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Abstract

Despite the advent of Big Data, data-gathering in many domains can still be an expensive
process that necessitates careful planning. For instance, in genomics, researchers can spend
money and time to sequence a greater number of individual genomes – or alternatively
they can spend these resources to sequence individual genomes with increased accuracy. In
either case, spending resources has the potential to reveal new variations in the genome and
thereby new genetic insights. We consider the case where scientists have already conducted
a pilot study to reveal some variants in a genome and are contemplating a follow-up study.
We provide a novel prediction method, using Bayesian nonparametric [BNP] methods, for
how many variants scientists can expect to find in the follow-up based on the information
in the pilot. When sequencing accuracy is kept constant between the pilot and follow-up,
we demonstrate on (real) data from the gnomAD project (Karczewski et al., 2019) that
our prediction is more accurate than two recent proposals – and as accurate as a more
classic proposal. Unlike other existing methods though, our method allows practitioners to
change the sequencing accuracy between the pilot and the follow-up. We demonstrate how
this distinction allows our method to be used both for more realistic predictions as well as
for optimal experimental design of the follow-up study under a resource budget.

1. Data and Model

Modern high throughput sequencing technologies allow accurate determination of an organ-
ism’s genome (Reuter et al., 2015). Typically for some population of interest, researchers
define a reference genome, which serves as a fixed representative for this population. We say
that a variant is observed wherever a sequenced genome differs from the reference genome.
We consider the case where the variants in a sample of N individuals have already been ob-
served in a pilot study, and we wish to predict the number of new, hitherto unseen variants
that we will observe if we were to take a new, follow-up sample of size M .

Suppose there are J variants observed among the N genomes in the pilot study, with
0 ≤ J <∞. Let {ψj}j≥1 denote a collection of distinct labels. Each ψj distinguishes the jth
variant among other possible variants. For ease of representation, we assume that variants
are ordered as they appear in the sample; i.e., by order of appearance. Let xnj = 1 if the
variant with label ψj is observed for the nth organism; otherwise, let xnj = 0. We collect

all the variant information for the nth organism in the measure Xn :=
∑J

j=1 xnjδψj , which
pairs each variant observation with the corresponding label by putting a mass of size xnj at
location ψj . We write XN1:N2 to denote the set {XN1 , XN1+1, XN1+2, . . . , XN2}, N1 ≤ N2.

c© L. Masoero, F. Camerlenghi, S. Favaro & T. Broderick.



Genomic variety prediction via Bayesian nonparametrics

We here take a Bayesian approach. To do so, we must choose an appropriate latent
parameter Θ. We specify our generative model via a likelihood pr(X1:N |Θ) and a prior
pr(Θ). Bayes Theorem then yields the posterior pr(Θ|X1:N ), which encodes what we know
about the latent parameter after having observed N data points. The posterior predictive
pr(XN+1:N+M |X1:N ) follows. Finally, since the number of new variants in the follow-up
study is a function of XM :M+N and X1:N , we can compute its distribution conditional on
X1:N from the posterior predictive. It thus remains to specify our model.

Technically there is a fixed, finite upper bound on the number of possible variants estab-
lished by the (necessarily finite) size of any individual genome. But this bound is usually
much larger than the number of observed variants. In practice, moreover, we typically ex-
pect that no study of any practical finite size N will reveal all possible variants – simply
because some variants are so exceedingly rare. Bayesian nonparametric [BNP] methods
allow us to avoid hard-coding an unwieldy, large finite bound that may cause computa-
tional and modeling headaches. In particular, BNP methods allow the observed number
of variants to be finite for any finite data set and grow without bound – in such a way
that computation typically scales closely with the actual number of variants observed. The
mechanism by which BNP methods work is that we imagine a countable infinity of latent,
unseen variants; thus, for any N , there are always more latent variants to draw on in future.
To use these BNP methods, then, we provide a label to each of the latent infinity of variants:
{ψj}∞j=1. And we write Xn :=

∑∞
j=1 xnjδψj ; since xnj = 0 for all of the unobserved variants,

this equation can be considered equivalent to the previous definition of Xn above.
In reality, nearby positions on a genome can be highly correlated; this phenomenon is

called linkage disequilibrium. We make the simplifying assumption that in fact every variant
appears independently of every other variant; that is, {xnj} is independent of {xnk} across
all n for j 6= k. This assumption makes inference computationally efficient and is common
to other methods (Ionita-Laza et al., 2009; Gravel, 2014; Zou et al., 2016). We assume
that {xnj}∞n=1 are (infinitely) exchangeable. In turn, this implies, by de Finetti (1931), the
existence of a latent, random variant frequency θj such that the xnj are Bernoulli draws
with frequency θj , identically and independently distributed across n. We can collect the
pairs of each θj together with its associated variant label ψj in a measure Θ :=

∑∞
j=1 θjδψj .

We assume the Xn are independent and identical conditional on Θ. We say that X1 given Θ

is described by a Bernoulli process (BeP) with parameter Θ, and we write Xn|Θ
iid∼ BeP(Θ).

This final equation serves as the likelihood in our Bayesian model.
We model the variants’ frequencies through the jumps of a three-parameter beta process.

This prior guarantees that a finite number of variants is observed in any finite sample and
that the number of observed variants is unbounded as the number of samples grows. We
choose the three-parameter beta process (3BP) model for its ability to capture realistic power
laws. In particular, its three parameters are (1) a mass parameter α that scales the total
number of variants, (2) a discount parameter σ that controls the power law of the growth,
and (3) a concentration parameter c that modulates the frequency of more widespread
variants. See Teh and Gorur (2009) and the Appendix for more details.
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2. Predicting the number of new variants

We proposed and justified a Bayesian model consisting of (1) a prior Θ ∼ 3BP(α, σ, c) over

variant frequencies and (2) a likelihood Xn | Θ
iid∼ BeP(Θ) for observed variants conditioned

on the variant frequencies. Because the Bayes decision rule that minimizes mean square
error is the mean (Keener, 2011), we use the posterior predictive mean of the number

of new variants as our predictor. In what follows let U
(M)
N represent the number of new

variants in a follow-up sample of size M after a preliminary study of size N , U
(M)
N :=∑∞

j=1 1
(∑N

n=1 xn,j = 0
)

1
(∑M

m=1 xN+m,j > 0
)

.

