors. An overview of tensor factorization methods is given in Kolda & Bader (2009).

In particular, our work uses symmetric factorization of symmetric tensors. Theoretical foundations
for this problem have been studied and outlined in (Comon et al. (2008)). We note that while finding
the best rank-R nonnegative approximation of nonnegative tensors is a well-posed problem (Lim
& Comon (2009a), Qi et al. (2016)), relatively little is known about guarantees on the existence of
best rank-R symmetric tensor approximation of a symmetric tensor, which may not exist in general,
especially over R (Qi et al. (2017))1. Further, it may be NP-hard to obtain these factorizations
in general. Nevertheless, as is done in many applications that factor the third order cumulant, we
are merely seeking a (not necessarily best) real symmetric rank-R approximation to the symmetric
tensor.

Recently, under incoherency assumptions on the factors, a method using factorization of symmetric
tensors was proposed to create a generic word embedding Sharan & Valiant (2017), but the results
were not evaluated extensively. Our work studies this idea in much greater detail, fully demonstrat-
ing the viability of tensor factorization as a technique for training word embeddings.2 In general,
tensor factorization has also been applied to NLP (Van de Cruys et al. (2013); Zhang et al. (2014)),
as has nonnegative factorization of nonnegative tensors (Van de Cruys (2009)).

Composition of word vectors to create novel representations has been studied in depth, including
additive, multiplicative, and tensor-based methods (Mitchell & Lapata (2010); Blacoe & Lapata
(2012)). Typically, composition is used to create vectors that represent phrases or sentences. Our
work, instead, shows that pairs of word vectors can be composed multiplicatively to create different
vector representations for the various meanings of a single polysemous word.

Finally, we note that although other tensor factorizations such as the Higher-Order SVD (Kolda &
Bader (2009)) and Tensor Train (TT) (Oseledets (2011)) may be adapted to find word embeddings
from the co-occurance tensor, in this work we only consider the symmetric CP decomposition,
leaving the study of other tensor decompositions to future work.

MATHEMATICAL PRELIMINARIES

NOTATION

Throughout this paper we will write scalars in lowercase italics α, vectors in lowercase bold letters
v, matrices with uppercase bold letters M, and tensors (of order N > 2) with Euler script notation
X, as is standard in the literature.

POINTWISE MUTUAL INFORMATION

Pointwise mutual information (PMI) is a useful property in NLP that quantifies the likelihood that
two words co-occur (Levy & Goldberg (2014)). It is defined as:

PMI(x, y) = log
p(x, y)

p(x)p(y)

where p(x, y) is the probability that x and y occur together in a given fixed-length context window
in the corpus, irrespective of order.

It is often useful to consider the positive PMI (PPMI), defined as:

PPMI(x, y) := max(0, PMI(x, y))

1See also - https://www.stat.uchicago.edu/ lekheng/work/msri-lect2.pdf - slide 31
2In this work we are don’t consider Orthogonal-ALS, proposed in Sharan & Valiant (2017), and leave its

extensive evaluation for future work.
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since negative PMI values have little grounded interpretation (Bullinaria & Levy (2007); Levy &
Goldberg (2014); Van de Cruys (2009)).

Given an indexed vocabulary V = {w1, . . . , w|V |}, one can construct a |V | × |V | PPMI matrix M
where mij = PPMI(wi, wj). Many existing word embedding techniques involve factorizing this
PPMI matrix: Levy & Goldberg (2014); Murphy et al. (2012); Salle et al. (2016).

PMI can be generalized to N variables. While there are many ways to do so (Van de Cruys (2011)),
in this paper we use the form defined by:

PMI(xN1 ) = log
p(x1, . . . , xN )

p(x1) · · · p(xN )

where p(x1, . . . , xN ) is the probability that all of x1, . . . , xN occur together in a given fixed-length
context window in the corpus, irrespective of their order.

In this paper we study 3-way PPMI tensors M, where mijk = PPMI(wi, wj , wk), as this is
the natural higher-order generalization of the PPMI matrix. We leave the study of creating word
embeddings with N -dimensional PPMI tensors (N > 3) to future work.

