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ABSTRACT

As the basic building block of Convolutional Neural Networks (CNNs), the con-
volutional layer is designed to extract local patterns and lacks the ability to model
global context in its nature. Many efforts have been recently devoted to comple-
menting CNNs with the global modeling ability, especially by a family of works
on global feature interaction. In these works, the global context information is in-
corporated into local features before they are fed into convolutional layers. How-
ever, research on neuroscience reveals that, besides influences changing the inputs
to our neurons, the neurons’ ability of modifying their functions dynamically ac-
cording to context is essential for perceptual tasks, which has been overlooked in
most of CNNs. Motivated by this, we propose one novel Context-Gated Convo-
lution (CGC) to explicitly modify the weights of convolutional layers adaptively
under the guidance of global context. As such, being aware of the global con-
text, the modulated convolution kernel of our proposed CGC can better extract
representative local patterns and compose discriminative features. Moreover, our
proposed CGC is lightweight, amenable to modern CNN architectures, and con-
sistently improves the performance of CNNs according to extensive experiments
on image classification, action recognition, and machine translation.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved significant successes in various tasks, e.g.,
image classification (He et al., 2016a; Huang et al., 2017), object detection (Girshick et al., 2014;
Ren et al., 2015), image translation (Zhu et al., 2017), action recognition (Carreira & Zisserman,
2017), sentence/text classification (Zhang et al., 2015; Kim, 2014), machine translation (Gehring
et al., 2017), etc. However, the sliding window mechanism of convolution makes it only capable of
capturing local patterns, limiting its ability of utilizing global context. Taking the 2D convolution on
the image as one example, as Figure 1a shows, the standard convolution only operates on the local
image patch and thereby composes local features.

According to the recent research on neuroscience (Gilbert & Li, 2013), neurons’ awareness of global
context is important for us to better interpret visual scenes, stably perceive objects and effectively
process complex perceptual tasks. Many methods (Vaswani et al., 2017; Wang et al., 2017a;b; Park
et al., 2018; Hu et al., 2018; Chen et al., 2019; Cao et al., 2019; Bello et al., 2019) have been
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Figure 1: (a) Standard convolution only composes local information. (b) Global feature interaction
methods modify input feature maps by incorporating global information. (c) Our CGC, in a funda-
mentally different manner, modulates convolution kernels under the guidance of global context. ~
denotes convolution.
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proposed recently to introduce global context modeling modules into CNN architectures. In this
paper, such a family of works is named as global feature interaction methods. As Figure 1b shows,
these methods modulate intermediate feature maps by incorporating the global context with the local
feature representation. For example, in Non-local modules (Wang et al., 2017b), local features are
reassembled according to global correspondence, which augments CNNs with the global context
modeling ability.

As was discussed by Gilbert & Li (2013), the global context influences neurons processing informa-
tion in two distinct ways: “various forms of attention, including spatial, object oriented and feature
oriented attention” and “rather than having a fixed functional role, neurons are adaptive processors,
changing their function according to behavioral context”. The previous work (Vaswani et al., 2017;
Wang et al., 2017a;b; Park et al., 2018; Hu et al., 2018; Chen et al., 2019; Cao et al., 2019; Bello
et al., 2019) of global feature interaction methods, shown in Figure 1b, only modifies intermediate
features, namely, inputs of neurons, which corresponds to the first way. However, to the best of our
knowledge, the other efficient and intuitive way, i.e., explicitly modulating the convolution kernels
according to context, has not been exploited yet. Motivated by this, we will model convolutional
layers as “adaptive processors” and explore how to leverage global context to guide the composition
of local features in convolution operations.

In this paper, we propose Context-Gated Convolution (CGC), as Figure 1c shows, a new perspective
of complementing CNNs with the awareness of the global context. Specifically, our proposed CGC
learns a series of mappings to generate gates from the global context feature maps to modulate
convolution kernels accordingly. With the modulated kernels, standard convolution is performed
on input feature maps, which is enabled to dynamically capture representative local patterns and
compose local features of interest under the guidance of global context. Our contributions are in
three-fold.