Proposition 1 Let Θ ∼ 3BP(α, σ, c), and let Xn | Θ
iid∼ BeP(Θ) for n = 1, 2, . . .. Assume

α > 0, c > −σ and σ ∈ (0, 1). Then, for (a)b↑ := Γ(a+ b)/Γ(a),

U
(M)
N | X1:N ∼ Poisson

{
α

M∑
m=1

(c+ σ)(N+m−1)↑

(c+ 1)(N+m−1)↑

}
. (1)

In practice, sequencing a genome is complex and noisy; millions of reads of fragments
of the same genomic sequence need to be aligned and compared to the reference genome.
Every position j of the genome of individual n is read a random number Dn,j of times;
Out of these, a number Dn,j,err ≤ Dn,j reads give rise to an error, due to technological
imperfections, and are discarded. The remaining Dn,j,noerr = Dn,j − Dn,j,err reads are
correctly processed, aligned to the reference genome, and recorded (Ionita-Laza and Laird,
2010). Let Cn,j ≤ Dn,j,noerr denote the number of times that reads are correctly processed
and we observe disagreement with the reference genome. A variant is “called” whenever
some discrepancy criterion – the “variant calling rule” – is satisfied. Following Ionita-Laza
and Laird (2010) we focus on simple threshold variant calling rules: given T > 0, variation
is declared if the count Cn,j exceeds T , i.e. xn,j = 1(Cn,j ≥ T ). We model the sequencing
depth Dn,j as a Poisson random variable with parameter λ > 0, i.i.d. across individuals and
positions. The number of successful reads Dn,j,noerr is binomially distributed, with number
of trials given by the sequencing depth Dn,j , and success probability given by 1 − perr –
a fixed probability of reading error that depends on the sequencing technology. We write
the probability, φ(λ, T, perr), that at least T successful reads are obtained at any position

j for any individual: φ(λ, T, perr) :=
∑∞

t=T
e−λλt

t!

∑t
i=T

(
t
i

)
(1 − perr)

ipt−ierr . When planning
the follow-up experiment under a fixed budget, there is a tradeoff in practice between
sequencing depth λ and number of individuals sequenced, M . Let φinit = φinit(λinit, T, perr)
and φ = φ(λfollow, T, perr) denote the value of φ(λ, T, perr) for the pilot and the follow-up
study respectively. We note that our prior over the variant frequencies has not changed:
Θ ∼ 3BP(α, σ, c). But now we first draw whether organism n has variant with frequency
θj according to Bernoulli(θj). If it does have the variant, we draw whether it is observed
according to Bernoulli(φinit) in the initial experiment and Bernoulli(φfollow) in the follow-up.

Proposition 2 Let Θ ∼ 3BP(α, σ, c). Let Xn | Θ
iid∼ BeP(φinitΘ), n ∈ {1, . . . , N}. Let

Xn+m | Θ
iid∼ BeP(φfollowΘ),m ∈ {1, . . . ,M}. Assume α > 0, c > −σ and σ ∈ (0, 1).

U
(M)
N | X1:N ∼ Poisson

(
P̂

(M,λfollow)
N

)
, (2)
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Figure 1: Prediction of the number of new variants. The dashed black line displays the
true number of distinct variants (y-axis) as the sample size increases (x-axis).
In every subpopulation, we divide the data in 33 samples of equal size N , and
iteratively train our method (as well as competing methods), on one subset of
the data. We report the mean prediction across subsets (blue: BNP, Eq. (1);
green: Ionita-Laza et al. (2009); red: Zou et al. (2016); orange: Gravel (2014)).
Shaded regions report an estimate of the prediction error, and cover one standard
deviation.

with P̂
(M,λfollow)
N :=

(
αφfollow

∑M
m=1 EB

{
(1− φfollowB)m−1(1− φinitB)N

})
, and where B ∼

Beta(1−σ, c+σ). Equation (2) can be used to optimally design follow-up experiments under
a budget constraint, by finding

(λ?,M?) ∈ arg max
M,λfollow

P̂
(M,λfollow)
N subject to f(M,λfollow) ≤ D, (3)

where D is the available budget, and f(m,λ) is a non-negative function, increasing in both
arguments, encoding the cost of sampling m individual at sequencing depth λ.

3. Experiments

We validate our methods on data from the Genome Aggregation Database (gnomAD) (Kar-
czewski et al., 2019), a recent extension of the Exome Aggregation Consortium (ExAC) data
set (Lek et al., 2016) and the largest publicly available human genomic dataset. GnomAD
contains genetic information from 125,748 individual exome sequences recorded at 1,195,872
genomic loci. Samples in gnomAD are arranged into eight subpopulations according to geo-
graphic origin, where one of the eight subpopulations is a catch-all category called “Other”.
These subpopulations vary in size from 1,335 Bulgarian samples to 17,720 African-American
samples. See Appendix for details.

In Figure 1, we show that our method’s performance on pure prediction of new variants
in a follow-up study is competitive with the state-of-the-art when the pilot and follow-
up studies are collected under the same experimental conditions. We compare to three
recent alternatives proposed in the literature (Ionita-Laza et al., 2009; Gravel, 2014; Zou
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Figure 2: Predicting the number of new variants under different experimental conditions
between the pilot and follow-up. Same four subpopulations (gnomAD). Pilot
sequencing quality is λinit = 45. Follow-up sequencing quality is λfollow = 32.
Horizontal axis is the number of samples. Vertical axis is the number of total
observed variants across both pilot and follow-up. The threshold T = 30.
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Figure 3: Optimal experimental design. For each subpopulation, we assume to have access
to a pilot sample X1:N with λ = 40, perr = .01. Sample sizes are as in Figure 1.
We assume cost(m,λ) = m log λ, D = 3000, T = 30. For every choice of feasible
(λ,m), with λ ∈ [.9 × T, 3 × T ] (x-axis) we compute and plot the expected
number of distinct variants that are going to be observed for the largest feasible
extrapolation size M (y-axis). Shaded regions cover one standard deviation.

et al., 2016). In Figure 2 we show how, when experimental conditions change, the BNP
method keeps on producing useful predictions, by adapting to the changing conditions,
while competing methods fail to do so. Last, in Figure 3 we sketch how our predictors
can be used to inform optimal experimental design of a follow up study, by leveraging the
fomulation of Equation (3).
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Appendix A. Additional details on the model

In Section 1 we introduced the beta-Bernoulli process model we use to describe the observed
data. This is obtained by combining a 3BP process prior, with a collection of conditionally
i.i.d. Bernoulli processes likelihoods. The parametric beta distribution prior forms a con-
venient conjugate prior to the parametric Bernoulli distribution likelihood. Analogously,
the Bernoulli process likelihood has a convenient conjugate prior in the beta process. In
the Bayesian nonparametric case, in contrast to the parametric case, conjugacy is all the
more important due to the even greater potential difficulty of computation in infinite di-
mensions; in particular, conjugacy allows posterior computation via simple finite arithmetic
operations, where the number of required operations is on the order of the (finite) number
of observed variants. Recall that above we assumed independence of the {xnj}∞n=1 across
j; this independence implies the independence of the θj across j. In agreement with this
assumption, the beta process prior on Θ can be interpreted as a sequence of independent
priors on the θj . In essence, the beta process prior provides control over these independent
priors in a way that satisfies our goals: (A) a finite number of observed variants in any finite
sample and (B) a number of observed variants that is unbounded as the number of samples
grows. Since it is common for physical processes to exhibit power laws, we choose the three-
parameter beta process (3BP) model for its ability to capture power laws. In particular,
its three parameters are (1) a mass parameter α that scales the total number of variants
observed, (2) a discount parameter σ that controls the power law of the growth in observed
variant cardinality, and (3) a concentration parameter c that modulates the frequency of
more widespread variants.