TENSOR FACTORIZATION

Just as the rank-R matrix decomposition is defined to be the product of two factor matrices (M ≈
UV>), the canonical rank-R tensor decomposition for a third order tensor is defined to be the
product of three factor matrices (Kolda & Bader (2009)):

X ≈
R∑
r=1

ur ⊗ vr ⊗wr =: JU,V,WK, (1)

where ⊗ is the outer product: (a ⊗ b ⊗ c)ijk = aibjck. This is also commonly referred to as the
rank-R CP Decomposition. Elementwise, this is written as:

xijk ≈
R∑
r=1

uirvjrwkr = 〈u:,i ∗ v:,j ,w:,k〉,

where ∗ is elementwise vector multiplication and u:,i is the ith row of U. In our later section on
multiplicative compositionality, we will see this formulation gives rise to a meaningful interpretation
of the elementwise product between vectors in our word embeddings.

Symmetric CP Decomposition. In this paper, we will consider symmetric CP decomposition of
nonnegative tensors (Lim (2005); Kolda & Bader (2009)). Since our N -way PPMI is nonnega-
tive and invariant under permutation, the PPMI tensor M is nonnegative and supersymmetric, i.e.
mijk = mσ(i)σ(j)σ(k) ≥ 0 for any permutation σ ∈ S3.

In the symmetric CP decomposition, instead of factorizing M ≈ JU,V,WK, we factorize M as the
triple product of a single factor matrix U ∈ R|V |×R such that

M ≈ JU,U,UK

In this formulation, we use U to be the word embedding so the vector for wi is the ith row of U
similar to the formulations in: Levy & Goldberg (2014); Murphy et al. (2012); Pennington et al.
(2014).

WHY FACTORIZE THE THIRD MOMENT?

Factorizing the PPMI tensor of the third moment of co-occurrence is a natural extension of current
methods and justifiable for a number of other reasons. For one, if NLP tasks such as the semantic
analogy task depend on how embedding vectors cluster, the goal of training a word embedding
is to find a map of words to vectors such that the vectors for semantically similar words form a
cluster. For identifying the clusters of a planted partition model such as the Stochastic Block Model
(SBM), the spectral factorization of node interactions completely derived from pair-wise interactions
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is sufficient for discovering the disjoint clusters (Belkin & Niyogi (2001); Krzakala et al. (2013);
Spielman (2007)).

The existence of polysemous words in the corpus necessitate the assumption of a Mixed Membership
(MM) model, since polysemous words belong to multiple different clusters of meaning (Foulds
(2017)). In this case, it is well-known that factorizing the third moment provably recovers the
parameters of planted Mixed Membership-SBM model (Anandkumar et al. (2013)) in a way that
only capturing pair-wise interactions, i.e. the second order moment (uniquely) cannot. Further,
from the perspective of using Gaussian mixture models for capturing polysemy in word embeddings
(Athiwaratkun & Wilson (2017)) it is known that factorizing the third moments can provably identify
the isotropic Gaussian mixture models (Anandkumar et al. (2014)).

For an analysis of the degree to which our tensor factorization-based embeddings capture polysemy,
we refer the reader to Section on multiplicative compositionality on Page 9. Another perspective
is that considering the third order moment further contextualizes the co-occurrence matrix, adding
information that was lost by only considering matrix factorization.

While in this work we do not require any provable results for the derived word embeddings, we are
motivated by several recent developments successfully applying tensor factorization for addressing
related machine learning problems.

METHODOLOGIES

COMPUTING THE SYMMETRIC CP DECOMPOSITION

The Θ(|V |3) size of the third order PPMI tensor presents a number of computational challenges. In
practice, |V | can vary from 104 to 106, resulting in a tensor whose naive representation requires at
least 4 ∗ 10, 0003 bytes = 4 TB of floats. Even the sparse representation of the tensor takes up such a
large fraction of memory that standard algorithms such as successive rank-1 approximation (Wang
& Qi (2007); Mu et al. (2015)) and alternating least-squares (Kolda & Bader (2009)) are infeasible
for our uses. Thus, in this paper we will consider a stochastic online formulation similar to that of
(Maehara et al. (2016)).

