
Learning State Switching for Improved Exploration in Multi-sensor
Environments

Homagni Saha 1 Sin Yong Tan 1 Zhanhong Jiang 2 Soumik Sarkar 1

Abstract
Reinforcement learning has been used to achieve
state of the art results in several robotics appli-
cations. Despite massive success, issues remain
regarding transfer to real world domains and being
able to optimize over multi-dimensional control
inputs as well as across several agents with differ-
ent perspective views for the same environment,
but sharing the same overall goal (multi-agent,
multi-sensor robotics). This paper takes a fresh
approach towards multi-sensor multi-agent inte-
gration for achieving improved performance using
a control theoretic approach of “state-switching”.
A formulation based on state switching is adapted
as a multi-agent reinforcement learning task in
the form of a value iteration algorithm maximiz-
ing expected payoffs over time. A reinforcement
learning task involving tracking an unknown ob-
ject with unknown motion dynamics using manip-
ulators is formulated for the well known sawyer
one handed manipulator. Thereafter we formulate
our state switching algorithm and show superior
performance compared to using individual sen-
sors. Our trained agent is then transferred from
simulation to a real setup and is shown to perform
nicely in the real domain as well.

1. INTRODUCTION
There exist several practical applications that can benefit
from consideration through a switching system perspective.
The controls community is rich in literature pertaining to
optimal scheduling and control of switching systems, with
applications in robotics (Axelsson et al., 2005a), aerospace
and mechanical systems (Rinehart et al., 2008; Heydari &
Balakrishnan, 2013a), bio-engineering (Heydari & Balakr-
ishnan, 2013b), and chemical processes (Liu & Gong, 2014).

1Department of Mechanical Engineering, Iowa State University,
Ames, IA 50011, USA. 2Johnson Controls International, 507 East
Michigan St, Milwaukee, WI 53202, USA. Correspondence to:
Soumik Sarkar <soumiks@iastate.edu>.

Planning and control in such scenarios is challenging be-
cause it has to deal with stabilization of a system composed
of subsystems with different dynamics as well as deciding
when to switch to a particular mode. Solutions to these types
of control problem are predominantly based on nonlinear
programming (Xu & Antsaklis, 2002; 2004; Axelsson et al.,
2008; Ding et al., 2009; Axelsson et al., 2005b; Kamgarpour
& Tomlin, 2012; Wardi & Egerstedt, 2012), and those that
solve it as a search problem over a set of discretized switch-
ing instants (Luus & Chen, 2003),(Rungger & Stursberg,
2011). Recently Adaptive Dynamic Programming (ADP)
based approaches have also been used successfully for con-
trol of switching systems in (Heydari & Balakrishnan, 2014).
We employ state switching in the system in our consider-
ation to achieve improved control. Active exploration for
robot grasping using trajectory optimization has been done
in (Kahn et al., 2015). In this paper we look at state switch-
ing with the benefits of improved exploration and robust
control. The same system can be made to act out differ-
ent control policies based on switching modes of control.
We formulate an algorithm that employs this kind of delib-
erate switching using reinforcement learning based deep
convolutional Q networks. The algorithm can be applied in
any scenario involving multiple sensor based control. We
demonstrate and validate our algorithm in the case of a 7
degree of freedom manipulator using multiple cameras that
are able to capture multi-angle views of an object of interest
for tracking an object for pick and place task. Multi-camera
based 3 dimensional control of robots has been studied in
(González-Galván et al., 2003; Wang et al., 2018; Ebert
et al., 2018). Many consider some model based assump-
tions, whereas our approach is still model free. In this work
we try to provide a new approach to the problem as well
as propose a generic algorithm for multi-sensory control of
systems in the perspective of a switching system. We formu-
late our problem as a reference tracking problem where the
system is able to choose between operating modes. There
exist reinforcement learning framework for these kinds of
problems as in (He & Jagannathan, 2005). However our ap-
proach is novel in the sense that while modeling the system
it considers the optimal switching sequence between several
operational modes as well as the optimal control input once
in a certain operational mode. This is achieved by coupling
together optimal control and optimal switching decisions in

Learning State Switching for Improved Exploration

our algorithm.
Contributions

1. For the first time to the best of our knowledge investi-
gate the effectiveness of simultaneous planning, control
and scheduling using reinforcement learning approach.

