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ABSTRACT

We present a novel multi-source uncertainty prediction approach that enables deep
learning (DL) models to be actively trained with much less labeled data. By lever-
aging the second-order uncertainty representation provided by subjective logic
(SL), we conduct evidence-based theoretical analysis and formally decompose the
predicted entropy over multiple classes into two distinct sources of uncertainty:
vacuity and dissonance, caused by lack of evidence and conflict of strong evi-
dence, respectively. The evidence based entropy decomposition provides deeper
insights on the nature of uncertainty, which can help effectively explore a large
and high-dimensional unlabeled data space. We develop a novel loss function that
augments DL based evidence prediction with uncertainty anchor sample identifi-
cation through kernel density estimation (KDE). The accurately estimated multi-
ple sources of uncertainty are systematically integrated and dynamically balanced
using a data sampling function for label-efficient active deep learning (ADL). Ex-
periments conducted over both synthetic and real data and comparison with com-
petitive AL methods demonstrate the effectiveness of the proposed ADL model.

1 INTRODUCTION

Deep learning (DL) models establish dominating status among other types of supervised learning
models by achieving the state-of-the-art performance in various application domains. However, such
an advantage only emerges when a huge amount of labeled training data is available. This limitation
slows down the pace of DL, especially when being applied to knowledge-rich domains, such as
medicine, biology, and military operations, where large-scale labeled samples are too expensive to
obtain from well-trained experts. Meanwhile, active learning (AL) has demonstrated great success
by showing that for many supervised models, training samples are not equally important in terms of
improving the model performance (Settles, 2009). As a result, a carefully selected smaller training
set can achieve a model equally well or even better than a randomly selected large training set.

An interesting question arises, which is whether DL models can be actively trained using much less
labeled data. Recent efforts show promising results in this direction through Bayesian modeling (Gal
et al., 2017) and batch model sampling (Sener & Savarese, 2018). However, as DL models are
commonly applied to high dimensional data such as images and videos, a fundamental challenge
still remains, which is how to most effectively explore the exponentially growing sample space to
select the most useful data samples for active model training. Existing AL models usually leverage
the model provided information, such as estimated decision boundaries or predicted entropy for
data sampling. However, the deep structure and the large number of parameters of DL models
make model overfitting almost inevitable especially in the early stage of AL when only very limited
training data is available. As a result, the model may provide misleading information that makes data
sampling from a high-dimensional search space even more difficult. Besides a high dimensionality,
complex data may contain a large number of classes and data samples from certain classes may be
completely missing. Such situations are quite common for domains, such as scientific discovery
(e.g., gene function prediction) and anomaly detection. AL models should be able to effectively
discover these out of distribution (OOD) samples for labeling in order to achieve an overall good
prediction performance.

Uncertainty sampling has been one of the most commonly used pool-based AL models. In particular,
a model chooses the data sample that it is least certain about. Thus, once the sample is labeled, model
uncertainty can be significantly reduced. As an information-theoretic measure, entropy provides a
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Figure 1: A dataset consists of three mixtures of Gaussian’s (shown in red, blue, and yellow,
respectively), each of which has a large and small clusters of data samples. (a) Softmax predicted
entropy; (b) ADL predicted entropy; (c) ADL predicted vacuity; (d) ADL predicted dissonance.

general criterion for uncertainty sampling. Some commonly used sampling methods, including least
confident and margin based strategies, are equivalent to entropy-based sampling in binary classifi-
cation (Settles, 2009). It is also natural and straightforward to generalize to multi-class problems.

A key challenge of entropy-based sampling for AL is that the predicted entropy may be highly inac-
curate, especially in the early state of the AL. Such an issue may become more severe when training
a neural network (NN)/DL active learner due to model overfitting as described above. Figure 1(a)
shows the predicted entropy by an NN active learner trained using nine labeled data samples, which
are in black color and evenly distributed in three classes. The standard softmax layer is used in the
output layer to generate class probabilities over three classes, each of which is a mixture of two
Gaussian’s. It turns out that all the data samples in the three small clusters located in the top left,
top right, and bottom center, are wrongly predicted with high confidence, as indicated by the low
entropy. As a result, data samples from these three clusters are less likely to be selected for labeling.
In contrast, the data samples that are close to the center of the three major clusters are more likely to
be selected. However, labeling these samples will have the effect of fine-tuning a wrongly predicted
decision boundary, leading to a much higher (but less effective) labeling cost.