• To the best of our knowledge, we make the first attempt of introducing the context-
awareness to convolutional layers by modulating the weights of them according to the
global context.
• We propose a novel lightweight CGC to effectively generate gates for convolution kernels

to modify the weights with the guidance of global context. Our CGC consists of a Context
Encoding Module that encodes context information into latent representations, a Channel
Interacting Module that projects them into the space of output dimension, and a Gate De-
coding Module that decodes the latent representations to produce the gate.
• Our Context-Gated Convolution can better capture local patterns and compose discrim-

inative features, and consistently improve the performance of standard convolution with
a negligible complexity increment in various tasks including image classification, action
recognition, and machine translation.

2 CONTEXT-GATED CONVOLUTION

2.1 PRELIMINARY

Without loss of generality, we consider one sample of 2D case. The input to a convolutional layer is
a feature map X ∈ Rc×h×w, where c is the number of channels, and h,w are respectively the height
and width of the feature map. In each convolution operation, a local patch of size c × k1 × k2 is
collected by the sliding window to multiply with the kernel W ∈ Ro×c×k1×k2 of this convolutional
layer, where o is the number of output channels, and k1, k2 are respectively the height and width
of the kernel. Therefore, only local information within each patch is extracted in one convolution
operation. Although in the training process, the convolution kernels are learned from all the patches
from all the images in the training set, the kernels are not adaptive to the current context during
inference time.

2.2 MODULE DESIGN

In order to handle the aforementioned drawback of standard convolution, we propose to incorpo-
rate the global context information during the convolution process. Different from the existing
approaches that modify the input features according to the context, e.g., a global correspondence of
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Figure 2: Our proposed CGC consists of three components, namely the Context Encoding Module,
the Channel Interacting Module, and the Gate Decoding Module. The Context Encoding Module
encodes global context information into a latent representation C; the Channel Interacting Module
transforms C to O with output dimension o; the Gate Decoding Module produces G(1) and G(2)

from C and O to construct the gate G. ~,� denote convolution and element-wise multiplication
operations, respectively. ⊕ is shown in Equation 1.

feature representations, we attempt to directly modulate the convolution kernel under the guidance
of the global context information.

One simple and straightforward way of modulating the convolution kernel W with global context
information is to directly generate a gate G ∈ Ro×c×k1×k2 of the same size with W according to
global context. Assuming that we generate the gate from a context vector v ∈ Rl using a linear
layer without the bias term, the number of parameters is l × o × c × k1 × k2, which is extremely
catastrophic when we modulate the convolution kernel of every convolutional layer. For modern
CNNs, o and c can be easily larger than 100 or even 1,000, which makes o × c the dominant term
in the complexity. Inspired by previous works on convolution kernel decomposition (Howard et al.,
2017; Chollet, 2017), we propose to decompose the gate G into two tensors G(1) ∈ Rc×k1×k2 and
G(2) ∈ Ro×k1×k2 , so that the complexity of o× c can thereby significantly break down.

However, directly generating these two tensors is still not acceptable. Supposing that we generate
them with two linear layers, the number of parameters is l × (o + c) × k1 × k2, which is at the
same scale with the number of parameters of the convolution kernel itself. The bottleneck now is
jointly modeling channel-wise and spatial interactions, namely l and (o+ c)× k1 × k2, considering
that v ∈ Rl is encoded from the input feature map X ∈ Rc×h×w. Inspired by depth-wise separable
convolutions (Howard et al., 2017; Chollet, 2017), we propose to model the spatial interaction and
the channel-wise interaction separately to further reduce complexity.