2. Provide an algorithm for control based on multi-sensor
input and validation results on a real robotic arm.

The remaining sections are organized as follows. In section
2 we combine state switching in the value iteration approach.
Based on a 7 DoF robotic manipulator with raw image as
inputs, in section 3 we go through deep Q learning in brief
and provide our algorithm for visuomotor control. In section
4 we provide our experimental results and show improved
performance both in simulation and experiments.

2. Control using state switching- Model,
assumptions and goals

We consider the problem of controlling the states of a sys-
tem to track a certain time varying signal. The decision
variables are jointly comprised of the active mode in the
given switching system as well as the optimal control input
for the given active mode. In the context of controlling the
joints of a manipulator we define different modes of the
system as the different states in which the agent collects
information about the environment. We model the discreet
time control affine system for the scenario as follows where
xk is our input state at time instant k:

xk+1 = fi(xk)+gi(xk)ui(k), k ∈ N, i ∈ I := {1, 2, ...M}
(1)

Here M is used to denote the maximum number of switch-
ing or active modes in the system, fi : Rn −→ Rn is
continuous mapping that transforms the state x at time in-
stant k based on the drift dynamics of the active mode i,
ui(k) ∈ Rm is the control input at time instant k for the
active mode i, and gi : Rn −→ Rn×m is the input dynamics
for the mode i which is coupled with the m dimensional
control input. The goal in our problem can be defined as
determining a switching schedule ik∀k ∈ 0, 1, ...,∞, as
well as determining the optimal control input ui(k) for the
system at time instant k and mode i, so that we could track
a reference signal vk ∈ Rs with an unknown dynamics
F : Rs −→ Rs as given by the equation below :

vk+1 = F (vk) (2)

Given an initial condition v0 ∈ Rs traditional control theo-
retic methods formulate the solution as minimizing the cost
function J as given below:

J =

∞∑
k=0

C(xk, vk) (3)

The standard assumption (Heydari, 2015) is that C : Rn ×
Rs −→ R+ is convex, continuous and positive semi-definite.
Here, R+ is used to denote the set of non-negative reals. In
the context of reinforcement learning we will reformulate
minimization of cost function J as maximization of payoff
function R as:

R =

∞∑
k=0

P(xk, vk) (4)

Now, P : Rn×Rs −→ R+ provides a measure of how close
to the goal the agent gets to after taking a certain action.
The authors in (Heydari, 2015) propose a value iteration
algorithm for the case when xk+1 = fi(xk) (interested only
in switching decisions) and establish convergence and feasi-
bility of using Neural Networks (NN) as universal function
approximators. In this section we will extend this technique
over cases involving simultaneous control and switching de-
cisions as modelled in equation 1. A typical value iteration
approach would consider assigning a value to a particular
configuration of the current state and the target tracking
state. The optimal value for a certain pair of state xk and
tracking reference vk can be formulated as a maximization
of an infinite sequence, and equivalently as a recursion as
follows :

V ∗(xk, vk) = P(xk, vk) +

∞∑
j=k+1

P(x∗j , vj) (5a)

V ∗(x, v) = P(x, v) + V ∗(fi∗(x) + gi∗(x)u∗i∗(x), F (v))
(5b)