Figure 1(b) shows the the result from the proposed active deep learning (ADL) model. While the
samples from the small clusters are still wrongly predicted due to lack of training data, they are pre-
dicted with a much lower low confidence as indicated by the high entropy. However, even with
a more accurately predicted entropy, the active learner may still sample from the center of the
three major clusters as it is still assigned a high entropy along with the areas that cover the three
smaller clusters. By performing a fine-grained analysis of uncertainty under the subjective logic
(SL) framework (Jøsang, 2016), we formally decompose entropy into two distinct sources of uncer-
tainty: vacuity and dissonance, which are caused by lack of evidence and conflict of strong evidence,
respectively. By putting the vacuity and dissonance as shown in Figures 1(c) and (d) together, it is
interesting to see that we recover the entropy as shown in Figure 1(c), which empirically verifies our
theoretical results. Entropy decomposition provides further insights on the sources on uncertainty,
which is instrumental to guide the data sampling process. Intuitively, given the dataset in Figure 1,
an effective sampling strategy will first choose samples from the three small clusters according to
vacuity in the early stage of AL to properly establish the shape of the decision boundary. It can then
fine-tune the decision boundary by sampling according to dissonance. Such an uncertainty-aware
sampling strategy will be critical for a high-dimensional space with multiple competing classes
where data samples are scarcely distributed and the decision boundary becomes more complicated.

Our major contribution is threefold: (1) decomposition of entropy through evidence-based theoret-
ical analysis of belief vacuity and belief dissonance under the SL framework; (2) a multi-source
uncertainty prediction model that accurately quantifies different sources of uncertainty through ker-
nel density regularized evidence prediction; (3) an active deep learning model that systematically
integrates different types of uncertainty for effective data sampling in a high-dimensional space.
Extensive experiments are conducted over both synthetic and real-world data to demonstrate the
effectiveness of the proposed ADL model.

2 RELATED WORK
Uncertainty Quantification in Belief/Evidence Theory: In the belief/evidence theory domain, un-
certainty reasoning has been substantially explored such as Fuzzy Logic (De Silva, 2018), Dempster-
Shafer Theory (DST) (Sentz et al., 2002), or Subjective Logic (SL) (Jøsang, 2016). Unlike the efforts
made in ML/DL above, belief theorists focused on reasoning of inherent uncertainty in information
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resulting from unreliable, incomplete, deceptive, and/or conflicting evidence. SL considered uncer-
tainty in subjective opinions in terms of vacuity (i.e., lack of evidence) and vagueness (i.e., failure of
discriminating a belief state) (Jøsang, 2016). Vacuity has been used as an effective vehicle to detect
out-of-distribution queries through evidence learning, achieved under the typical DL setting with
ample training samples (Sensoy et al., 2018). Recently, other dimensions of uncertainty have been
studied, such as dissonance (due to conflicting evidence) and consonance (due to evidence about
composite subsets of state values) (Jøsang et al., 2018).

Epistemic Uncertainty in Deep Learning: In DL, aleatoric uncertainty (AU) and epistemic uncer-
tainty (EU) have been studies using Bayesian Neural Networks (BNNs) for computer vision. AU
consists of homoscedastic uncertainty (i.e., constant errors for different inputs) and heteroscedastic
uncertainty (i.e., different errors for different inputs) (Gal, 2016). A Bayesian DL (BDL) framework
was presented to estimate both AU and DU simultaneously in regression (e.g., depth regression) and
classification settings (e.g., semantic segmentation) (Kendall & Gal, 2017). A new type of uncer-
tainty, called distributional uncertainty, is defined based on distributional mismatch between the test
and training data distributions (Malinin & Gales, 2018).

Active Learning in Deep Learning: The common AL methods other than DL-based ones are
surveyed in (Settles, 2009). There are limited efforts on actively training DL models for high-
dimensional data with a few exceptions. In (Wang & Shang, 2014), an AL model was developed
for DL using three metrics for data sampling: least confidence, margin sampling, and entropy. A
new approach combines recent advances in BDL into the AL framework to achieve label-efficient
DL training (Gal et al., 2017). Another approach advances the AL development by introducing
a cost-effective strategy to automatically select and annotate the high-confidence samples, which
improves the traditional samples selection strategies (Wang et al., 2016). Data sampling in DL has
also been approached as a core-set selection problem (Sener & Savarese, 2018), which requires a
large batch to work well. Different from all existing works, the proposed ADL model decomposes
the accurately estimated uncertainty into vacuity and dissonance and dynamically balances multi-
source uncertainty to achieve active training of DL models with much less labeled data.

3 EVIDENCE-AWARE ENTROPY DECOMPOSITION
As discussed earlier, a high entropy may be contributed by difference sources of uncertainty with
distinct characteristics. In this section, we conduct a fine-grained theoretical analysis of different
types of uncertainty that arise in the context of multi-class problems. The decomposition is con-
ducted under the SL framework, which provides key building blocks for our theoretical analysis.