Next, we will detail two equivalent representations for drawing Θ ∼ 3BP(α, σ, c). In
what follows, our focus will be on generating the θj . For our purposes here, the ψj serve
merely to distinguish the variants (with no other significance to the labels), so it is enough
to ensure that they are all almost surely distinct. To that end, in what follows, we always

take ψj
iid∼ Unif[0, 1], independently and identically distributed across j. For our first

representation, we can write Θ ∼ 3BP(α, σ, c) if

Θ =
∞∑
i=1

Ci∑
j=1

B
(i)
i,j

i−1∏
`=1

(
1−B(`)

i,j

)
δψi,j ,

where Ci
iid∼ Poisson(α) and B

(`)
i,j

indep∼ Beta(1 − c, σ + `c), independently across i, j, and
l. This size-biased representation (Broderick et al., 2012; Paisley et al., 2012; Campbell
et al., In press) demonstrates that the three-parameter beta process can be interpreted as a
sequence of independent frequencies. In mathematical manipulations, though, the Poisson
process representation of the beta process is often much more convenient. We therefore
note that the representation above is equivalent (Broderick et al., 2012; Paisley et al., 2012)
to drawing the {θj} from a Poisson point process with rate measure

ν(dθ) = α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ(1− θ)c+σ−11[0,1](θ)dθ. (4)

To ensure that goals (A) and (B) above are satisfied, we must have the following restrictions
on the 3BP hyperparameters: α > 0, c > −σ and σ ∈ (0, 1) (Broderick et al., 2018).
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Appendix B. Proofs

B.1. Proof of Proposition 1

Proof By construction, the variant frequencies {θj} are formed from a Poisson point
process with rate measure ν given in Equation (4). Recall that a variant with frequency θj
appears in organism n with Bernoulli probability θj , independently across n. Therefore, the
collection of variant frequencies whose corresponding variants have not yet appeared after N
organisms comes from a thinned Poisson point process relative to the original Poisson point
process generating the {θj}; the thinned process has rate measure ν(dθ) · Bernoulli(0|θ)N
and is independent of the collection of frequencies that did appear in the first N organisms.
Similarly, the collection of variant frequencies corresponding to variants that did not appear
in the first N organisms but then did appear in the first follow-up organism comes from
a thinned Poisson point process with rate measure ν(dθ) · Bernoulli(0|θ)N · Bernoulli(1|θ)
and is independent of the collection of frequencies that did not appear in the first N + 1
organisms. Recursively, for m ≥ 1, the collection of variant frequencies corresponding to
variants that did not appear in the first N + m − 1 organisms but then did appear in the
mth follow-up organism comes from a thinned Poisson point process with rate measure

ν(dθ)Bernoulli(0|θ)N+m−1Bernoulli(1|θ)

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ+1(1− θ)c+σ−1+N+m−11[0,1](θ)dθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
· Γ(1− σ)Γ(c+ σ − 1 +N +m)

Γ(c+N +m)

· Beta(θ | 1− σ, c+ σ − 1 +N +m)dθ

= α
(c+ σ)(N+m−1)↑

(1 + c)(N+m−1)↑
Beta(θ | 1− σ, c+ σ − 1 +N +m)dθ.

Finally, we observe that the number of points in a Poisson point process is Poisson dis-
tributed with mean equal to the integral of its rate measure. Each of these Poisson point
processes is independent, and the sum of independent Poisson is Poisson with mean equal

to the sum of the means. So, since U
(M)
N is the sum of points in these M Poisson point

processes with m ∈ [M ], we have U
(M)
N is Poisson with mean

M∑
m=1

∫ 1

0
α

(c+ σ)(N+m−1)↑

(1 + c)(N+m−1)↑
Beta(θ|1− σ, c+ σ − 1 +N +m)dθ =

M∑
m=1

α
(c+ σ)(N+m−1)↑

(1 + c)(N+m−1)↑
,

as was to be shown.

B.2. Proof of Proposition 2

Proof We start by showing that U
(M)
N is almost surely finite, for any choice of N , M . To

see the almost sure finiteness of the Poisson parameter and hence of U
(M)
N , note that the

parameter constraints for the three-parameter beta process are specifically constructed so
that θν(dθ) is a proper beta distribution. The θ factor will arise from Bernoulli(1 | φfollowθ).
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The exact form of the Poisson parameter in Equation (2) arises by following the same
thinning argument as in the proof of Theorem 1. To see the beta representation,

Bernoulli(1 | φfollowθ)Bernoulli(0 | φfollow)m−1Bernoulli(0 | φinit)
Nν(dθ)

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
θ−1−σ((1− θ)c+σ−1(φfollowθ)(1− φfollowθ)

m−1(1− φinitθ)
N1[0,1](θ)dθ

= α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
φfollow(1− φfollowθ)

m−1(1− φinitθ)
N · Γ(1− σ)Γ(c+ σ)

Γ(c+ 1)

· Beta(θ | 1− σ, c+ σ)dθ

= αφfollowBeta(θ | 1− σ, c+ σ)dθ.

Appendix C. Empirics for the prediction and prediction uncertainty

C.1. Choosing the beta process hyperparameters

Our more realistic model of variant observation sets up a prediction framework for the
number of new variants in a follow-up experiment. But without further development, we
still face the difficulty that our predictor of Equation (1) does not use any information
about the pilot experimental data except its cardinality. Recall that the hyperparameters
α, σ, c control the behavior of the predictor, as proved in Section 2. So we will induce a
dependency on the observed pilot data by fitting these hyperparameter values to the pilot
data. Our approach may be seen to fit into the framework of empirical Bayes.

One common option in empirical Bayes is to maximize the probability of the data given
the hyperparameters:

arg max
α,σ,c

pr(X1:N |α, σ, c),

with pr(X1:N |α, σ, c) =
∫

Θ pr(X1:N |Θ)pr(dΘ|α, σ, c). In the case without sequencing errors,
this probability can be expressed in closed form as the exchangeable feature probability
function (EFPF) (Broderick et al., 2013). However, with sequencing errors, the integral
can be very high-dimensional and expensive to compute with Markov chain Monte Carlo.
Moreover, even without sequencing errors, the EFPF for the beta process is a complex
function of sums, products, quotients, and exponentiation of gamma functions (Broderick
et al., 2013, Eq. 8), which we find may suffer from numerical instability in this optimization
problem.