Here x∗j∀j ∈ { k+1, k+2, ...} are the optimal future states
calculated using the system dynamics, i∗j ∈ I,∀j ∈ { k, k+
1, ...} are the optimal switching decisions, and u∗i∗ ∈ Rm
denote the optimal control input once in a certain active
mode i∗. For practical purposes we can consider a parameter
w discretizing each dimension of ourm dimensional control
input into a set of inputs of size w representing our domains
of interest. For example, form = 3 and w = 3, we can have
u = [c1, c2, c3]T , c1, c2, c3 ∈ { 1, 2, 3} , where 1,2 or 3 may
directly map to certain value of a control input, based on
designers knowledge of the operating characteristics of the
system. Let C = P(u) denote the power set of u, denoting
the set of all possible control input vectors. Also, Let us
denote P(i,C) as the action setA, i.e. the set of all possible
tuples of i, the active mode and C, the corresponding control.
In that case we can let :

τa(x) = fi(x)+gi(x)uji (x), uj ∈ P(C), a ∈ P(i,C) (6)

Based on the formulation in equation 6, we can write the
update law of the simplest value iteration method which
iteratively updates the value function as :

V j+1(x, v) = P(x, v) + max
a∈A

V j(τa(x), F (v)) (7)

Learning State Switching for Improved Exploration

The tuple (x, v) in equation 7 can be thought of as an “aug-
mented state” consisting of the current image captured by
the camera which may or may not contain relevant informa-
tion about the position of the object as well as the current
joint angles of the robot. In reinforcement learning setting,
the value function V can be estimated by so called Q func-
tion parameterized by the current augmented state, action
and weights of the neural network. Including τa in the
formulation of value function inherently adds a “planning
program objective” to the Q function and distinguishes it
from a purely “reactive style” planner. This concept of em-
bedding planners in RL agents to achieve improvements has
been also recently considered in value iteration networks
(Tamar et al., 2016).

3. Deep Reinforcement learning for
visuomotor control

3.1. System Description

In this work we control the seven degree of freedom one
handed manipulator -sawyer to be able to move its end ef-
fector as close as possible to a 3 dimensional object moving
randomly on a 2 dimensional surface. A schematic of the
Sawyer robot showing the degrees of freedom and joint
assignment along with the placement of camera sensors is
shown in figure 1. This will be necessary for describing
the states of the system. The robot is connected to local
server using Robot Operating System (ROS) and is able to
transmit captured data to the local workstation at 100 Hz.
In this experiment we try to learn a data driven model for
the controller that takes in as input the raw images from two
cameras along with the current values of the joint angles of
the robot and output a desired change in joint angle values
of the seven joints each time step and a desired mode of
operation of the robot. We classify the operation of the robot
into two distinct modes:

1. The state input to the controller comprises of images
captured from the hand camera and the current joint
angle values of the seven joints.

2. The state input to the controller comprises of images
captured form the head camera and the current joint
angle values of the seven joints.

The motivation for this state switching approach is primarily
three reasons:

1. The high number of links in this type of serial link
manipulator leads to a number of cases where the head
camera cannot see the object to track.

2. We want to explore the feasibility of a multi-camera
approach in place of a depth scan cameras that pro-
vide direct estimation of object locations, an approach

Figure 1. Description of the joints

commonly used in these kinds of tasks (Krainin et al.,
2010). The switching between head and hand cam-
eras is expected to provide comparable tracking results
without any explicit camera calibration.

A forward kinematics calculation provides the Cartesian
coordinates of the end point of the end effector of the robot
at each time instant. During optimization of the neural
network weights in the controller, it is possible to find the
exact Euclidean distance of the end point of the end effec-
tor to the center of the 3 dimensional object for a set of
fixed locations of the 3 dimensional object. This distance is
used to calculate the extrinsic-reward to the reinforcement
learning algorithm. In this framework we use two kinds
of rewards for an agent: “extrinsic-reward”, and “intrinsic-
reward” both of which would be described in later sections.
We first train our algorithm on Gazebo simulator provided
for sawyer robot with a setup for a pick and place task. Later
we transfer the trained neural network weights to fine-tune
on the real world application. Figure 2 shows the simulator
and the real world setup respectively.