We optimize the CP decomposition in an online fashion, using small random subsets Mt of the
nonzero tensor entries to update the decomposition at time t. In this minibatch setting, we optimize
the decomposition based on the current minibatch and the previous decomposition at time t− 1. To
update U (and thus the symmetric decomposition), we first define an n-dimensional decomposition
loss L(n)(Mt,U) and minimize this loss with respect to U using Adam (Kingma & Ba (2014)).

At each time t, we take Mt to be all co-occurrence triples (weighted by PPMI) in a fixed number
of sentences (around 1,000) from the corpus. We continue training until we have depleted the entire
corpus.

For Mt to accurately model M, we also include a certain proportion of elements with zero PPMI
(or “negative samples”) in Mt, similar to that of Salle et al. (2016).

We use empirically-found hyperparameters for training using Random Search (Bergstra & Bengio
(2012)) and leave theoretical discovery of optimal hyperparameters (such as negative sample pro-
portion) to future work.

WORD EMBEDDING PROPOSALS

CP-S. The first embedding we propose is based on symmetric CP decomposition of the PPMI ten-
sor M as discussed in the mathematical preliminaries section. The optimal setting for the word
embedding W is:

W := argmin
U

||M− JU,U,UK||F
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Since we cannot feasibly compute this exactly, we minimize the loss function defined as the squared
error between the values in Mt and their predicted values:

L(3)(Mt,U) =
∑

mt
ijk∈M

t

(mt
ijk −

R∑
r=1

uirujrukr)
2

using the techniques discussed in the previous section. This idea can be extended to n-dimensional
tensors by considering the suitable generalization of this loss function given by L(n), but we only
consider at most third order tensors in this work.

JCP-S. A potential problem with CP-S is that it is only trained on third order information. To rectify
this issue, we propose a novel joint tensor factorization problem we call Joint Symmetric Rank-R CP
Decomposition. In this problem, the input is the fixed rank R and a list of supersymmetric tensors
Mn of different orders but whose axis lengths all equal |V |. Each tensor Mn is to be factorized via
rank-R symmetric CP decomposition using a single |V | ×R factor matrix U.

To produce a solution, we first define the loss at time t to be the sum of the reconstruction losses of
each different tensor:

Ljoint((M
t)Nn=2,U) =

N∑
n=2

L(n)(Mt
n,U),

where Mn is an n-dimensional supersymmetric PPMI tensor. We then minimize the loss with
respect to U. Since we are using at most third order tensors in this work, we assign our word
embedding W to be:

W := argmin
U

Ljoint(M2,M3,U)

= argmin
U

[
L(2)(M2,U) + L(3)(M3,U)

]
This problem is a specific instance of Coupled Tensor Decomposition which has been studied in
the past (Acar et al. (2011); Naskovska & Haardt (2016)). In this problem, the goal is to factorize
multiple tensors using at least one factor matrix in common. A similar formulation to our prob-
lem can be found in Comon et al. (2015), which studies blind source separation using the algebraic
geometric aspects of jointly factorizing numerous supersymmetric tensors (to unknown rank). How-
ever, we attack the problem numerically while they outline some generic rank properties of such
a decomposition rather. In our formulation the rank is fixed and an approximate solution must be
found. Exploring the connection between the theoretical aspects of joint decomposition and quality
of word embeddings would be an interesting avenue for future work.

To the best of our knowledge this is the first study of Joint Symmetric Rank-R CP Decomposition,
and the first application of Coupled Tensor Decomposition to word embedding.

SHIFTED PMI

In the same way Levy & Goldberg (2014) considers factorization of positive shifted PMI
matrices, we consider factorization of positive shifted PMI tensors M, where mijk =
max(PMI(wi, wj , wk) − α, 0) for some constant shift α. We empirically found that different
levels of shifting resulted in different qualities of word embeddings – the best shift we found for
CP-S was a shift of α ≈ 2.7, whereas any nonzero shift for JCP-S resulted in a worse embedding
across the board. When we discuss evaluation we report the results given by factorization of the
PPMI tensors shifted by the best value we found for each specific embedding.