A much easier choice is to treat the prediction from our model above as a regression
function with its own parameters α, σ, c. We can fit these parameters to the pilot project
data by imagining subsets of the true pilot data as mini-pilot projects themselves and
directly minimizing error in prediction on the remaining data. In particular, consider index

n ∈ [N ] as the size of the imagined mini-pilot. Then, by our earlier definition, P
(m)
n is

the prediction for the number of new variants in the next m data points given the first

n data points. Here we write P
(m)
n (α, σ, c) to emphasize the hyperparameter dependence.

Similarly, by our definition in Section 2, U
(m)
n | X1:N is the true number of new variants in

10
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the next m data points (for m such that n + m ≤ N) given the first n data points. Then
we solve the error minimization problem:

α̂, σ̂, ĉ := arg min
α,σ,c:

α>0, σ∈[0,1),c>−σ

N−n∑
m=1

(
P (m)
n (α, σ, c)−

(
U (m)
n | X1:N

))2
. (5)

In practice, we choose n = b2/3×Nc, and we use numerical solvers to estimate α̂, σ̂, ĉ.1 We
choose to minimize the 2-norm (sum of squared differences), but different norms could be
employed. In our experiments, we also tested the 1-norm (sum of squared differences), but

observed empirically a slightly worse performance. Finally, we use the quantity P̂
(M)
N :=

P
(M)
N (α̂, σ̂, ĉ) as our predictor for the number of new variants in the follow-up study of size
M after the full pilot study of size N .

C.2. Accounting for overdispersion

We expect our real data to be overdispersed relative to our putative posterior predictive
distribution Equation (1) since the Poisson distribution has variance constrained to be equal
to its mean. In theory, a non-Poisson model would allow improved uncertainty quantifi-
cation; in practice, the conjugacy of the Poisson is what led to our easy-to-use predictive
formula in Equation (1). To enable a speedy procedure, we instead propose a bootstrapped
measure of uncertainty for our predictor. In more detail, let S > 1 be the number of boot-
strap resamples. For each s ∈ [S], we draw a bootstrap resample, without replacement, of
size nboot = N(1 − (1 − 1/N)N ) ≈ 0.6323 × N . We choose this value because nboot is the
expected number of distinct values that we would expect to sample in a bootstrap resample

- with replacement - of size N . We call this bootrapped subset X̂
(s)
1:nboot

. For each bootstrap
resample, we resolve Equation (5) for the model hyperparameters, which in turn induce a
new prediction for the number of new variants in the follow-up study of size M . We report
uncertainties by calculating standard deviations across these predictions.

Appendix D. Description of competing methods

In the following subsections we provide additional details about the competing methods
considered. All the methods assume that there exists a finite, albeit unknown, number of
loci at which genomic variation can be observed. We denote such quantity with the letter K.
Moreover, all these methods make use of the site-frequency-spectrum (SFS) or fingerprint
of the sample X1:N . This is nothing but a vector counting the frequencies of frequencies
observed in the sample. Namely, given a pilot study X = X1:N with J distinct variants,
the SFS of X is given by

fN = [fN,1 . . . , fN,J ] with fN,j =

J∑
`=1

1

(
N∑
n=1

xn,` = j

)
,

1. In our experiments, we tested various choices of n, and found n = b2/3×Nc to be a good value across all
the sample sizes considered. Different choices might be considered, e.g. when the sample size N is very
small, or, conversely, very large. For the purposes of minimizing Equation (5), we used the differential
evolution algorithm (Storn and Price, 1997), as implemented in the SciPy library (Jones et al., 2001–).
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so that fN,1 counts the number of variants observed only once among the N samples, fN,2
the number of variants observed in exactly two samples etc.

D.1. Beta-Bernoulli product model

We start by reviewing the approach proposed by Ionita-Laza et al. (2009). The authors
consider the same problem of genomic variation described in Section 1. The input data
X1:N is here viewed as a binary matrix, X1:N ∈ {0, 1}N×J , in which all positions at which
variation is not observed are discarded, and the order of the columns is immaterial. This
binary matrix is modeled via a parametric beta-Bernoulli model: the authors assume that
there exists a fixed, unknown number K < ∞ of loci at which variation can be observed.
For each j ∈ [K], they assume that the j-th feature is displayed by any observation (row)
with probability θj ∈ [0, 1], where the frequencies θj , j = 1, . . . ,K are distributed according
to a beta distribution with parameters a, b, i.e.

θ =
[
θ1 . . . θK∞

]
, with θj ∼ Beta(a, b) ∀j,

independently and identically distributed. Conditionally on θ,

Xn =
[
xn,1 . . . xn,K

]
, with xn,j∼Bernoulli(θj),

so that the columns of the matrix X1:N are i.i.d., while the rows are made of independent,
but not identically distributed entries. Under this model, the number of counts of each
variant is binomially distributed, conditionally on the latent frequency of such variant, i.e.

zN,j | θj :=
n∑
i=1

xn,j ∼ Binomial(N, θj).

Letting fN,j =
∑J

`=1 1(zN,` = j) be the number of variants which appear exactly j times
among the first N samples, and g(x; a, b) be the density function of a beta random variable
with parameters a, b evaluated at x,

g(x; a, b) =
xa−1(1− x)b−1

B(a, b)
1[0,1](x),

with B(a, b) =
∫ 1

0 x
a−1(1− x)b−1dx = Γ(a)Γ(b)/Γ(a+ b), then the probability that exactly

j of the N individuals show variation at a given site is given by

pN,k =

∫ 1

0

(
N

k

)
θk(1− θ)N−kg(θ; a, b)dθ

=

(
N

k

)∫ 1

0

θN+a−1(1− θ)N−k+b−1

B(a, b)
dθ =

(
N

k

)
(a)k↑(b)N−k↑

(a+ b)N↑
.

Because we can’t observe more than N variants in N trials, and since the 0 class is never
observed, these probabilities are then normalized as follows:

λN,k =
pN,k∑N
j=1 pN,j

=

(
N
k

)
(a)k↑(b)N−k↑∑N

j=1

(
N
j

)
(a)j↑(b)N−j↑

.
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It follows that the log likelihood for the observed data X1:N is given by

`BBPM
a,b (X1:N ) = log

 N∏
j=1

λ
fN,j
N,j

 =

N∑
=1

fN,j log(λN,k).

Letting M = tN be the number of additional samples to be observed, we can compute
the expected number of new hitherto unseen variants in additional M samples after N
samples have been observed as

∆N (M) = E

 K∑
j=1

1

(
M∑
m=1

xm,j > 0

)
1

(
N∑
n=1

xn,j = 0

)
=

K

B(a, b)

∫
[0,1]

(1− (1− θ)(t+1)N )− (1− (1− θ)N )θa−1(1− θ)b−1dθ

=
K

B(a, b)

∫
[0,1]

(1− θ)N − (1− θ)(t+1)Nθa−1(1− θ)b−1dθ

=
η1

a

N + b− 1

N

[
1− B(a, (t+ 1)N + b)

B(a,N + b)

]
, (6)

where η1 := E[fN,1] is the expected number of features which appear exactly one time in a
sample of size N . To use the estimator ∆N (M), Ionita-Laza et al. (2009) substitute η1 with
its empirical counterpart N,1, the number of features which have been observed once in the
sample X1:N . Then, they find the parameters a, b via maximization the of the log-likelihood
of the model,

{a∗, b∗} = arg max
a>0,b>0

{
`BBPM
a,b (X1:N )

}

Remark 3 The estimator obtained in Equation (6) crucially relies on the empirical fre-
quency of features observed once among the first N draws, fN,1. For example, if a dataset
had fN,1 = 0, ∆N (M) = 0 for every M > 0.