3.1 THEORY OF SUBJECTIVE LOGIC

SL is an uncertain probabilistic logic that is built upon probabilistic logic (PL) (Nilsson, 1986)
and belief theory (BT) (Shafer, 1976) while making two unique extensions. First, SL explicitly
represents uncertainty by introducing vacuity of evidence (or uncertainty mass) in its opinion repre-
sentation, which addresses the limitation of using PL to model lack of confidence in probabilities.
Second, SL extends the traditional belief function of the BT by incorporating base rates, which serve
as the prior probability in Bayesian theory. The Bayesian nature of SL allows it to use second-order
uncertainty to express and reason the uncertainty mass, where second-order uncertainty is repre-
sented in terms of a probability density function (PDF) over first-order probabilities (Jøsang, 2016).
In particular, for multi-class problems, we use a multinomial distribution (first-order uncertainty)
to model class probabilities and use a Dirichlet PDF (second-order uncertainty) to model the dis-
tribution of class probabilities. Second-order uncertainty enriches uncertainty representation with
evidence information, which plays a central role in entropy decomposition as detailed later.

Subjective opinions (or opinions) are the arguments in SL. In the multi-class setting, the subjective
opinion of a multinomial random variable y in domain Y = {1, ...,K} is given by a triplet

ω = (b, u,a), with
K∑

k=1

bk + u = 1 (1)

where b = (b1, ..., bK)T , u, and a = (a1, ..., aK)T denote the belief mass distribution over Y,
uncertainty mass representing vacuity of evidence, and base rate distribution over Y, respectively,
and ∀k, ak ≥ 0, bk ≥ 0, u ≥ 0. The probability that y is assigned to the k-class is given by

P (y = k) = bk + aku, ∀k ∈ Y (2)
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which combines the belief mass with the uncertain mass using the base rates. In the multi-class
setting, ak can be regarded as the prior preference over the k-th class. When no specific preference
is given, we assign all the base rates as 1/K.

In existing SL literature, there lacks a clear transition between the first order uncertainty given in
equation 2 and the second-order uncertainty expressed as a Dirichlet PDF. Here, we make this transi-
tion more explicit by introducing a set of random variables p = (p1, ..., pK)T , where p is distributed
on a simplex of dimensionality K − 1. We introduce a conditional distribution P (y = k|pk) = pk,
which allows us to represent the marginal distribution in equation 2 by P (y) =

∫
P (y|p)p(p)dp.

We define p(p) as a Dirichlet PDF over p: Dir(p|α), where α = (α1, ..., αK)T is K-dimensional
strength vector, with αk ≥ 0 denoting the effective number of observations of the k-th class. SL
explicitly introduces the uncertainty evidence through a non-informative weight W and redefine the
strength parameter as

αk = rk + akW, with rk ≥ 0,∀k ∈ Y (3)

where rk is the amount of evidence (or the number of observations) to support the k-th class and W
is usually set to K, i.e., the number of classes. Given the new definition of the strength parameter,
the expectation of the class probabilities p = (p1, ..., pK)T is given by

E[pk] =
αk∑K
j=1 αj

=
rk + akW∑K
j=1 rj +W

(4)

where ak = 1/K. By marginalizing out p, we can derive an evidence-based expression of belief
mass and uncertainty mass:

bk =
rk
S
∀k ∈ Y, u =

W

S
, with S =

K∑
k=1

αk (5)

SL categorizes uncertainty into two primary sources (Jøsang, 2016): (1) basic belief uncertainty that
results from specific aspects of belief mass in isolation and (2) intra-belief uncertainty that results
from the relationships between belief masses and uncertainty mass. Since we focus on the multi-
class setting, no composite values (i.e., simultaneously assigned to multiple classes) are allowed.
As a result, these two sources of uncertainty boil down to vacuity and dissonance, respectively, that
correspond to vacuous belief and contradicting beliefs. In particular, vacuity of an opinion vac(ω) is
captured by uncertainty mass u, which is defined in equation 5 and dissonance of an opinion (Jøsang
et al., 2018) is defined as

diss(ω) =

K∑
k=1

(
bk
∑

j 6=k bjBal(bj , bk)∑
j 6=k bj

),Bal(bj , bk) =

{
1− |bj−bk|bj+bk

if bibj 6= 0

0 if min(bi, bj) = 0
(6)

where Bal(bj , bk) is the relative mass balance function between two belief masses. The belief disso-
nance of an opinion is measured based on how much belief supports individual classes. Consider a
binary classification example with a binomial opinion given by (b1, b2, u,a) = (0.49, 0.49, 0.02,a).
Based on equation 6, it has a dissonance value of 0.98. In this case, although the vacuity is close
to zero, a high dissonance indicates that one cannot make a clear decision because both two classes
have the same amount of supporting evidence and hence strongly conflict with each other.