In this paper, we propose one novel Context-Gated Convolution (CGC) to incorporate the global con-
text information during the convolution process. Specifically, our proposed CGC consists of three
modules: the Context Encoding Module, the Channel Interacting Module, and the Gate Decoding
Module. As Figure 2 shows, the Context Encoding Module encodes global context information in
each channel into a latent representation C via spatial interaction; the Channel Interacting Module
projects the latent representation to the space of output dimension o via channel-wise interaction; the
Gate Decoding Module produces G(1) and G(2) from the latent representation C and the projected
representation O to construct the gate G via spatial interaction. The details of them are described in
the following.

Context Encoding Module. To extract contextual information, we first use a pooling layer to reduce
the spatial resolution to h′ × w′ and then feed the resized feature map to the Context Encoding
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Module. It encodes information from all the spatial positions for each channel, and extracts a latent
representation of the global context. We use a linear layer with weight E ∈ Rh′×w′×d to project the
resized feature map in each channel to a latent vector of size d. Inspired by the bottleneck structure
from (He et al., 2016a; Hu et al., 2018; Wang et al., 2017b; Vaswani et al., 2017), we set d = k1×k2

2
to extract informative context, when not specified. The weight E is shared across different channels.
A normalization layer and an activation function come after the linear layer. There are c channels,
so the output of the Context Encoding Module is C ∈ Rc×d.

Channel Interacting Module. It projects the feature representations C ∈ Rc×d to the space of
output dimension o. Inspired by (Ha et al., 2016), we use a grouped linear layer I ∈ R

c
g×

o
g , where

g is the number of groups. The weight I is shared among different dimensions of d and different
groups. A normalization layer and an activation function come after the linear layer. The final
output of the Channel Interacting Module is O ∈ Ro×d.

Gate Decoding Module. It takes both C and O as inputs, and decodes the latent representations to
the spatial size of convolution kernels. We use two linear layers whose weights Dc ∈ Rd×k1×k2 and
Do ∈ Rd×k1×k2 are respectively shared across different channels in C and O. Then each element
in the gate is produced by

Gh,i,j,k = σ(G(1)
i,j,k + G(2)

h,j,k) = σ((CD)i,j,k + (OD)h,j,k), (1)

where σ(·) denotes the sigmoid function. Now we have G with the same size of the convolution
kernel W, which is generated from the global context by our lightweight modules. Then we can
modulate the weight of a convolutional layer by element-wise multiplication to incorporate rich
context information:

Ŵ = W�G. (2)

With the modulated kernel, a standard convolution process is performed on the input feature maps,
where the context information can help the kernel capture more representative patterns and also
compose features of interest.

Complexity. The computational complexity of our three modules is O(c× d×h′×w′+ c× o/g+
c×d×k1×k2 +o×d×k1×k2 +o×c×k1×k2), where h′, w′ can be set independent of h,w. It is
negligible compared to convolution’sO(o×c×k1×k2×h×w). Except the linear time of pooling,
the complexity of these three modules is independent of the input’s spatial size. The total number
of parameters is O(d × h′ × w′ + c × o/g2 + 2 × d × k1 × k2), which is negligible compared to
standard convolution’sO(o×c×k1×k2). Therefore we can easily replace the standard convolution
by our proposed CGC with a very limited computation and parameter increment, therefore enabling
neurons to be adaptive to global context.

2.3 DISCUSSIONS

We are aware of previous works on dynamically modifying the convolution operation (Dai et al.,
2017; Wu et al., 2019; Jia et al., 2016; Jo et al., 2018; Mildenhall et al., 2018). However, two key
factors distinguish our approach from those works: whether the information guiding convolution is
collected globally and how it changes the parameters of convolution. Dai et al. (2017) proposed
to adaptively set the offset of each element in a convolution kernel, and Wu et al. (2019) proposed
to dynamically generate the weights of convolution kernels. However, in their formulations, the
dynamic mechanism for modifying convolution kernels only takes local patches or segments as in-
puts, so it is only adaptive to local inputs, which limits their ability of leveraging rich information
in global context. According to experiments in Section 3.4, our proposed CGC significantly outper-
forms Dynamic Convolution (Wu et al., 2019) with the help of global context awareness.