D.2. Linear program to estimate the frequencies of frequencies

Zou et al. (2016) assume the same setting as Ionita-Laza et al. (2009) and formalize the
problem of hitherto unseen variants prediction as that of recovering the distribution of
frequencies of all the genetic variation in the population, including those features which
have not yet been observed.

They assume that each possible variant in a sample is independent of the other variants,
and that the j-th variant appears with a given probability θj conditionally i.i.d. across
all the individuals observed - i.e. the θj are parameters of independent Bernoulli random
variables xn,j for all n ≥ 1 and j. Therefore the pilot study X1:N is modeled by a col-
lection of independent Bernoulli random variables, which are also identically distributed
along each column, and the sum zN,j :=

∑N
n=1 xn,j ∼ Binomial(N, θj). From the frequen-

cies zN,1, . . . , zN,J of the J variants observed among the first N samples, it is possible to
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compute the fingerprint of the sample, fN . Given the fingerprint, the goal is to recover
the population’s histogram, which is a map quantifying, for every θ ∈ [0, 1], the number of
variants such that θj = θ. Formally, learn a map h from the distribution of frequencies P
to integers

hP : (0, 1]→ N ∪ {0} (7)

Because for N large enough the empirical frequencies associated to common variants should
be well approximated by their empirical counterpart, Zou et al. (2016) only consider the

problem of estimating the histogram from the truncated fingerprint f
(κ)
N = {fN,j/N : j ≤

κ}. In their analysis, the authors only consider κ = 0.01, i.e. they consider “common”
variants all those variants that appear in more than 1% of the sample elements. More-
over, rather than learning a continuous function as described by Equation (7), they im-
pose a discretization factor δ ≥ 1, and then set up a linear program in which the goal
is to correctly estimate the population histogram associated to the frequencies in the set
S =

{
1

1000N , δ
1

1000N , . . . , δ
i 1
1000N , . . . , κ

}
. The value δ, given κ, determines how many

frequencies are going to be estimated in (0, κ]: the lower δ, the finer the discretization.
The authors suggest using δ = 1.05. In our experiments, we set δ = 1.01, for which we
find the method to produce better results, at the cost of a small additional computational
effort. Finally, the problem of recovering the histogram is solved through the following
optimization:

min
h(θ),θ∈S

∑
j:j≤Nκ

1

1 + fN,j

∣∣∣∣∣fN,j −∑
θ∈S

h(θ)Binomial(N, θ, j)

∣∣∣∣∣
subject to

h(θ) ≥ 0,
∑
θ∈S

h(θ) ≤ K,
∑
θ∈S

θ · h(θ) +
J∑

j:j>Nκ

j

N
fN,j =

J

N
,

where K is an upper bound on the total number of variants, and Binomial(N, θ, j) is the
probability that a Binomial draw with bias θ and N rounds is equal to j.

Given the histogram ĥ which solves the linear program above, one can obtain an estimate
of the number of unique variants at any sample size M using

V (ĥ,M) =
∑

θ:ĥ(θ)>0

ĥ(θ)(1− (1− θ)M ).

Following Zou et al. (2016), we refer to this estimator as the “unseenEST” estimator.

D.3. Jackknife estimators

Jackknife estimators for the problem of estimating the number of hitherto unseen species
were first introduced by Burnham and Overton (1978) in the capture-recapture literature.

14



Genomic variety prediction via Bayesian nonparametrics

Given X1:N
iid∼ F (ψ) for some distribution F and some parameter ψ, let ψ̂N = ψ̂N (X1:N )

be an estimator of ψ with the property that

E[ψ̂N ] = ψ +
a1

N
+
a2

N2
+ . . . , (8)

for fixed constants a1, a2, . . . . Without loss of generality assume ψ̂N to be symmetric in its
inputs X1:N , and denote with I ⊂ [N ] a subset of given size p, let ψ̂N−p,I be the estimate
obtained by dropping the observations whose indices are in I. Similarly, let

ψ̂
(p)
N =

(
N

p

)−1 ∑
I:|I|=p

ψ̂N−p,I (9)

The idea of the Jackknife estimator is that, if the assumption of Equation (8) holds, we
can improve over ψ̂N by using a correction originating from Equation (9). The p-th order
Jackknife estimator is defined as

ψ̂
Jp
N =

1

p

p∑
`=0

(
(−1)`

(
p

`

)
(N − `)pψ̂(`)

N

)
. (10)

Under the assumption of Equation (8), the estimator of Equation (10) has bias approaching

zero polynomially fast in the correction order, Bias(ψ̂
Jp
N ) ∼ N−p−1.

D.3.1. An estimator for the population size

Burnham and Overton (1978) introduced a nonparametric procedure to estimate the total
number of animals present in a closed population when capture-recapture data is available.
Assume that there is a fixed, but unknown number K of total species. Over the course of
N repeated observational experiments, J ≤ K distinct species are observed.

Let X1:N be the collection of available data, in which Xn = [xn,1, . . . , xn,J ], with xn,j = 1
if species j has been observed on the n-th experiment, and 0 otherwise. Moreover, assume
that each species j ∈ [K] – both observed and unobserved ones – is observed across all trials
with a fixed, but unknown probability θj ∈ (0, 1].

Notice that while Burnham and Overton (1978) developed the estimator having in mind
a fixed and finite population of animals, we can also think of each sample Xn as a genomic
sequence characterized by the presence or absence of genetic variants at different sites.

The nonparametric MLE for the total support size K is given by K̂MLE(X1:N ) =
K̂MLE
N = J . Clearly J ≤ K, therefore J is a biased estimate for K. If one assumes, in a

similar spirit to Equation (8), that

E[K̂MLE
N ] = K +

a1

N
+
a2

N2
+ . . . , (11)

then one could use the jackknife estimator of Equation (10) to estimate K. This requires

computing ψ̂
(`)
N for ` = 1, . . . , p, which are linear functions of the observed fingerprint fN .