3.2 EVIDENCE-BASED ENTROPY DECOMPOSITION

By leveraging the second-order uncertainty representation, we formally show that the entropy of
a predicted class distribution P (y) can be decomposed into vacuity and dissonance. Our major
theoretical results indicate that the uncertainty of a high-entropy data sample may be caused by
either lack of evidence (i.e., high vacuity) or conflict of strong evidence (i.e., high dissonance) but
not both. By clearly identifying the sources of uncertainty instead of using them in a combined form
as in entropy, the evidence based decomposition of entropy provides deeper insights on the nature of
uncertainty, which provides important guidance for an AL model to more effectively explore a large
and high-dimensional search space for efficient data sampling.
Lemma 1. Dissonance maximization. Given a total Dirichlet strength S = CK, where C ≥ 1
and K is the number of classes, for any opinion ω on a multinomial random variable y, we have

max diss(ω) = 1− 1

C
(7)
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Corollary 1. The dissonance diss(ω) is approaching (but not reaching) 1 when all the evidence
rk’s are set to equal and S →∞; it reaches 0 when S = K:{

limS→∞ diss(ω) = 1 if r1 = ...rk... = rK
diss(ω) = 0 if S = K

(8)

Lemma 2. Vacuity maximization. For any opinion ω on a multinomial random variable y, we
have 0 ≤ vac(ω) ≤ 1 and the maximum vacuity is achieved when

∑K
k=1 rk = 0.

Theorem 1. Let y denote a multinomial random variable, ωy denote its opinion, S denote its to-
tal Dirichlet strength, and H[y] be the entropy of y. H[y] can be maximized under two differ-
ent and non-overlapping conditions: (1) for S = K and assuming non-informative base rates,
y∗ = arg maxH[y] ⇔ y∗ = arg max vac(ωy); (2) for S → ∞, y∗ = arg maxH[y] ⇔ y∗ =
arg max diss(ωy).

A more intuitive interpretation of the main results in Theorem 1 is as following. A high-entropy data
sample supported by a strong evidence (i.e., S � K) is caused by a high dissonance (i.e., conflict
of evidence); a high-entropy data sample supported by little evidence (i.e., S ≈ K) is caused by
a high vacuity (i.e., lack of evidence). Through the second-order uncertainty representation, we
offer an evidence based interpretation of entropy that allows us to identify two different sources
of uncertainty that both cause a high entropy. The multi-source uncertainty will provide important
information to design a fine-grained sampling function for AL, which will be detailed in next section.

4 MULTI-SOURCE UNCERTAINTY AWARE ACTIVE DEEP LEARNING
In order to best use the uncertainty information, the ADL model should first be able to provide an
accurate uncertainty estimation based on very limited training data. This, coupled with the large
number of parameters of the DL model, poses a fundamental challenge due to a higher risk of model
overfitting. As shown earlier, inaccurate uncertainty estimation will cause the model to miss labeling
important data samples that can help accurately detect the decision boundary if labeled.

In addition, since both vacuity and dissonance are derived from second-order uncertainty, solely
predicting the class label or its distribution does not provide sufficient information for multi-source
uncertainty prediction. Instead of predicting the class label distribution, the proposed ADL model
directly estimates the supporting evidence (i.e., rk’s) for each class, which is a central element that
can be used to quantify belief mass and uncertainty mass according to equation 5. To better ad-
dress overfitting, we develop a novel loss function that augments DL based evidence prediction with
uncertainty anchor sample identification through kernel density estimation (KDE). These anchor
samples are unlabeled data that inform the ADL which areas of the data space are less explored.
Optimizing this loss function will ensure that ADL predicts high vacuity over these areas. Further-
more, through KDE, these less explored areas are automatically ranked based on their data density.
This nice property allows the ADL to effectively prioritize the sampling order over these areas and
iterative visit them based on their data density. Finally, we introduce our novel sampling function
that systematically integrates accurately estimated multi-source uncertainty for active deep learning.

4.1 UNCERTAINTY ANCHOR SAMPLE IDENTIFICATION

Let Xu and Xt denote the sets of unlabeled candidate and training samples, respectively. The prob-
ability density of the two populations with a kernel function k(·, ·) can be estimated as follows:

pu(x) =
1

|Xu|
∑
xn∈Xu

k(x,xn), pt(x) =
1

|Xt|
∑
xn∈Xt

k(x,xn) (9)

Since we aim to identify unlabeled anchor samples to inform the model areas in the space that are
less explored by the training data, these samples should be from areas having a high density mass
with respect to pu(x) but low density mass with respect to pt(x). The problem is formalized as:

max
A⊆Xu

λ
∑
x∈A

pu(x)−
∑
x∈A

pt(x) (10)

The first term ensures that the selected area has abundant candidate data points to sample so that
it has lower risk of containing isolated noise. The second term makes sure the selected region is
located OOD with respect to the current training data. The optimal set for equation 10 is given by:

A∗ = {x|λpu(x)− pt(x) > 0} (11)
where λ ∈ [0, 1] is used to control the size of A∗ for given the candidate and training datasets.
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4.2 MULTI-SOURCE UNCERTAINTY PREDICTION

The set of uncertainty anchor samples A∗ represents areas in the data space that are cohesively
distributed far away from the current training data. As these data are essentially OOD with respect
to the current training data, their predicted vacuity should be high, which implies low predicted
evidence due to Lemma 2. We leverage this information by constructing an evidence strength loss,
L(u)
Evi, which forces the model to predict low evidence for xu ∈ A∗:

L(u)
Evi(A

∗,Θ) = |1T
(xu∈A∗)f(xi|Θ)| (12)

where 1(C) = 1 if C is true and 0 otherwise; ri = f(xu|Θ) is the output of the DL model, repre-
senting the predicted supporting evidence of xu, and Θ is the set of DL model parameters. Since
we require rk ≥ 0, an activation layer (i.e., ReLu) is used to replace the softmax layer as commonly
used in other NN classifiers. The evidence strength loss is the key component to our proposed over-
all loss function. Samples in A∗ act as anchors to provide the model a preview of certain areas that
out of its current knowledge. The model is guided to put less belief mass on those areas, leading to
more accurate uncertainty estimation and eventually benefit the multi-source uncertainty based data
sampling. Furthermore, since the activation layer is used for model output, equation 12 essentially
performs l1 regularization to last hidden layer’s weight matrix and bias vector. We want to empha-
size that our approach demands no additional labeling cost. The anchor samples are dynamically
detected according to the current training and put into use without their actual label being known.

We proceed to define our overall loss function. For training sample xi, let yi encode the ground-true
class label k by setting yik = 1 and yij = 0,∀j 6= k. Let Cat(ŷi = k|pi(Θ)) be the likelihoood,
where pi(Θ) ∼ Dir(pi|αi(Θ)) and αi(Θ) = f(xi|Θ) +Wai. We set the non-informative weight
W = K and base rates aik = 1/K,∀k. The expected sum of squares loss is defined as

L(i)(Θ) = Epi∼Dir(pi(Θ)|αi(Θ))||yi − pi||22 =

K∑
j=1

(y2
ij − 2yijE[pij(Θ)] + E[pij(Θ)2]) (13)

Minimizing L(i)(Θ) has the effect of jointly minimizing the prediction error and the variance
of pi (Sensoy et al., 2018), hence reducing the uncertainty. This can be seen using identity
E[pij(Θ)2] = E[pij(Θ)]2 + Var(pij(Θ)) and rearranging the terms on the r.h.s. of equation 13.
Our overall loss function is defined as:∑

xi∈Xt

L(i)(Θ) + λ1

∑
xu∈Xu

L(u)
Evi + λ2L2(Θ) (14)

where L2(Θ) is the standard L2 regularizer of the network parameters.

4.3 DATA SAMPLING FOR ACTIVE DEEP LEARNING

According to Lemma 2, a data sample’s vacuity is maximized when the model assigns zero evidence
to all K classes. This indicates the model has never seen a similar data sample from training.
Annotating samples with a large vacuity can help the ADL gain most new knowledge of the data
space. It has the effect of guiding the model to explore the most important areas, which is especially
critical for a high-dimensional data space. In AL, the true decision boundary can be easily skewed
due to limited initial training. The vacuity-aware search helps the model fast converge to the true
decision boundary without excessively sampling around the wrong one. Moreover, it is also effective
to discover new types of classes whose instances have never exposed to the model, as shown in our
experiments. According to Lemma 1, a data sample’s dissonance is maximized when the model
assigns equally high (close to infinity) evidence to all K classes. These strong conflicting evidence
received from different classes indicate the data sample is located near the decision boundary where
multiple classes are heavily overlapped. Annotating samples with high dissonance helps the model
further fine-tune the decision boundary, leading to better discriminative power.

We design a sample function that best leverages these two important and complementary sources of
uncertainty to most effectively guide ADL. Intuitively, we would like ADL to rely more on vacuity
in the early phase of AL, which can most effectively shape the decision boundary and avoid fine-
tuning the wrong decision areas. As AL goes, dissonance should gradually gain a higher weight,
which allows ADL to further fine-tune the decision boundary that has the right shape but is less
accurate, aiming to maximize the discriminate power of the model. The sample function is given:

x∗ = arg max
x∈Xu

[diss(ω(x)) + βvac(ω(x)] (15)
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Figure 2: Uncertainty prediction result from EDL and AL performance comparison;
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Figure 3: (a) Vacuity and (b) Dissonance of iteration 6 when ADL first discovers all hidden OOD
areas; (c) Vacuity of iteration 13 when ADL starts penalizing vacuity in the sampling function; (d)
Dissonance after two iterations of penalizing vacuity.

where β is an annealing coefficient to gradually balance between vacuity and dissonance based on
the rationale given above. More specifically, the importance of vacuity reduces as there are less
“vacuous” areas in the data space w.r.t. the current training data. This implies that the training data
can well approximate the entire data space. Thus, one natural way to quantify β is to use the inverse
of mutual information KL(pu,t||pt), where the joint density distribution pu,t can be estimated as
pu,t(x) = 1

|Xu|+|Xt|
∑
xn∈Xu∪Xt

k(x,xn). In practice, calculating the mutual information for each
AL iteration is expensive. We use a heuristic surrogate: min max=minxu∈Xu maxxt∈Xt k(xt,xu)
and set β = 1− dT if min max does not change within the past few AL iterations, where T denotes
the current iteration of AL and d is a fixed decay rate (set to 1/100K in our experiments).