COMPUTATIONAL NOTES

When considering going from two dimensions to three, it is perhaps necessary to discuss the com-
putational issues in such a problem size increase. However, it should be noted that the creation of
pre-trained embeddings can be seen as a pre-processing step for many future NLP tasks, so if the
training can be completed once, it can be used forever thereafter without having to take training
time into account. Despite this, we found that the training of our embeddings was not considerably
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Table 1: Best tensor factorization hyperparameter values found

(Hyperparam) Tensor value shift Negative sample percent
CP-S −3.9 0.25

JCP-S (second order) 0 0.15
JCP-S (third order) −3.9 0.15

slower than the training of order-2 equivalents such as SGNS. Explicitly, our GPU trained CBOW
vectors (using the experimental settings found below) in 3568 seconds, whereas training CP-S and
JCP-S took 6786 and 8686 seconds respectively.

Also, we are aware of the well-posedness of the nonnegative CP decomposition (Lim & Comon
(2009b); Qi et al. (2014)), but found that considering this nonnegative decomposition did not sig-
nificantly change the results we got on downstream tasks either for CP decomposition or Joint CP
decomposition. We thus decide to only report results on the simpler case of unrestricted CP decom-
position.

EVALUATION

In this section we present a quantitative and qualitative evaluation of our embeddings against an
informationless embedding and state-of-the-art baselines. Our baselines are:

1. Random (random vectors with I.I.D. entries normally distributed with mean 0 and variance 1
2 ),

for comparing against a model with no meaningful information encoded. This provides a hard
baseline that all embeddings should outperform.

2. Skip-gram with Negative Sampling (SGNS - Mikolov et al. (2013)), for comparison against
the most visible and commonly used embedding method and for comparison against a technique
related to PPMI matrix factorization (Levy & Goldberg (2014))

3. Continuous BOW with Negative Sampling (CBOW - Mikolov et al. (2013)), for the same
reasons as SGNS

4. Nonnegative Sparse Embedding3 (NNSE - Murphy et al. (2012)), for comparison against a
technique that also directly uses explicit PPMI matrix factorization

5. Global Vectors (GloVe - Pennington et al. (2014)), for comparison against another very com-
monly used state-of-the art embedding method as well as another matrix factorization-based em-
bedding

For a fair comparison, we trained each model on the same corpus of 10 million sentences gathered
from Wikipedia. We removed stopwords and words appearing fewer than 1,000 times (110 million
tokens total) to reduce noise and uninformative words.

The baselines were trained using the recommended hyperparameters from their original publica-
tions, and all stochastic optimizers were used their default settings. Hyperparameters are always
consistent across evaluations. The best hyperparameter settings we found for each embedding are
found in Table 1.

Because of the dataset size, the results shown should be considered a proof of concept rather than an
objective comparison to state-of-the-art pre-trained embeddings. Due to the natural computational
challenges arising from working with tensors, we leave creation of a full-scale production ready
embedding based on tensor factorization to future work.

As is commonly done in the literature (Mikolov et al. (2013); Murphy et al. (2012)), we use 300-
dimensional vectors for our embeddings and all word vectors are normalized to unit length prior to
evaluation.

The numbers presented for all stochastic tasks (such as the supervised ML tasks) are the mean result
from 10 random restarts.

3The input to NNSE is an m × n matrix, where there are m words and n co-occurrence patterns. In our
experiments, we set m = n = |V | and set the co-occurrence information to be the number of times wi appears
within a window of 5 words of wj . As stated in the paper, the matrix entries are weighted by PPMI.
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QUANTITATIVE TASKS

Outlier Detection. The Outlier Detection task (Camacho-Collados & Navigli (2016)) is to deter-
mine which word in a listL of n+1 words is unrelated to the other nwhich were chosen to be related.
For each w ∈ L, one can compute its compactness score c(w), which is the compactness of L\{w}.
c(w) is explicitly computed as the mean similarity of all word pairs (wi, wj) : wi, wj ∈ L \ {w}.
The predicted outlier is argmaxw∈Lc(w), as the n related words should form a compact cluster with
high mean similarity.

We use the WikiSem500 dataset (Blair et al. (2016)) which includes sets of n = 8 words per group
gathered based on semantic similarity. Thus, performance on this task is correlated with the amount
of semantic information encoded in a word embedding. Performance on this dataset was shown
to be well-correlated with performance at the common NLP task of sentiment analysis (Blair et al.
(2016)).