The case p = 1: We outline the approach for p = 1. Let qN,n be the number of animals
which have been observed only on the n-th trial,

qN,n =
∑
j≥1

1(xn,j = 1)1

∑
n′ 6=n

xn′,j = 0


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Then,

K̂
(1,\n)
N = J − qN,n and K̂

(1)
N =

1

N

N∑
n=1

K̂
(1,\n)
N = J −

fN,1
N

. (12)

Therefore, the order 1 jackknife estimator for the total population size is obtained by plug-

ging in ψ̂
(J0)
N = J and ψ̂

(J1)
N = J − fN,1

N in Equation (10):

K̂J1
N = J +

N − 1

N
fN,1 (13)

The case for general p: For any p ≤ N , it always holds that

K̂
(p)
N = J −

(
N

p

)−1 p∑
`=1

(
N − `
p− `

)
fN,` (14)

This formula allows to obtain the general Jackknife estimator of order p, which is a linear
function of the observed number of species J and correction terms which depend on the
fingerprint fN ,

K̂
Jp
N =

p∑
`=1

a`,pfN,`.

D.3.2. Estimators for the number of hitherto unseen genomic variants

Taking inspiration from the approach of Burnham and Overton (1978), Gravel et al. (2011)
and Gravel (2014) developed Jackknife estimators for the number of hitherto genomic vari-
ants which are going to be observed in M additional samples given n initial ones. Let
V (N) denote the total number of variants observed in N samples, and let ∆(N +M,N) :=
HN+M−1 −HN−1 =

∑M+N−1
`=N , where

HN = 1 + 1/2 + . . .+ 1/N

is the N -th harmonic number. To derive their estimators, the authors use the assumption
that for a given order p ≥ 1 the total number of variants present in n+m samples can be
estimated as follows:

V̂
(M)
N = V (N) +

p∑
`=1

a`,p∆(N +M,N)`, (15)

where a = [a1, . . . , ap] are constants which depend on the initial sample size n and on
the fingerprint of the sample f . This assumption is exact in the case of a constant size
and neutrally evolving population (Gravel et al. (2011)). For a given order p the unknown
coefficients are obtained by solving the following system of equations:

V̂
(M)
N = V̂

(M)
N−1 = . . . = V̂

(M)
N−p. (16)

16



Genomic variety prediction via Bayesian nonparametrics

Equating V̂
(M)
N to V̂

(M)
N−j using Equation (15) for j = 1, . . . , p, we obtain a system of p

equations of the form

V (N)− V (N − j) =

p∑
`=1

a`,p(∆(N +M,N − j)` −∆(N +M,N)`). (17)

Using the equality

V (N)− V (N − `) =
∑̀
j=1

(
`
j

)(
N
j

)fN,j . (18)

we can solve for a`,p and express these in terms of N,∆(N +M,N) and the fingerprint fN ,
and the final estimator is a linear function of the fingerprint fN .

D.3.3. Choice of the jackknife order

As pointed out in Burnham and Overton (1978), the optimal order p of the jackknife
estimator heavily depends on the data under consideration. It is therefore desirable to
obtain a procedure which uses the data to guide the choice of such order. Burnham and
Overton (1978) phrase this decision problem as a sequential hypothesis test, in which one
keeps on increasing the order of the jackknife until the data suggests that the drop in bias
obtained by increase the jackknife order is exceeded by the gain in variance. Precisely, for
p = 1, 2, . . . one sequentially performs the following test:

H0,p : E(K̂
Jp+1

N − K̂Jp
N ) = 0 versus Ha,p : E(K̂

Jp+1

N − K̂Jp
N ) 6= 0. (19)

If H0,p is rejected, this has to be interpreted ad evidence of significant bias reduction relative
even to the increased variance of ŜJp+1 (Burnham and Overton, 1978). The first order p for
which the test fails to reject the null hypothesis is picked as the jackknife order.

The test relies on the following observations:

K̂
(Jp+1)
N − K̂Jp

N =

p+1∑
`=1

ãpfN,p, (20)

again a linear combination of the fingerprint. Because the conditional distribution of the
fingerprint is independent of K given J , the minimum variance estimator of the conditional
variance is given by

est var(K̂
Jp+1

N − K̂Jp
N | J) =

J

J − 1

{
p∑
`=1

ã2
`fN,`

(K̂
(Jp+1)
N − K̂Jp

N )2

J

}
. (21)

Under H0,p, the test statistic

Tp =
K̂

(Jp+1)
N − K̂Jp

N√
est var(K̂

Jp+1

N − K̂Jp
N | J)

(22)

is approximately normally distributed.
For a given extrapolation size M , we can apply the same procedure to the estimators

derived in Gravel et al. (2011) and Gravel (2014), which are again linear combinations of
the fingerprint.
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Appendix E. Additional experimental results

E.1. The gnomAD dataset

For real data, we use the Genome Aggregation Database (gnomAD) (Karczewski et al.,
2019), a recent extension of the Exome Aggregation Consortium (ExAC) data set (Lek
et al., 2016). GnomAD contains genetic information from 125,748 individual exome se-
quences recorded at 1,195,872 genomic loci. Samples in gnomAD are arranged into eight
subpopulations according to geographic origin, where one of the eight subpopulations is a
catch-all category called “Other”. These subpopulations vary in size from 5,040 Ashkenazi
Jewish samples to 56,885 non-Finnish European samples.

In order to test the performance of our estimator we consider both synthetic and real
data, with the goal of understanding how the predictive performance of the estimators
changed across different data generating regimes. We compared the performance of the
estimators derived in Section 2 to all the alternative estimators proposed in the literature
– to the best of our knowledge – namely the ones proposed in Ionita-Laza et al. (2009);
Gravel (2014); Zou et al. (2016), described in detail in Appendix D.1, Appendix D.2 and
Appendix D.3.

First, as a sanity check, for those estimators for which an explicit model for the frequen-
cies is available, we verified that the we were able to learn the true parameters of the data
generating process and the proposed estimators performed well in practice. Across all the
experiments performed, we found our estimators to perform comparably, if not better, to
the best alternative method.

E.2. Synthetic data from the Indian buffet process

In this section, we provide experimental results for data drawn from the three parameters
Indian buffet process. When the data is drawn from the true model, we expect the Bayesian
nonparametric estimators of Section 2 to work particularly well. We tested against a large
collection of parameters α > 0, σ ∈ [0, 1) and c > −σ. We report here results for different
configurations. In all cases, the optimization procedure outlined in Section 3 was able
to recover the true growth rate of the distinct variants. Interestingly, in some instances,
the optimization recovered parameters that differ from the true parameters that generated
the process, but still have better empirical performance, due to the sampling variability
associated to the process generation (see Figure 4).