Another family of works on dynamic filters (Jia et al., 2016; Jo et al., 2018; Mildenhall et al., 2018)
generates weights of convolution kernels using features extracted from input images by another CNN
feature extractor. The expensive feature extraction process makes it more suitable for generating a
few filters, e.g., in the case of low-level image processing. It is impractical to generate weights for
all the layers in a deep CNN model in this manner. However, our CGC takes input feature maps of a
convolutional layer and makes it possible to dynamically modulate the weight of each convolutional
layer, which systematically improves CNNs’ global context modeling ability.

4



Under review as a conference paper at ICLR 2020

Table 1: Image classification results on ImageNet and CIFAR-10. Param indicates the number of
parameters in the model. ∆MFLOPs is the increment of the number of multiplication-addition op-
erations compared to ResNet-50 (4 GFLOPs) for ImageNet models and ResNet-110 (256 MFLOPs)
for CIFAR-10 models. Bold indicates the best result.

Dataset Models Param ∆MFLOPs Top-1(%) Top-5(%)

ImageNet

SE-ResNet-50 (Hu et al., 2018) 28.09M 8 77.18 93.67
BAM-ResNet-50 (Park et al., 2018) 25.92M 83 76.90 93.40
GC-ResNet-50 (Cao et al., 2019) 28.11M 8 73.90 91.70
ResNet-50 (He et al., 2016a) 25.56M - 76.18 92.91
ResNet-50 + CGC(Ours) 25.59M 6 77.30 93.66
CBAM-ResNet-50 (Woo et al., 2018) 28.09M 15 77.34 93.69
CBAM-ResNet-50 + CGC(Ours) 28.12M 21 77.68 93.68

CIFAR-10 ResNet-110 (He et al., 2016b) 1.73M - 93.96 99.73
ResNet-110 + CGC(Ours) 1.80M 2 94.86 99.82
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Figure 3: The training curves of ResNet-50 and ResNet-50 + CGC (ours) on ImageNet.

3 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed CGC in incorporating 1D, 2D, and
3D context information in 1D, 2D, and (2+1)D convolutions. We conduct extensive experiments
on image classification, action recognition, and machine translation, and observe that our CGC
consistently improves the performance of modern CNNs with negligible parameter increment on
four benchmark datasets: ImageNet (Russakovsky et al., 2015), CIFAR-10 (Krizhevsky et al., 2009),
Something-Something (v1) (Goyal et al., 2017), and IWSLT’14 De-En (Cettolo et al.).

3.1 IMPLEMENTATION DETAILS

All of the experiments are based on PyTorch (Paszke et al., 2017). All the linear layers are without
bias terms. We follow common practice to use Batch Normalization (Ioffe & Szegedy, 2015) for
computer vision tasks, or Layer Normalization (Ba et al., 2016) for natural language processing
tasks, and ReLU (Nair & Hinton, 2010) as the activation function. Note that we learn different sets
of scaling and shifting factors for C that is fed to the identity connection and for C that is fed to
the Channel Interacting Module. We use average pooling with h′ = k1 and w′ = k2, when not
specified. Note that we only replace convolution kernels with a spatial size larger than 1. For those
Point-wise convolutions, we take them as linear layers and do not modulate them. To reduce the size
of I, we fix c/g = 16 when not specified. We initialize all these layers as what He et al. (2015) did
for computer vision tasks and as what Glorot & Bengio (2010) did for natural language processing
tasks.
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Table 2: Ablation studies on CIFAR-10. Param indicates the number of parameters in the model.
∆MFLOPs is the increment of the number of multiplication-addition operations compared to
ResNet-110 (256 MFLOPs). Bold indicates our default setting.