The two metrics associated with this task are accuracy and Outlier Position Percentage (OPP). Ac-
curacy is the fraction of cases in which the true outlier correctly had the highest compactness score.
OPP measures how close the true outlier was to having the highest compactness score, rewarding
embeddings more for predicting the outlier to be in 2nd place rather than nth when sorting the words
by their compactness score c(w).

3-way Outlier Detection. As our tensor-based embeddings encode higher order relationships be-
tween words, we introduce a new way to compute c(w) based on groups of 3 words rather than pairs
of words. We define the compactness score for a word w to be:

c(w) =
∑

vi1 6=vw

∑
vi2 6=vw,vi1

∑
vi3 6=vw,vi1 ,vi2

sim(vi1 ,vi2 ,vi3),

where sim(·) denotes similarity between a group of 3 vectors. sim(·) is defined as:

sim(v1,v2,v3) =

(
1

3

3∑
i=1

||vi −
1

3

3∑
j=1

vj ||2
)−1

We call this evaluation method OD3.

The purpose of OD3 is to evaluate the extent to which an embedding captures 3rd order relationships
between words. As we will see in the results of our quantitative experiments, our tensor methods
outperform the baselines on OD3, which validates our approach.

This approach can easily be generalized to ODN (N > 3), but again we leave the study of higher
order relationships to future work.

Simple supervised tasks. Jastrzebski et al. (2017) points out that the primary application of word
embeddings is transfer learning to actual NLP tasks. They argue that to evaluate an embedding’s
ability to transfer information to a relevant task, one must measure the embedding’s accessibility of
information for actual downstream tasks. To do so, one must observe the performance of simple su-
pervised tasks as training set size increases, which is commonly done in transfer learning evaluation
(Jastrzebski et al. (2017)). If an algorithm using a word embedding performs well with just a small
amount of training data, then the information encoded in that embedding is easily accessible.

The simple supervised downstream tasks we use to evaluate the embeddings are as follows:

1. Word classification. We consider the task of labelling a word’s part of speech based solely on its
word vector using a simple supervised classifier (Logistic Regression) as suggested in Jastrzebski
et al. (2017). Performance at this task is a direct measure of the amount of syntactic information
encoded in the embedding. Using different amounts of training data for the classifier will tell
us how easily accessible such information is in that embedding. The dataset we use is the Penn
Treebank (Marcus et al. (1994)), which contains 35,000 PoS tagged words, and we use a 85/15
train/test split.

2. Sentiment analysis. We also consider a sentiment analysis task as described by Schnabel et al.
(2015). To train the classifier we use the suggested Large Movie Review dataset (Maas et al.
(2011)) which contains 50,000 sentiment-labeled movie reviews.
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All code is implemented using scikit-learn or TensorFlow and uses the suggested train/test split.

Word similarity. To present results on the most standard word embedding evaluation technique, we
evaluate the embeddings using word similarity on the common MEN, MTurk, RW, and SimLex999
datasets (Bruni et al. (2014); Radinsky et al. (2011); Luong et al. (2013); Hill et al. (2015)). For an
overview of word similarity evaluation, see Schnabel et al. (2015).

QUANTITATIVE RESULTS

Table 2: Outlier Detection scores across all embeddings

(Method) OD2 OPP OD2 acc OD3 OPP OD3 acc
Random 0.5828 0.2504 0.5076 0.1823

SGNS 0.6219 0.3483 0.6109 0.32
CBOW 0.6012 0.3178 0.6014 0.3014
NNSE 0.6603 0.3467 0.5486 0.2214
GloVe 0.6550 0.3500 0.5990 0.2456
CP-S 0.6671 0.3628 0.6738 0.3358

JCP-S 0.7069 0.4181 0.6606 0.3247

Outlier Detection results. The results are shown in Table 2. As we can see, the tensor factorization
based methods outperform the other non-tensor based baselines for all the formulations of this task.
CP-S performs the best for OD3 by a decent margin, which is sensible given that is is trained on
third order information only. This is also indicative of OD3’s ability to measure the amount of third
order information encoded in an embedding. Since the WikiSem500 dataset is focused on semantic
relationships, performance at this task demonstrates the quality of semantic information encoded in
our embeddings.