5 EXPERIMENTS
In this section, we report our experimental results on both synthetic and real-world data. The syn-
thetic experiment aims to verify the key theoretical properties of ADL, including entropy decom-
position and multi-source uncertainty prediction, and how these properties contribute to AL. The
real-data experiment aims to compare ADL and its competitors. We focus on testing in classical
AL environment, where the initial training set only includes limited samples from some classes with
samples from other classes completely missing. In each AL iteration, we sample one or a small batch
of data instances. This is fundamentally different than some recent DL based AL methods, such as
(Sener & Savarese, 2018), which perform batch-mode sampling with a large batch size (larger than
our entire labeled samples). All models uses the same DL architecture. For synthetic data, we adopt
a 3-layer MLP with tanh for activation. For real data, we use LeNet with Relu for activation.

5.1 SYNTHETIC DATA

The synthetic experiment is designed to show: (1) whether ADL accurately captures different
sources of uncertainty, and (2) whether accurately estimated uncertainty leads to better AL behavior.
To mimic the existence of OOD, we generate three mixtures of Gaussian’s. Each mixture consists
of a major and a smaller (i.e., OOD) clusters with 750 and 50 samples, respectively. We center the
major Gaussian components from each class in the middle of the feature space and put their corre-
sponding OOD components away from them. In Figure 1, we show that a classical DL model with a
softmax layer provides very inaccurate uncertainty estimation. In contrast, the proposed ADL model
not only provides accurate entropy prediction but also successfully decomposes it into vacuity and
dissonance. Figure 2 shows the uncertain prediction result from EDL (Sentz et al., 2002), which
can also provide evidence prediction but requires ample training data. Suffering from insufficient
training, EDL is inaccurate in its entropy prediction, especially for the OOD clusters. While EDL
does not provide entropy decomposition, we use its predicted evidence to compute vacuity and dis-
sonance as shown in Figure 2. However, neither of them is accurately predicted as low vacuity is
predicted for the three OOD clusters where there is no training data and high dissonance is predicted
in areas with no nearby training data to show conflicting evidence.
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Figure 4: AL performance on MNIST (start with 5-8 classes)
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Figure 5: AL performance on notMNIST and CIFAR-10 (start with 5 and 6 classes; 7,8 in Appendix)

Figure 3 shows the first time when ADL selects at least one data sample from each OOD area,
high vacuity is assigned to an area with no training data but many unlabeled data. Meanwhile, high
dissonance indicates that refining the decision boundary may be more instrumental to improve the
model performance. A few iterations later, ADL starts to penalize vacuity. While vacuity is still
accurately estimated (high in vacuous regions), it becomes less useful for sampling (since very few
unlabeled data is located nearby). Two iterations later, penalizing on vacuity helps to choose data
samples that significantly refine the decision boundary. The superior AL performance of ADL as
shown in Figure 3 further confirms the effectiveness of ADL’s key properties as demonstrated above.

5.2 REAL DATA

The real-world experiment is conducted on three datasets, MNIST, notMNIST, and CIFAR-10, all
of which have ten classes. To mimic the real-world AL scenario, we leave 2-5 classes out for initial
training and there are 5 labeled samples for each available class. A good AL model is expected
to discover samples of unknown classes in an early stage to effectively improve model accuracy.
We compare the proposed model with EDL (Sensoy et al., 2018) (entropy, vacuity+dissonance),
BALD (Gal et al., 2017) (epistemic), and softmax (entropy, random), where in the parenthesis are
the uncertainty measurements used for sampling. Figures 4 and 5 show that ADL consistently out-
performs other models on all three datasets. The advantages of ADL are twofold. First, entropy
decomposition gives ADL flexibility to meet distinct sampling need at different AL phases. In an
early stage, the fast accuracy improvement is achieved by the vacuity guided sampling where the
most representative samples are labeled with high priority. Gradually, ADL switches to dissonance
guided sampling to refine the decision boundary by labeling the most informative samples to im-
prove its discriminative power. In contrast, sampling methods utilizing a unified uncertainty (e.g.,
epistemic uncertainty and entropy) lack such flexibility to adjust the sampling behavior, leading to
either slow convergence or lower model accuracy. Second, compared with EDL, which can also
perform evidence prediction, ADL is superior due to accurate uncertainty estimation using the ef-
fective loss function. For both synthetic and real data, we observe that ADL identifies samples from
missing classes at least around 20% faster than using EDL and other models.