Models Param ∆MFLOPs Top-1 Acc (%)

ResNet-110 (He et al., 2016b) 1.73M - 93.96
ResNet-110 + CGC 1.80M 1.681 94.86
ResNet-110 + CGC only G(1) 1.75M 1.447 94.53
ResNet-110 + CGC only G(2) 1.78M 1.472 94.41
ResNet-110 + CGC G(1) ∗ G(2) 1.80M 1.681 94.59
ResNet-110 + CGC g = 1 1.96M 1.681 94.97
ResNet-110 + CGC d = k1 × k2 1.81M 1.741 94.61
ResNet-110 + CGC Shared Norm 1.79M 1.681 94.72
ResNet-110 + CGC Two Es 1.80M 1.871 94.53
ResNet-110 + CGC Shared D 1.79M 1.681 94.78
ResNet-110 + CGC h′ = 2k1, w

′ = 2k2 1.81M 1.681 94.68
ResNet-110 + CGC MaxPool 1.80M 1.681 94.44
ResNet-110 + CGC (res1,2,3) 1.80M 1.678 94.55
ResNet-110 + CGC (res2,3) 1.78M 1.052 94.43
ResNet-110 + CGC (res3) 1.76M 0.622 94.26

3.2 IMAGE CLASSIFICATION

Experiment Setting. Following previous works (He et al., 2016a) on ImageNet, we train models
on ImageNet 2012 training set, which contains about 1.28 million images from 1,000 categories,
and report the results on its validation set, which contains 50,000 images. We replace all the 3 × 3
convolutions in ResNet-50 (He et al., 2016a) with our CGC and train the network from scratch.
Note that for the first convolutional layer, we use I ∈ R3×64 for the Channel Interacting Module.
We follow common practice (He et al., 2016a) and apply minimum training tricks to isolate the
contribution of our CGC. CIFAR-10 contains 50K training images and 10K testing images in 10
classes. We follow common practice (He et al., 2016b) to train and evaluate the models. We take
ResNet-110 (He et al., 2016b)(with plain blocks) as the baseline model and test other possibilities of
generating the gate G. All the compared methods are trained based on the same training protocol1.
The details are provided in appendix. For evaluation, we report Top-1 and Top-5 accuracy of a single
crop with the size 224× 224 for ImageNet and 32× 32 for CIFAR-10, respectively.

Performance Results. As Table 1 shows, our CGC significantly improves the performance of base-
line models on both ImageNet and CIFAR-10. On ImageNet, our CGC improves the Top-1 accuracy
of ResNet-50 by 1.12% with only 0.03M more parameters and 6M more FLOPs, which verifies our
CGC’s effectiveness of incorporating global context and its efficiency. We also find that GC-ResNet-
50 is hard to train from scratch unless using the fine-tuning protocol reported by Cao et al. (2019),
which indicates that modifying features may be misleading in the early training process. Although
our CGC introduces a few new parameters, our model converges faster and more stably compared
to vanilla ResNet-50, as is shown in Figure 3. We suppose that this is because the adaptiveness to
global context improves the model’s generalization ability and the gating mechanism reduces the
norm of gradients back-propagated to the convolution kernels, which leads to a smaller Lipschitz
constant and thus better training stability (Santurkar et al., 2018; Qiao et al., 2019).

Ablation Study. In order to demonstrate the effectiveness of our module design, ablation studies
are conducted on CIFAR-10, as illustrated in Table 2. Specifically, we ablate many variants of our
CGC and find our default setting a good trade-off between parameter increment and performance
gain. The experiments on the combination of G(1) and G(2) show that our decomposition approach
in Equation 1 is a better way to construct the gate. For channel interacting, we find that using a full
linear model with g = 1 achieves better performance with more parameters, as is expected. We try
removing the bottleneck structure and set d = k1 × k2, and the performance drops, which validates
the necessity of the bottleneck structure.

1The code is based on https://github.com/bearpaw/pytorch-classification
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Table 3: Action recognition results on Something-Something (v1). Backbone indicates the backbone
network architecture. Param indicates the number of parameters in the model. Frame indicates
number of frames used for evaluation. Bold indicates the best result.