3.2. Deep reinforcement learning framework

Deep Q Networks (DQN) is a model free implementation of
value iteration method using Bellman equation (Dolcetta &
Ishii, 1984). It is generally formulated as an iterative model-
free solution to a Markov Decision Process (MDP) (Howard,
1960). An MDP is defined as a tuple (S,A, P, r, γ) where:

1. S denotes the system state space. In our case, the state
consists of the image captured by the robot camera (I)
concatenated with the current joint angle values (J).
Thus S = I⊕ J

2. A is the set of actions that can be taken by an agent.
In our case A = A. Each joint of the robot can either
move up, move down or stay in the same position.

Learning State Switching for Improved Exploration

Figure 2. Simulation and real experiments

Provided there are 7 joints in the robot, and we are
considering state switching between 2 cameras, |A| =
2 ∗ (37).

3. P is the transition probability matrix that stores the
probability of transitioning from a state s1 ∈ S to a
state s2 ∈ S on taking an action a ∈ A.

4. r(s, a) is a reward function that assigns the utility of
taking an action a in the state s. It is also parameterized
by the current mode of the system m and each joint
angle input of each mode. Here we design two different
kinds of reward function:

(a) Extrinsic-reward: We denote it by rext. In our
case, it is the exact decrease in Euclidean distance
from the end point of the end effector to the center
of the object to track due to action taken at a
time instant. The reward function is available
only during training and is supplied corresponding
to control input for each of the joints when in a
certain mode. However we expect our algorithm
to generalize in testing.

(b) Intrinsic-reward: We denote it by rint. This
reward is evaluated as the difference between en-
tropy of Q values predicted by the network to
the maximum possible entropy of the Q values.
Details are provided in the next section.

5. γ ∈ [0, 1] is the discount factor, a controlled parameter
to assign greater relative importance to actions taken

in the current step than those taken in the past. In our
case we use a discount factor of 0.9.

Our algorithm takes an action just before time instant k
and receives rewards just after time instant k based on the
movement of the arm at time step k. For our experiments we
restrict extrinsic reward function so that rext(s, a) ∈ [−1, 1].
This is achieved naturally by restricting the joint increment
angles for individual joints. In the above section we men-
tioned that this was directly related to the Euclidean dis-
tance during training, thus physically, our reward varies
from -1 meter to 1 meter. By formulation, intrinsic reward
rint(s, a) ∈ [0, 1]. Also we consider a fixed time horizonK
over which to optimize, essentially the number of trials the
multi agent system is provided to move the robot as close as
possible to the object, before being reset to the initial condi-
tions. Being model free, our algorithm can also be applied
to MDPs with unknown transition probabilities. Essentially
for each modem, it tries to maximize the following function
which is known as the expected discounted total return from
a starting time step k0:

Rm(k0) = E(

K−1∑
k=k0

(γk−k0rm(k)))∀m = { 1, 2, ...} (8)

Now Q(xk, ak) will denote the utility of applying action ak
in state xk. Let π denote a set of mappings from all states
to actions. In that case, the optimal utility of the state action

Learning State Switching for Improved Exploration

pair (xk, ak) would be given by:

Q∗(x, a) = max
π

E[Rt|xk = x, ak = a, π] (9)

This would translate to solving the following Bellman equa-
tion :

Q∗(x, a) = Ex̃∼ε[r + γmax
ã∈A

Q∗(x̃, ã)|x, a] (10)

Being model free, here x̃ ∼ ε implies sampling states from
unknown system dynamics ε. Since we are using deep
convolutional neural networks for approximation of Q, we
will need to parameterize this Q function in terms of the
weights of the neural network φ. After successful training
of the neural network, we will have :

Q(x, a, φ) = Q∗(x, a) (11)

In order to achieve this, we would use the time varying loss
function on the behaviour distribution of the agent ρ(x, a)
(Mnih et al., 2013), as described in equation 12 and apply
minibatch gradient descent on a batch of data sampled from
observed history by the agent.