6 CONCLUSION
We present a novel active deep learning model that systematically leverages two distinct sources of
uncertainty, vacuity and dissonance, to effectively explore a large and high-dimensional data space
for label-efficient training of DL models. The proposed ADL model benefits from the evidence-
based entropy decomposition that follows from our theoretical analysis of belief vacuity and belief
dissonance under the SL framework. The multi-source uncertainty can be accurately estimated
through a novel loss function that augments DL based evidence prediction with vacuity-aware reg-
ularization of the model parameters. Through dynamically balancing the importance of vacuity and
dissonance, a sampling function is designed to first explore the critical areas of the data space and
then fine-tune the decision boundary to maximize its discriminate power. Extensive experiments
conducted over both synthetic and real data help verify the theoretical properties and empirical per-
formance of the proposed ADL model.
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A APPENDIX

PROOF OF LEMMA 1

Proof. Let Bjk denote Bal(bj , bk). Since 0 ≤ bk ≤ 1 (as S =
∑

k bk +K), we have 0 ≤ Bjk ≤ 1.
In addition, Bjk = 1, if bj = bk 6= 0; Bjk = 0, if bjbk = 0. Thus, we have

∑
j 6=k bjBjk ≤∑

j 6=k bj , where the equality holds when Bjk = 1,∀j. Therefore, we have

diss(ω) =

K∑
k=1

bk

[∑
j 6=k bjBjk∑

j 6=k bj

]
≤

K∑
k=1

bk
(a)
=

∑K
k=1 rk
S

(b)
=
S −K
S

= 1− 1

C
(16)

where (a) is due to the definition of bk in equation 5 and (b) is due to the summation constraint in
equation 1 and W = K.

PROOF OF LEMMA 2

Proof. Using the definition of uncertainty mass in equation 5 and substituting W by K, we have

0 ≤ vac(ω) =
K

S
=

K∑
k=1 rk +K

≤ 1 (17)

where equality is achieved when
∑K

k=1 rk = 0.

PROOF OF THEOREM 1

Proof. For (1), (⇒) is easy to show as S = K implies
∑K

k=1 rk = 0 and vac(ωy∗) = 1; for (⇐),
using equation 2 and non-informative base rates, we have P (y∗ = k) = 1/K,∀k, which achieves a
maximum H[y∗] as logK.

For (2), we first prove (⇒). For y∗ = arg maxH[y], we have P (y∗ = k) = 1/K,∀k. Thus,
(rk + akK)/S = 1/K,∀k. For S →∞, denote S = CK and we have rk/S + ak/C = 1/K,∀k.
Let C →∞, we have rk/S → 1/K,∀k. Thus, we have y∗ = arg max diss(ωy) due to Corollary 1.
To prove (⇐), diss(ωy∗) = 1 implies that r1 = ...rk... = rK and S →∞. Hence, limS→∞ P (y∗ =
k) = limS→∞(rk + akK)/S = 1/K, which implies that y∗ = arg maxH[y] for S →∞.
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Figure 6: AL performance on notMNIST and CIFAR-10 (start with 7 and 8 classes)
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Figure 7: AL performance with no missing classes

ADDITIONAL EXPERIMENTAL RESULTS

We obtain similar AL curves for notMNIST and CIFAR-10 when starting AL with 7 and 8 classes as
with 5 and 6 classes, which are shown in Figure 6. In Figure 7, we also report the AL performance
on the three datasets when there is no missing class. ADL still achieves the best performance in all
cases with slightly less advantage than other models.
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EXPERIMENTAL SETTINGS

We choose the Adam optimizer to train ADL for 600 epochs and setting the learning rate to
0.001. The coefficient of evidence strength loss, λ1, is set to 0.005 (cross validated from
{0.001, 0.005, 0.03, 0.05}). The coefficient of the L2 regularizer, λ2, is set to 0.05 (cross validated
from {0.001, 0.005, 0.01, 0.03, 0.05, 0.08}). The λ for anchor sample identification in equation 10
is set to 0.005 (cross validated {0.001, 0.005, 0.03, 0.05}). We choose RBF as our kernel function
with length scale set to 1 (cross validated from {0.01, 0.1, 1}).

EFFECTIVENESS OF KDE BASED UNCERTAINTY ANCHOR SAMPLE IDENTIFICATION

In this section, we conduct additional experiment to evaluate the effectiveness of the KDE based
uncertainty anchor sample identification method. Uncertainty anchor sample identification is an
integral component of the ADL model, which aims to guide the model to be uncertain in the OOD
areas with respect to the current training data (instead of providing the final prediction). Therefore,
other more advanced kernel functions/similarity measures that are specifically designed for high-
dimensional data can be used for the same purpose without affecting the overall model. However,
when choosing a specific technique, it is also important to consider both the quality of the data
samples and efficiency as fast identification of these data samples is critical for AL which is usually
performed in real time. Since the model is constantly changing as it continues to explore the data
space, new uncertainty data samples need to be discovered in each AL iteration. We have conducted
three additional experiments to demonstrate which technique can achieve such a good balance.
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Figure 8: Effectiveness of KDE based anchor sample identification. (a) Comparison with ran-
dom selection, no anchor samples, and attention kernel; (b) Comparison of min-max similarity of
different techniques; (c) Impact of the characteristic length scale

• We have compared KDE with the randomly selected anchor samples from unlabeled data
and not using any anchor samples in Figure 8(a). KDE clearly outperforms random selec-
tion, which in turn performs better than not using any anchor samples. We further confirm
the positive result by evaluating the min-max similarity between the unlabeled and train-
ing data. If KDE is able to identify anchor samples from the desired OOD regions of the
feature space (although the estimated density in that region may not be very accurate), the
sampling process would be guided correctly and the min-max similarity would increase in
the next AL iteration as the result. Figure 8(b) compares the min-max similarity of KDE
with random selection. The result shows that with KDE, the model covers the unlabeled
feature space much more efficiently as AL moves forward.