Models Backbone Param Frame Top-1(%) Top-5(%)

TRN (Zhou et al., 2018) BNInception 18.3M 8 34.4 -
TRN (Lin et al., 2018) ResNet-50 31.8M 8 38.9 68.1
ECO (Zolfaghari et al., 2018) BNInc+Res18 47.5M 8 39.6 -
ECO (Zolfaghari et al., 2018) BNInc+Res18 47.5M 16 41.4 -
ECOEnLite (Zolfaghari et al., 2018) BNInc+Res18 150M 92 46.4 -
TSN (Wang et al., 2016) ResNet-50 23.86M 8 19.00 44.98
TSN + Non-local (Wang et al., 2017b) ResNet-50 31.22M 8 25.73 55.17
TSN + CGC (Ours) ResNet-50 24.07M 8 32.58 60.06
P3D (Qiu et al., 2017) ResNet-50 25.38M 32 × 30 45.17 74.61
P3D + Non-local (Wang et al., 2017b) ResNet-50 32.73M 32 × 30 45.88 74.94
P3D + CGC 1D (Ours) ResNet-50 25.39M 32 × 30 46.14 75.92
P3D + CGC 3D (Ours) ResNet-50 25.61M 32 × 30 46.35 75.97
P3D + CGC 1D & 3D (Ours) ResNet-50 25.62M 32 × 30 46.53 76.00
TSM (Lin et al., 2018) ResNet-50 23.86M 8 44.65 73.94
TSM + Non-local (Wang et al., 2017b) ResNet-50 31.22M 8 43.91 72.18
TSM + CGC (Ours) ResNet-50 24.07M 8 46.00 75.11
TSM (Lin et al., 2018) ResNet-50 23.86M 16 46.61 76.18
TSM + CGC (Ours) ResNet-50 24.09M 16 47.87 77.22

Shared Norm indicates learning the same set of scaling and shifting factors for C in the following
two branches. Two Es indicates that we learn another E to encode C only for the Channel Interacting
Module. We also try sharing D for generating G(1) and G(2), using larger resized feature maps and
using max pooling instead of average pooling. All the results support our default setting. We also
test different numbers of layers to replace standard convolutions with our CGC. The result indicates
that the more, the better.

3.3 ACTION RECOGNITION

Baseline Methods. For the action recognition task, we adapt three baselines to evaluate the effec-
tiveness of our CGC: TSN (Wang et al., 2016), P3D-A (Qiu et al., 2017) (details are in appendix),
and TSM (Lin et al., 2018). Because our CGC’s effectiveness of introducing 2D spatial context to
CNNs has been verified in image classification, in this part, we focus on its ability of incorporating
1D temporal context and 3D spatial-temporal context. For the 1D case, we apply our CGC to tempo-
ral convolutions in every P3D-A block. For the 3D case, we apply our CGC to spatial convolutions
in P3D-A or 2D convolutions in TSN or TSM; the pooling layer produces c× k × k × k cubes, the
Context Encoding Module encodes k×k×k feature maps into a vector of length k3/2 and the Gate
Decoding Module generates o× c× t× k × k gates. Note that for the first convolutional layer, we
use I ∈ R3×64 for the Channel Interacting Module.

Experiment Setting. The Something-Something (v1) dataset has a training split of 86,017 videos
and a validation split of 11,522 videos, with 174 categories. We follow (Qiao et al., 2019) to train
on the training set and report evaluation results on the validation set. We follow Lin et al. (2018) to
process videos and augment data. Since we only use ImageNet for pretraining, we adapt the code
base of TSM but the training setting from Qiao et al. (2019). We train TSN- and TSM-based models
for 45 epochs (50 for P3D-A), start from a learning rate of 0.025 (0.01 for P3D-A), and decrease it
by 0.1 at 26 and 36 epochs (30, 40, 45 for P3D-A). For TSN- and TSM-based models, the batch size
is 64 for 8-frame models and 32 for 16-frame models, and the dropout rate is set to 0.5. P3D-A takes
32 continuously sampled frames as input and the batch size is 64, and the dropout ratio is 0.8. We
use the evaluation setting of Lin et al. (2018) for TSN- and TSM-based models and the evaluation
settings of Wang et al. (2017b) for P3D-A. All the models are trained with 8-GPU machines.