Lk(φk) =
1

2
Ex,a∼ρ(x,a)[(Q(x, a, φk)− yk)2] (12a)

yk := Ex̃∼ε[r + γmax
ã

Q(x̃, ã, φk−1)|x, a] (12b)

We store this data in a memory buffer and in DQN terms
this buffer is called the Experience replay buffer. We use
Bm to denote the buffer for a certain mode and D to denote
the sampled batch size from each of these memory buffers.
Being an online algorithm, control (switching and tracking)
and optimization of the weights are done in an interleaved
fashion. An epsilon greedy approach (Wunder et al., 2010)
is also followed while picking actions to enable greater
exploration in earlier stages. Below we provide our entire
algorithm for end to end training of the controller.

Algorithm 1 State switching DQN
Result: Set of neural network weight matrices Φ =

{ φ1, ..., φm} for m modes
Initialize the set of weight matrices Φ
Initialize the set of target weight matrices Φt =
{ φt1, ..., φtm} for m modes
Initialize |m| replay buffers B = B1, B2, ...Bm
while time step k ≤ K do

Let φc be the neural network weights for the current
mode.
With probability ε select a random action ak ∈ A
With probability 1 − ε select action ak =
argmaxa∈A(Q(xk, a, φc))

Let ujk ⊂ ak be the control input at the current state,
execute ujk on the system, observe extrinsic reward
rextk and next state xk+1

Let umk ⊂ ak be the decision for the next mode at
the current state, observe intrinsic reward rintk , change
the mode of the system accordingly to cnext applying
switching umk on xk.
Store the tuple (xk, ak, rk, xk+1) in the replay mem-
ory Bc
for Bi ∈ B do

if size of replay buffer Bi increased by D then
Sample random minibatch transitions
(xj , aj , rj , xj+1) from Bi
Corresponding to (xj , aj , rj , xj+1) set:
if mode of the system was changed from i to ĩ
then
yj = rj + γmaxã(Q(xj+1, ã, φ

t
ĩ
))

end
if mode of the system was unchanged then

yj = rj + γmaxã(Q(xj+1, ã, φ
t
i))

end
Update φi using loss function given by : L =
(yj −Q(xj , ã, φi))

2

Slightly push target weights towards actual
weights : φti = 0.1× φi

end
end

end

3.3. Evaluating intrinsic switching reward

The Shannon entropy quantifies the number of bits needed
to optimally encode independent draws of a discreet vari-
able Q function parameterized by the current state, action
and neural network weights Q(x, a, φ) following a proba-
bility distribution p(Q(x, a, φ)). It is given by the following
equation:

H =
∑
n

p(Q(x, a, φ))log(p(Q(x, a, φ))) (13)

Learning State Switching for Improved Exploration

where i = 1, 2, ..., n, for all states (total of n) the value
Q(x, a, φ) can assume. We let Hmax denote the maximum
entropy of the predicted Q-value by the neural network,
then intrinsic reward is calculated as follows:

Hmax = n× p(Q(x, a, φ))log(p(Q(x, a, φ))) s.t.
(14a)

Q(x, a, φ) = Q(x, b, φ) ∀a, b ∈ A (14b)

rint = Hmax −H (14c)

3.4. Neural network architecture

In Fig 3, we show our network architecture for the train-
ing. The input for the network are single channel images
captured using the sawyer head camera or the sawyer arm
camera, resized to dimension of 80x80. The resized images
go through a series of 2D-Convolution and max pooling lay-
ers to capture the features. Next, the output from the third
max pooling layer is flattened and fed to 2 dense layers with
512 units and 100 units respectively. A difficult problem in
using Q learning in case of large action spaces is that the
network has poor convergence properties and often takes
an intractable number of samples to train completely. We
overcome this problem by decoupling each action and dis-
cretizing them into three finer actions (increase, decrease or
keep same joint angle). The outputs from the pooling layer
is merged with current joint angle inputs and are all con-
nected to a common pooling layer after passing through the
convolution layers. Intuitively, all the joint control actions
are sharing information from the input image (head/hand)
camera, however, the decisions for controlling each joint are
decoupled from each other, only depending on the current
joint angle configuration.