• We have adopted the attention kernel as a more advanced distance metric to replace the
RBF kernel in the proposed anchor sample identification component. The attention kernel
is the major component in the matching network (Vinyals et al., 2016), where the spatial
invariance is ensured by CNN and the dimensionality of the inputs is reduced through two
correlated LSTM projections. However, the attention kernel (our current implementation)
is much slower to compute as compared with KDE especially when facing a very large
unlabeled pool as the entire candidate data samples need to be embedded every iteration
when the training/testing data are changed along with AL. Thus, if the improvement is
not significant (see Figure 8(a)) and when the efficiency becomes a bottleneck for a large
unlabeled pool, the proposed KDE approach appears to be a good choice as it can provide
a good balance between quality and efficiency, which is critical for AL.
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• We have investigated the impact of the characteristic length scale used in RBF kernel on
AL performance. Figure 8(c) shows that the ADL model performance is fairly robust to the
length scale and only shows minor change with different choices.

ABLATION STUDY

We have conducted a detailed ablation study to clearly demonstrate the effectiveness of each major
technical components:
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Figure 9: Ablation study and batch-model AL. (a) Comparison of different sampling criteria; (b)
Comparison with different fixed vacuity/dissonance weighting; (c) Batch-model AL performance.

• Figure 9(a) compares proposed sampling method with other different sampling criteria:
entropy, vacuity only, and dissonance only. The result confirms the effectiveness of the
dynamically balanced sampling method. It is interesting to see that using vacuity alone
performs quite well in the initial phase but only converges to a lower accuracy in the end.
In contrast, using dissonance is slow to start but able to converge to a higher accuracy. The
entropy curve roughly stays in the middle of the above two curves.

• The effectiveness of using the anchor samples has already been demonstrated in Figure 8(a)
by comparing ADL with not using any anchor samples and randomly selected anchor sam-
ples from unlabeled data.

• Figure 9(b) shows the results using different vacuity/dissonance ratios but keeping fixed
throughout the AL process. The dynamically balanced sampling method clearly outper-
forms the fixed weighting. This also demonstrates the usefulness of the proposed entropy
decomposition theory. Since the sampling goal of AL changes with the accumulation of
the labeled data, the optimal AL behavior can only be achieved by adaptively adjust the
importance of vacuity and dissonance in the sampling function.

Finally, we have conducted batch-mode AL and reported the results in Figure 9(c). As can be seen,
as the batch size increases, the performance decreases. This is expected as there is no special strategy
to diversify the samples chosen in the same batch. We will leave this to our future work as the current
model is not designed specifically for batch mode AL.

SAMPLE IMAGES CHOSEN BY ADL

In this section, we have visualized the image samples selected by ADL in the early and later stages
of active learning to help better understand the role of vacuity and dissonance in data sampling. In
order to better demonstrate the effectiveness of the vacuity measurement, we start active learning
with 5 classes omitted from the initial training. Later we will see how does high vacuity at the early
stage of active learning helps fast identify missing classes. Figure 10 shows the samples with highest
vacuity selected by ADL in the first 30 AL iterations. The first four of them are from missing classes.
This clearly demonstrates the effectiveness of using vacuity to explore the data space. As a result,
data samples from the missing classes are quickly identified and being labeled. The last sample is
from class ’3’, whose examples have already been exposed to ADL. However, the writing style of
this sample is very different than other instances from the same class, which result in a high vacuity.

Figure 11 shows the samples with highest dissonance selected by ADL in the last 100 AL iterations.
By observing their predicted belief mass, we find that the high dissonance result is due to the con-
flicting belief over multiple classes. For example, the first sample is confusing between classes ’4’
and ’6’; the second sample is confusing among classes ’5’,’6’, and ’8’; the third sample is confusing
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Figure 10: Samples with a high vacuity in early AL iterations

Figure 11: Samples with a high dissonance in late AL iterations

among classes ’4’,’7’, and ’9’; the fourth sample is confusing between classes ’4’ and ’6’; and the
Fifth sample is confusing between classes ’0’ and ’9’.

SOURCE CODE

The code for this work can be found in https://drive.google.com/drive/folders/
1imwnOahh8HtHK_g_HSTb4TCxZ7YG04ay?usp=sharing
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