E.3. Comparison with the method of Ionita-Laza et al. (2009)

In a nutshell, the method proposed by Ionita-Laza et al. (2009) is a parametric Bayesian
counterpart to the nonparametric approach introduced in Appendix D.1 for a thorough
discussion). Specifically, Ionita-Laza et al. (2009) assume that there exists a fixed, unknown
number K of variants, whose frequencies are i.i.d. draws from a beta distribution. In our
experiments, we find that this parametric approach is extremely effective when tested on
synthetic data in which the variants’ distribution follows an exact beta distribution with
mean sufficiently larger than 0. The performance of the estimator rapidly worsens under
misspecification, i.e. when the variants’ distribution deviates from a beta distribution. In
the appendix, we report experimental results for power law distributed frequencies, and
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Figure 4: A draw from a three-parameter Indian buffet process. Here, α = 20, c = 1,
σ = 0.1. In the left panel, we see the binary matrix X containing the first
N = 100 samples (x-axis) from the process, in its left-ordered-form (lof) – i.e.
variants (y-axis) are sorted by the order of appearance, so that as more points
are added to the dataset, more columns contain nonzero entries. In the central
panel, we plot the number of distinct variants (y-axis) as a function of the sample
size (x-axis), extrapolating up to M = 1900 additional samples. Last, on the
right panel, we plot the empirical distribution of frequencies among the first N
samples.
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Figure 5: In this figure, we reproduce the visualizations explained in Figure 4 for a draw
from a three-parameter Indian buffet process with parameters α = 40, c = 1 and
σ = 0.25
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Figure 6: Performance of the beta-Bernoulli predictor (green crosses) proposed by Ionita-
Laza et al. (2009) and of the nonparametric Bayesian predictor (dotted blue
line, Theorem 1) on three different datasets (each panel represents a different
dataset). Each dataset is generated as follows: we first draw a random vector θ of
dimensions K = 104. The K coordinates are i.i.d. draws from a beta distribution.
Conditionally on θ, we draw a random matrix X with N = 2000 rows and K
columns. The (n, j)-th entry xn,j is Bernoulli distributed with parameter θj , so
that the columns of X are i.i.d.. We retain the first N = 200 rows as training set
and obtain the two estimators. We project up to N + M = 2000 observations.
To produce estimates of the prediction error, we subdivide the whole data X in
10 distinct subsets of N = 200 rows, and iteratively train both models on each
subset. We report the mean (solid lines, and crosses) and one standard deviation
(shaded regions) of the predicted values at each extrapolation level N+mfor each
m = 201, . . . , 2000 across the ten subsets. From left to right, we vary the first
shape parameter of the beta distribution α ∈ {10−2, 5 × 10−3, 10−3}, driving
the mean of the distribution to zero, while keeping the second parameter β = 1
fixed.

show that even for moderate power law behavior the estimator severely underestimate the
rate at which distinct variants appear. Because power laws arise in a vast number of
natural phenomena, including the genomic application considered here, this represents a
major limitation of the Bayesian parametric approach.

Ionita-Laza et al. (2009) under misspecification: the case of power laws: Here
we consider the case in which the variants frequencies θ1, . . . , θK are i.i.d. draws from a
power law distribution, i.e. for some tails exponent ξ ≥ 0

θj ∼ f(θ) ∝ θ−ξ1[0,1](θ). (23)

The parameter ξ controls the left tail of the distribution: for ξ = 0, the distribution is
uniform over the support [0, 1]. The larger the value of ξ, the more mass we put over small
frequencies. Power laws arise in a vast number of natural phenomena, including ecology,
biology, physical and social sciences. Therefore, having an estimator that is effective when
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Figure 7: Performance of the beta-Bernoulli predictor (green solid line) proposed by Ionita-
Laza et al. (2009) versus the nonparametric Bayesian predictor (dotted blue line)
on three different datasets (each panel represents a different dataset). Each
dataset is generated as follows: we first draw a random vector θ of dimensions
K = 104. The K coordinates are i.i.d. draws from a power law distribution as
described in Equation (23). Conditionally on θ, we draw a random matrix X with
N = 1000 rows and K columns. The (n, j)-th entry xn,j is Bernoulli distributed
with mean θj , so that the columns of X are i.i.d.. We retain the first N = 50 rows
as training set and obtain the two estimators. We project up to N + M = 1000
observations. We repeat the procedure over ten resamples of the same data. Un-
certainty estimates are obtained by computing one empirical standard deviation
across the ten predictors for each ` = 101, . . . , 1000. From left to right, we vary
the exponent of the power law distribution (left, ξ = 1.05, center, ξ = 1.2, right
ξ = 1.5).

frequencies exhibit a power law behavior is desirable for virtually any applied scenario. In
our experiments, the Bayesian parametric approach works well for moderate exponents, i.e.
when the power law behavior is relatively mild. However, as soon as the exponent ξ becomes
large, the parametric model fails to deliver consistent results (see Figure 7). Moreover, when
a substantial portion of the variants have very low frequency, but the empirical distribution
of the frequency has sufficiently fat right tails – as in the true data – the parametric approach
is unreliable (see Figure 8). In all these cases instead, the Bayesian nonparametric estimator
performs reasonably well.

E.4. Comparison with the method of Zou et al. (2016)

The method proposed by Zou et al. (2016) is frequentist, and nonparametric (see Ap-
pendix D.2). The goal of such method is to estimate the whole population histogram
of variants’ frequencies from observed samples by means of a linear program. Once the
histogram has been estimated, quantities such as the number of hitherto unseen variants
that will be discovered in M additional samples from the population are obtained from
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Figure 8: Results of the estimation of the number of new variants on some sub populations
of the gnomAD dataset. We consider the Other Ashkenazi-Jewish, Southern
European, Finnish and Swedish subpopulations. The x-axis displays the total
number of samples collected. On the y-axis, we plot the number of distinct ge-
nomic variants. The solid black line displays the true number of distinct variants,
the vertical grey line is placed in correspondence of the training sample size N
(left: N ∈ {93, 152, 173, 325, 393}). The blue line is the empirical mean of the
predicted number of distinct variants observed according to the Bayesian non-
parametric estimator across ten resamples samples of size N . The green crosses
are the empirical means of the Bayesian parametric estimator of Ionita-Laza et al.
(2009) across the same resamples. The shaded blue and green regions cover one
standard empirical deviation for the predictors.