It is perhaps surprising that CP-S performs so well in the second order case of OD2, but this could be
justified by the fact that third order information sheds light on second order information in a way that
is not invertible. To illustrate this point, consider three words w, x, y. If w often co-occurs with both
x and y, it is clear that w also often co-occurs with x, but the separate statements that w co-occurs
with x and w co-occurs with y does not imply anything about the 3-way co-occurrence of (w, x, y).
Further, the pairwise co-occurrence of x and y can be extracted from the 3-way co-occurrence data:
#(x, y) =

∑
z∈V #(x, y, z). It is thus believable that utilizing third order co-occurrence can lead

to improved performance on tasks that rely on pairwise information.

Word classification results. The results are shown in Figure 1.

Figure 1: Word classification task performance vs. % training data
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At this task, we notice that when 100% of the training data is presented, SGNS outperforms all other
embeddings at this task. Since this task is a measure of quality of syntactic information encoded
in an embedding, these results are an indication that perhaps SGNS encodes the most amount of
syntactic information of all the embeddings presented here.

However, when training data is limited (restricting training data to 10%/30%), it is evident that our
tensor-based embeddings outperform the other baselines. So even though SGNS eventually is able to
provide higher quality syntactic information when enough training data is provided, this information
is encoded more readily in our embeddings for supervised tasks to use, a favorable property for the
sake of transfer learning.

Table 3: Supervised sentiment analysis scores across all embeddings

(Method) 10% training data 30% training data 50% training data 100% training data
Random 0.6999 0.7254 0.7311 0.7337

SGNS 0.7348 0.7590 0.7643 0.7696
CBOW 0.7322 0.7537 0.7591 0.7644
NNSE 0.7233 0.7476 0.7531 0.7572
GloVe 0.7310 0.7564 0.7622 0.7670
CP-S 0.7214 0.7454 0.7514 0.7575
JCP-S 0.7460 0.7681 0.7732 0.7774

Sentiment analysis results. The results are shown in Table 3. In this task, JCP-S is the dominant
method across all levels of training data, further showing that exploiting both second and third order
co-occurrence data leads to higher quality semantic information being encoded in the embedding.

Further theoretical research is needed to understand why JCP-S outperforms CP-S at this task, but its
superior performance relative to the baselines across all levels of training data in these experiments
demonstrates the quality of semantic information encoded by JCP-S.

Based on the clear relative success of our embeddings on these tasks, we can see that utilizing
tensor factorization to create word representations has the propensity to encode a greater amount
of semantic information than standard state-of-the-art pairwise or matrix-based word embedding
methods.

Word Similarity results.

Table 4: Word Similarity Scores (Spearman’s ρ)

(Method) MEN MTurk RW SimLex999
Random 0.04147 -0.0382 -0.0117 0.0053

SGNS 0.5909 0.5342 0.3704 0.2264
CBOW 0.5537 0.4225 0.3444 0.2727
NNSE 0.5055 0.5068 0.1993 0.1263
GloVe 0.4914 0.4733 0.1750 0.1403
CP-S 0.4723 0.4738 0.0875 0.0399
JCP-S 0.6158 0.5343 0.3546 0.2272

We show the word similarity results in Table 4. As we can see, our embeddings perform competi-
tively with the state-of-the-art at these tasks. It is worth including these results as the word similarity
task is a very common way of evaluating embedding quality in the literature. However, due to the
many intrinsic problems with evaluating word embeddings using word similarity (Faruqui et al.
(2016)), we do not read further into these results.

MULTIPLICATIVE COMPOSITIONALITY

We find that even though they are not explicitly trained to do so, our tensor-based embeddings
capture polysemy information naturally through multiplicative compositionality. We demonstrate
this property qualitatively and provide proper motivation for it, leaving automated utilization to
future work.
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In our tensor-based embeddings, we found that one can create a vector that represents a word w in
the context of another word w′ by taking the elementwise product vw ∗ vw′ . We call vw ∗ vw′ a
“meaning vector” for the polysemous word w.

For example, consider the word star, which can denote a lead performer or a celestial body. We
can create a vector for star in the “lead performer” sense by taking the elementwise product vstar ∗
vactor. This produces a vector that lies near vectors for words related to lead performers and far
from those related to star’s other senses.