Thus, for the 7 DoF sawyer arm joint, there are seven sep-
arate dedicated sub-networks that take individual joint an-
gle change decisions, but receive the same global reward
from the reinforcement learning framework depending on
how close the manipulator moved towards the object. Be-
sides the seven sub-networks each mode also contains an
eighth similar sub-network that is used to train the switch-
ing between the sawyer head camera and the arm camera.
Depending on the output of this sub network, the focus of
the training is shifted from one state to another. This sub
network too receives intrinsic reward whereas the remain-
ing seven networks receive extrinsic reward. The eighth
sub-network also uses sigmoid activation function, while
the other have linear activation functions. The output of
these sub-networks are finally concatenated to a vector that
represents the current combined control input (control for
current mode and switching decision) to the system. Note
that each sub-network for the joints will output 3 values
which corresponds to the decisions to increase, decrease or
to remain the current joint angle for corresponding joints,
while the sub network for switching will output m = 2

values denoting probabilities of staying in different modes,
based on which switching is executed in the next action.

4. Experiment and results
In this section we will explain the experiments that were
performed both in the simulation and real setup and the
associated results. The neural network function approxima-
tor is shown in figure 3. Standard parameters were chosen
for the target DQN algorithm as well as the neural network
optimizers. Firstly, for the parameters of the Reinforcement
Learning (RL) framework, a value of 0.1 is chosen as the
target weight update rate, the experience buffer was chosen
as a deque data structure with a length of 2000 time points.
The discount factor γ was chosen to be 0.9, giving a fair
weightage to long term actions. An initial value of random
exploration parameter ε was chosen to be 0.1, which was
subject to exponential decay over epochs. For the neural
network, Root Mean Square Propagation (RMSprop) opti-
mization scheme was chosen (Mukkamala & Hein, 2017),
with a learning rate of 0.001, ρ = 0.9 and decay set to 0.
Mean square error was slightly modified to the Huber loss
function (Sun et al., 2018) as it provides better results in
practice. Rectified Linear Units (ReLu) (Nair & Hinton,
2010) was used as the activation function in the hidden units
whereas a linear activation was provided at the output for
the final layer in joint control actions and a sigmoid activa-
tion was used for the final layer which output probability
of switching states. The positions of the object to track
were changed using a random normal distribution with three
sigma bounds within bounds of the table. The weights of
the neural network were optimized for 18000 epochs in the
Gazebo simulator setup, after which it was transferred to
the real world setup. Thereafter, considerable results were
observed on the real setup after training for more than 6000
epochs.

Figure 4 and 5 shows the averaged rewards obtained over
the epochs for the real and simulation setups respectively. It
is clear that the over time, the algorithm returns improved
performance until it saturates. Thereafter on further training
overfitting (Tetko et al., 1995) may take place where it puts
greater stress on following a single trajectory and fails at
tracking the object for multiple positions. To define the
performance of the algorithm, we consider the tracking
error which is given by:

e =
min(c)

t× |K|
(15)

Here, min(c) is the minimum current distance of the end
point of the end effector from the object over an episode and
t is the actual distance of the object from the end point of
the end effector when the object position was first reset for
that episode. |K| denotes the length of the corresponding

Learning State Switching for Improved Exploration

Figure 3. Neural network architecture

episode (episode terminates after 50 trials or if the gripper
is exactly at the target location). In experiments in figures
7 and 6 it was observed that over epochs the algorithm
grows fairly robust to changing object positions as tracking
error reduces substantially. However, results in simulator
show better performance than real scenario. Finally, figure
2 shows our algorithm in testing scenario for both the sim-
ulator and real case. Going from left to right we see that
the robot successfully positions the manipulator close to the
object (wooden cube in simulator and black cube in real)
for two random positions chosen towards left and right of
the robot.