Performance Comparisons. As Table 3 shows, our CGC significantly improves the performance
of baseline CNN models, compared to Non-local (Wang et al., 2017b). As aforementioned, Non-
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Table 4: Machine translation results on IWSLT’14 De-En. Param indicates the number of parameters
in the model. Bold indicates the best result.

Models Param BLEU-4

(Deng et al., 2018) - 33.08
Transformer (Vaswani et al., 2017) 39.47M 34.41
DynamicConv (Wu et al., 2019) 38.69M 35.16
LightConv (Wu et al., 2019) 38.14M 34.84
LightConv + Dynamic Encoder (Wu et al., 2019) 38.44M 35.03
LightConv + CGC Encoder (Ours) 38.15M 35.21

local modules modify the input feature maps of convolutional layers by reassembling local features
according to the global correspondence. We apply Non-local blocks in the most effective way as is
reported by Wang et al. (2017b). However, we observe that its performance gain is not consistent
when training the model from scratch, which again indicates that modifying features according to
the global correspondence may be misleading in the early training process. When applied to TSM,
it even degrades the performance. Our proposed CGC consistently improves the performance of
all the baseline models. When applied to TSM, our CGC yields the state-of-the-art performance,
when without Kinetics (Carreira & Zisserman, 2017) pretraining, with only RGB modality and with
negligible parameter increment.

3.4 MACHINE TRANSLATION

Baseline Methods. The LightConv proposed by Wu et al. (2019) achieves better performances
with a lightweight convolutional model, compared to Transformer (Vaswani et al., 2017). We take
it as the baseline model and augment their Lightweight Convolution with our CGC. Note that the
Lightweight Convolution is a grouped convolution L ∈ RH×k with weight sharing, so we remove
the Channel Interacting Module since we do not need it to project latent representations. We resize
the input sequence S ∈ Rc×L to RH×3k with average pooling. For those sequences shorter than 3k,
we pad them with zeros. Since the decoder decodes translated words one by one at the inference
time, it is unclear how to define global context for it. Therefore, we only replace the convolutions in
the encoder.

Experiment Setting. We follow Wu et al. (2019) to train all the compared models with 160K
sentence pairs and 10K joint BPE vocabulary. We use the training protocol of DynamicConv (Wu
et al., 2019) provided in Ott et al. (2019). The widely-used BLEU-4 (Papineni et al., 2002) is
reported for evaluation of all the models. We find that it is necessary to set beam width to 6 to
reproduce the results of DynamicConv reported in (Wu et al., 2019), and we fix it to be 6 for all the
models.

Performance Comparisons. As Table 4 shows, replacing Lightweight Convolutions in the en-
coder of LightConv with our CGC significantly outperforms LightConv and LightConv + Dynamic
Encoder by 0.37 and 0.18 BLEU, and yields the state-of-the-art performance. As is discussed previ-
ously, Dynamic Convolution leverages a linear layer to generate the convolution kernel according to
the input segment, which lacks the awareness of global context. This flaw may lead to sub-optimal
encoding of the source sentence and thus the unsatisfied decoded sentence. However, our CGC in-
corporates global context of the source sentence and helps significantly improve the quality of the
translated sentence. Moreover, our CGC is much more efficient than Dynamic Convolution because
of our module design. Our CGC only needs 0.01M extra parameters, but Dynamic Convolution
needs 30× more.

4 RELATED WORKS

There has been much effort in augmenting CNNs with context information. They can be roughly
categorized into three types: first, adding backward connections in CNNs (Stollenga et al., 2014;
Zamir et al., 2017; Yang et al., 2018) to model the top-down influence (Gilbert & Li, 2013) like
humans’ visual processing system; second, modifying intermediate feature representations in CNNs
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according to attention mechanism (Vaswani et al., 2017; Wang et al., 2017b); third, dynamically
generating the parameters of convolution according to local or global information (Jia et al., 2016;
Noh et al., 2016; Dai et al., 2017; Wu et al., 2019).