Table 5: Nearest neighbors (in cosine similarity) to elementwise products of word vectors

Composition Nearest neighbors (CP-S) Nearest neighbors (JCP-S) Nearest neighbors (CBOW)

star ∗ actor oscar, award-winning, supporting roles, drama, musical DNA, younger, tip

star + actor stars, movie, actress actress, trek, picture actress, comedian, starred

star ∗ planet planets, constellation, trek galaxy, earth, minor fingers, layer, arm

star + planet sun, earth, galaxy galaxy, dwarf, constellation galaxy, planets, earth

tank ∗ fuel liquid, injection, tanks vehicles, motors, vehicle armored, tanks, armoured

tank + fuel tanks, engines, injection vehicles, tanks, powered tanks, engine, diesel

tank ∗ weapon gun, ammunition, tanks brigade, cavalry, battalion persian, age, rapid

tank + weapon tanks, armor, rifle tanks, battery, batteries tanks, cannon, armored

To motivate why this works, recall that the values in a third order PPMI tensor M are given by:

mijk = PPMI(wi, wj , wk) ≈
R∑
r=1

virvjrvkr = 〈vi ∗ vj ,vk〉,

where vi is the word vector for wi. If words wi, wj , wk have a high PPMI, then 〈vi ∗ vj ,vk〉 will
also be high, meaning vi ∗ vj will be close to vk in the vector space by cosine similarity.

For example, even though galaxy is likely to appear in the context of the word star in in the
“celestial body” sense, 〈vstar ∗ vactor,vgalaxy〉 ≈ PPMI(star, actor, galaxy) is low whereas
〈vstar ∗ vactor,vdrama〉 ≈ PPMI(star, actor, drama) is high. Thus , vstar ∗ vactor represents
the meaning of star in the “lead performer” sense.

In Table 5 we present the nearest neighbors of multiplicative and additive composed vectors for a
variety of polysemous words. As we can see, the words corresponding to the nearest neighbors of
the composed vectors for our tensor methods are semantically related to the intended sense both for
multiplicative and additive composition. In contrast, for CBOW, only additive composition yields
vectors whose nearest neighbors are semantically related to the intended sense. Thus, our embed-
dings can produce complementary sets of polysemous word representations that are qualitatively
valid whereas CBOW (seemingly) only guarantees meaningful additive compositionality.

While we leave automated usage and measuring of this property to future work, it is interesting to
see that this property is empirically validated in our embeddings and not the existing baselines after
motivating its existence from a tensor factorization point of view.

CONCLUSION

Our key contributions are as follows:

1. Two novel tensor factorization based word embeddings. We presented CP-S and JCP-S, which
are word embedding techniques based on symmetric CP decomposition. We experimentally
demonstrated that these embeddings outperform existing state-of-the-art matrix-based techniques
on a number of downstream tasks when trained on the same data.

2. A novel joint symmetric tensor factorization problem. We introduced and utilized Joint Sym-
metric Rank-R CP Decomposition to train JCP-S. In this problem, multiple supersymmetric ten-
sors must be decomposed using a single rank-R factor matrix. This technique allows for utiliza-
tion of both second and third order co-occurrence information in word embedding training.
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3. A new embedding evaluation metric to measure amount of third order information. We
produce a 3-way analogue of Outlier Detection (Camacho-Collados & Navigli (2016)) that we
call OD3. This metric evaluates the degree to which third order information is captured by a given
word embedding. We demonstrated this by showing our tensor based techniques, which naturally
encode third information, perform considerably better at OD3 compared to existing second order
models.

4. Word vector multiplicative compositionality for polysemous word representation. We
showed that our word vectors can be meaningfully composed multiplicatively to create a “mean-
ing vector” for each different sense of a polysemous word. This property is a consequence of the
higher order information used to train our embeddings, and was empirically shown to be unique
to our tensor-based embeddings.

Tensor factorization appears to be a highly applicable and effective tool for learning word embed-
dings, with many areas of potential future work. Leveraging higher order data in training word
embeddings is useful for encoding new types of information and semantic relationships compared
to models that are trained using only pairwise data. This indicates that such techniques are useful
for training word embeddings to be used in downstream NLP tasks.
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