5. Conclusion
In this paper we presented a control theoretic “state switch-
ing” approach as a generic approach in a reinforcement
learning setting to solve multi-agent multi input control
problem. We reformulated a manipulator control problem
for object tracking as a state switching problem and showed
that our proposed algorithm performs well in simulation
as well as transfers well to the real robot scenario. Our
proposed framework relies on original deep Q networks for-
mulation in order to calculate intrinsic reward. However, in
future we will consider extending the framework to tackle
continuous action spaces. This may include an actor-critic
style deep deterministic policy gradients (DDPG) frame-
work where the state switching decision is embedded in the
critic itself.

Figure 4. Averaged cumulative rewards over epochs for real exper-
imental setup- x axis shows the number of epochs in training and y
axis shows the averaged reward obtained. The spike drop in initial
epochs marks the initial bias caused due to transfer from simulator
to real world.

Learning State Switching for Improved Exploration

Figure 5. Averaged cumulative rewards over epochs for simulation
experimental setup- x axis shows the number of epochs in training
and y axis shows the averaged reward obtained. State switching
agent (orange) clearly outperforms single mode agents.

Figure 6. Averaged tracking error over epochs for real experimen-
tal setup- x axis shows the number of epochs in training and y axis
shows the averaged tracking error.

Figure 7. Averaged tracking error over epochs for simulated exper-
imental setup- x axis shows the number of epochs in training and
y axis shows the averaged tracking error. State switching causes
high variance (orange plot) in the initial epochs, however finally it
outperforms single sensor agents.

References
Axelsson, H., Egerstedt, M., and Wardi, Y. Reactive robot

navigation using optimal timing control. In Proceedings
of the 2005, American Control Conference, 2005., pp.
4929–4934. IEEE, 2005a.

Axelsson, H., Egerstedt, M., Wardi, Y., and Vachtsevanos,
G. Algorithm for switching-time optimization in hybrid
dynamical systems. In Proceedings of the 2005 IEEE
International Symposium on, Mediterrean Conference on
Control and Automation Intelligent Control, 2005., pp.
256–261. IEEE, 2005b.

Axelsson, H., Boccadoro, M., Egerstedt, M., Valigi, P., and
Wardi, Y. Optimal mode-switching for hybrid systems
with varying initial states. Nonlinear Analysis: Hybrid
Systems, 2(3):765–772, 2008.

Ding, X. C., Schild, A., Egerstedt, M., and Lunze, J. Real-
time optimal feedback control of switched autonomous
systems. IFAC Proceedings Volumes, 42(17):108–113,
2009.

Dolcetta, I. C. and Ishii, H. Approximate solutions of the
bellman equation of deterministic control theory. Applied
Mathematics and Optimization, 11(1):161–181, 1984.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine,
S. Visual foresight: Model-based deep reinforcement
learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

González-Galván, E. J., Cruz-Ramırez, S. R., Seelinger,
M. J., and Cervantes-Sánchez, J. J. An efficient multi-
camera, multi-target scheme for the three-dimensional
control of robots using uncalibrated vision. Robotics
and Computer-Integrated Manufacturing, 19(5):387–400,
2003.

Learning State Switching for Improved Exploration

He, P. and Jagannathan, S. Reinforcement learning-based
output feedback control of nonlinear systems with input
constraints. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 35(1):150–154, 2005.

Heydari, A. Optimal scheduling for reference tracking or
state regulation using reinforcement learning. Journal of
the Franklin Institute, 352(8):3285–3303, 2015.