the population frequencies through a binomial sampling model (see Appendix D.2). The
nonparametric nature of the method guarantees its robustness to various frequencies’ dis-
tribution. However, the method suffers from other issues: in particular, the linear program
is designed to only estimate rare variants frequencies, while frequencies of common variants
are approximated using their empirical counterpart. Importantly, the algorithm requires
to specify upfront a threshold κ > 0. The value of κ determines which frequencies are
considered to be “rare” (those appearing less than κ% of the times in the sample), and
which frequencies are instead “common” (those appearing at least κ% of the times in the
sample). The input to the algorithm is the variants’ frequencies empirical distribution up
to κ%. The output of the linear program is an estimated histogram of rare frequencies, i.e.
of the interval [0, κ%]. In practice, we found that the optimization method is extremely
sensitive to the choice of such parameter κ. The authors suggest picking κ = 1: this cor-
responds to learning only the histogram for frequencies θ ∈ [0, 10−2], and approximate the
remaining portion of the histogram using its empirical counterpart. In our experiments, we
found that setting κ = 1 can lead to numerical instability and poor predictive performance.
In particular, when the sample size N is small, it is often necessary to specify a much
larger value of κ in order not to incur in numerical issues. Learning κ from the data is not
straightforward, and, as we show in Figure 10 and Figure 11, different choices of κ yield
dramatically different predictions for different frequencies distributions and different sample
sizes. In the experiments on the gnomAD dataset reported in Figure 9 we train on 3% of
the available data. We notice that for sample sizes considered, using small values of κ (e.g.
κ < 10) can lead to numerical issues in the optimization. We show results using κ = 20,
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Figure 9: Results of the estimation of the number of new variants on some sub populations
of the gnomAD dataset. The x-axis displays the total number of samples col-
lected. On the y-axis, we plot the number of distinct genomic variants observed.
The solid black line keeps track of the true number of distinct variants, the verti-
cal grey line is placed in correspondence of the training sample size N . The blue
dotted line is the empirical mean of the predicted number of distinct variants
observed according to the Bayesian nonparametric estimator across 33 samples
of size N .The dotted red line is the empirical mean of the UnseenEST estimator
of Zou et al. (2016) across the same samples. The shaded blue and red regions
cover two standard empirical deviations for the estimators. Here, we fix κ = 1%,
the value considered in Zou et al. (2016).

a value for which the optimization successfully converges for all datasets considered. We
note that, especially when the sample size is small, the choice of κ has a relevant impact on
the prediction quality, while its influence becomes negligible as the sample size N increases.
However, we imagine these kinds of methods to be particularly interesting for the small N
regime.

Choosing the parameter κ is particularly challenging when the sample size N is small
relative to the total number of frequencies - as in the genomics application we consider.
As a general principle, in order to avoid numerical instability, the input size has to be
sufficiently large. For example, given a sample of N = 100 observations, if one sets κ = 1,
the algorithm will take as an input only the number of variants which have been observed
once. This will typically lead to numerical instability, which will not arise for larger values
of κ (e.g. κ ≥ 10). A general rule of thumb one could follow is to decrease κ as a function of
the training sample size N : the larger N , the smaller κ. While this intuition seems to work
on some instances, we found cases in which unpredictable behaviors can affect the quality
of the predictions (see Figure 10 and Figure 11).

E.5. Comparison with the jackknife approach

The jackknife approach of Burnham and Overton (1978), recently proposed by Gravel et al.
(2011); Gravel (2014) in a genomics context, was the best competitor of the Bayesian non-
parametric estimator. The jackknife estimators require to specify and order p ∈ {1, 2, . . .}.
Higher orders incur in less bias, at the cost of higher variance, while lower orders incur in
less variance but have larger bias. Burnham and Overton (1978) proposed a procedure to
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Figure 10: Comparison of the Bayesian nonparametric estimator (blue dotted line) to the
frequentist nonparametric estimator proposed by Zou et al. (2016). We generate
one synthetic dataset as follows: we first draw a random vector θ of K = 104

i.i.d. beta random variables with parameters α = 0.001 and β = 1. Condition-
ally on θ, we draw a random matrix X with N = 2000 rows and k columns. In
each subplot, we retain a different fraction of rows of X to be used as training
set (from left to right, N ∈ {20, 50, 400}). For each value of N , we compute
the Bayesian nonparametric estimator, as well as the frequentist nonparametric
estimator, varying the threshold parameter κ ∈ {5%, 10%, 20%} (red, orange,
purple) respectively. We highlight how the performance of the frequentist non-
parametric estimator, especially when N is small, highly depends on the choice
of κ, in an counterintuitve and somewhat unpredictable way. For example,
when N = 20, choosing κ = 10% provides much better results than κ = 5%
or κ = 20%. However, for N = 50, both κ = 5% and κ = 20% perform much
better than κ = 10%. As N increases, the performance of the nonparametric
frequentist estimator stabilizes, and becomes less sensitive to the choice of the
parameter κ.

24



Genomic variety prediction via Bayesian nonparametrics

0.0 0.4 0.8 1.2 1.6 2.0
Sample size 1e3

0.0

0.5

1.0

1.5

2.0

Nu
m

be
r o

f v
ar

ia
nt

s
1e3 N = 100

0.0 0.4 0.8 1.2 1.6 2.0
Sample size 1e3

0.0

0.2

0.4

0.6

0.8

1.0
1e3 N = 200

0.0 0.4 0.8 1.2 1.6 2.0
Sample size 1e3

0.0

0.2

0.4

0.6

0.8

1e3 N = 400

BNP
True counts

= 1.0%
= 2.0%
= 3.0%

Figure 11: Comparison of the Bayesian nonparametric estimator (blue dotted line) to the
frequentist nonparametric estimator of Zou et al. (2016). We use the same data
showed in Figure 10 but using much smaller values of κ ∈ {1%, 2%, 3%}. Trying
to run the linear program for these values of κ and N < 100 causes issues in
the optimization routine, and therefore we only test it for N sufficiently large.
We notice that for both N = 100 and N = 200, the suggested value of κ = 1%
provides worse results than choosing a larger value of κ, whereas for N = 400,
the performance of the estimator becomes less sensitive to the choice of κ.

decide the optimal value of the estimator for the data under considerations. This consists in
sequentially increasing the order of the jackknife estimator until the gain in bias reduction
is exceeded by the variance increase (see Appendix D.3). All the estimators are obtained by
modeling the number of missed variants using a parametric form derived from consistency
requirements. In particular, the jackknife estimator of the p-th order, which estimates the
number of missed variants which are going to be observed in M additional samples after
initial N samples displaying kN unique variants have been collected, is obtained by com-
puting a linear equation of the first p frequencies of frequencies of the observed samples (see
Appendix D.3 for more details). On the real data, we found order 3 or order 4 estimators
to be optimal according to the sequential procedure. The results were extremely precise
and the only competitive with the Bayesian nonparametric approach,
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Figure 12: Again for the same sub populations considered in Figure 9, we compare the
Bayesian nonparametric estimator to the Jackknife estimator proposed in Gravel
(2014), for the third and fourth orders. Lower order consistently underestimate
the number of distinct variants.
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Figure 13: Comparison of the Bayesian nonparametric estimator (blue dotted line) to the
jackknife estimator of Gravel (2014) for different choices of the order p. We
generate two datasets as follows: for α ∈ {0.01, 0.0005} and β = 1, we generate
two sets of K = 104 i.i.d. beta distributed draws θ with parameters α, β. We
then draw a random matrix X with N = 2000 rows, in which each entry xn,j
is Bernoulli distributed with mean θj . We retain N = 100 rows for training.
The two left panels show results for the dataset obtained when α = 0.01, β = 1
across different choices of the jackknife order p. The two right panels show the
same results for the dataset obtained when α = 0.0005. Lower order jackknife
estimators perform extremely well, and have little variance, while higher order
jackknife estimators have worse performance, and higher variance. Such behav-
ior worsens as α gets smaller, i.e. when the mean of the beta draws approach
0.
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