Heydari, A. and Balakrishnan, S. N. Optimal orbit transfer
with on-off actuators using a closed form optimal switch-
ing scheme. In AIAA Guidance, Navigation, and Control
(GNC) Conference, pp. 4635, 2013a.

Heydari, A. and Balakrishnan, S. N. Optimal multi-
therapeutic hiv treatment using a global optimal switching
scheme. Applied Mathematics and Computation, 219(14):
7872–7881, 2013b.

Heydari, A. and Balakrishnan, S. N. Optimal switching and
control of nonlinear switching systems using approximate
dynamic programming. IEEE Transactions on Neural
Networks and Learning Systems, 25(6):1106–1117, 2014.

Howard, R. A. Dynamic programming and markov pro-
cesses. 1960.

Kahn, G., Sujan, P., Patil, S., Bopardikar, S., Ryde, J., Gold-
berg, K., and Abbeel, P. Active exploration using trajec-
tory optimization for robotic grasping in the presence of
occlusions. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4783–4790. IEEE,
2015.

Kamgarpour, M. and Tomlin, C. On optimal control of
non-autonomous switched systems with a fixed mode
sequence. Automatica, 48(6):1177–1181, 2012.

Krainin, M., Henry, P., Ren, X., and Fox, D. Manipulator
and object tracking for in hand model acquisition. In
Proceedings, IEEE International Conference on Robots
and Automation, pp. 1817–1824, 2010.

Liu, C. and Gong, Z. Modeling and optimal control of a
time-delayed switched system in fed-batch process. Jour-
nal of the Franklin Institute, 351(2):840–856, 2014.

Luus, R. and Chen, Y. Optimal switching control via direct
search optimization. In Proceedings of the 2003 IEEE
International Symposium on Intelligent Control, pp. 371–
376. IEEE, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mukkamala, M. C. and Hein, M. Variants of rmsprop and
adagrad with logarithmic regret bounds. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2545–2553. JMLR. org, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pp. 807–814, 2010.

Rinehart, M., Dahleh, M., Reed, D., and Kolmanovsky, I.
Suboptimal control of switched systems with an applica-
tion to the disc engine. IEEE Transactions on Control
Systems Technology, 16(2):189–201, 2008.

Rungger, M. and Stursberg, O. A numerical method
for hybrid optimal control based on dynamic program-
ming. Nonlinear Analysis: Hybrid Systems, 5(2):254–
274, 2011.

Sun, Q., Zhou, W.-X., and Fan, J. Adaptive huber regression.
Journal of the American Statistical Association, (just-
accepted):1–35, 2018.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.
Value iteration networks. In Advances in Neural Informa-
tion Processing Systems, pp. 2154–2162, 2016.

Tetko, I. V., Livingstone, D. J., and Luik, A. I. Neural
network studies. 1. comparison of overfitting and over-
training. Journal of chemical information and computer
sciences, 35(5):826–833, 1995.

Wang, D., Jia, W., Yu, Y., and Wang, W. Recognition
and grasping of target position and pose of manipulator
based on vision. In 2018 5th International Conference
on Information, Cybernetics, and Computational Social
Systems (ICCSS), pp. 483–488. IEEE, 2018.

Wardi, Y. and Egerstedt, M. Algorithm for optimal mode
scheduling in switched systems. In 2012 American Con-
trol Conference (ACC), pp. 4546–4551. IEEE, 2012.

Wunder, M., Littman, M. L., and Babes, M. Classes of
multiagent q-learning dynamics with epsilon-greedy ex-
ploration. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pp. 1167–1174.
Citeseer, 2010.

Xu, X. and Antsaklis, P. J. Optimal control of switched
systems via non-linear optimization based on direct dif-
ferentiations of value functions. International Journal of
Control, 75(16-17):1406–1426, 2002.

Xu, X. and Antsaklis, P. J. Optimal control of switched
systems based on parameterization of the switching in-
stants. IEEE transactions on automatic control, 49(1):
2–16, 2004.