For the first category of works, it is still unclear how the feedback mechanism can be effectively
and efficiently modeled in CNNs. For example, Yang et al. (2018) proposed an Alternately Updated
Clique to introduce feedback mechanisms into CNNs. However, compared to standard CNNs, the
complex updating strategy increases the difficulty for training them as well as the latency at the in-
ference time. The second category of works is the global feature interaction methods. They(Vaswani
et al., 2017; Wang et al., 2017a;b; Park et al., 2018; Hu et al., 2018; Chen et al., 2019; Cao et al.,
2019; Bello et al., 2019) were proposed recently to modify local features according to global context
information, usually by a global correspondence, i.e. the self-attention mechanism. There are also
works on reducing the complexity of self-attention mechanism (Parmar et al., 2018; Child et al.,
2019). However, this family of works only considers changing the input feature maps. The third
type of works is more related to our work. As is discussed before, our approach is distinct from
them in two key factors.

5 CONCLUSION

In this paper, motivated by neuroscience research on neurons as “adaptive processors”, we proposed
Context-Gated Convolution (CGC) to incorporate global context information into CNNs. Different
from previous works which usually modifies input feature maps, our CGC directly modulates con-
volution kernels under the guidance of global context information. We proposed three modules to
efficiently generate a gate to modify the kernel. As such, our CGC is able to extract representative
local patterns according to global context. The extensive experiment results show consistent perfor-
mance improvements on various tasks. There are still a lot of future works that can be done. For
example, ew could design task-specific gating modules to fully uncover the potential of the proposed
CGC.
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A APPENDIX

A.1 DETAILS OF TRAINING SETTINGS ON IMAGENET AND CIFAR-10

For ImageNet, we use 224 × 224 random resized cropping and random horizontal flipping for data
augmentation. Then we standardize the data with mean and variance per channel. We use a standard
cross-entropy loss to train all the networks with a batch size of 256 on 8 GPUs by SGD with a weight
decay of 0.0001 and a momentum of 0.9 for 100 epochs. We start from a learning rate of 0.1 and
decrease it by a factor of 10 every 30 epochs. For CIFAR-10, we use 32× 32 random cropping with
a padding of 4 and random horizontal flipping. We use a batch size of 128 and train on 1 GPU. We
decrease the learning rate at the 81st and 122nd epochs, and ends training after 164 epochs.

A.2 DETAILS ABOUT P3D-A

Based on ResNet-50, we add a temporal convolution with k = 5, stride = 2 after the first convo-
lutional layer. For convolutional layers in residual blocks, we follow Wang et al. (2017b) to add
3× 1× 1 convolution (stride is 1) after every two 1× 3× 3 convolutions. We only inflate the max
pooling layer after the first convolutional layer with a temporal kernel size of 3 and a stride of 2
without adding any other temporal pooling layers. Note that all the aforementioned convolutional
layers come with a Batch Normalization layer and a ReLU activation function.
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Figure 4: Visualization of the feature maps produced by ResNet-50 and CGC-ResNet-50 from 8
ImageNet validation set images. (Best viewed on a monitor when zoomed in)

A.3 VISUALIZATION

To understand how CGC helps the model capture more informative features under the guidance
of context information, we visualize the feature maps of ResNet-50 and our CGC-ResNet-50 by
Grad-CAM++ (Chattopadhay et al., 2018). As Figure A.3 shows, overall, the feature maps (After
the CGC) produced by our CGC-ResNet-50 cover more informative regions, e.g., more instances or
more parts of the ground-truth object, than vanilla ResNet-50.

Specifically, we visualize the feature maps before the last CGC in the model, the context information
used by the CGC, and the resulting feature maps after the CGC. As is clearly shown in Figure A.3,
the proposed CGC extracts the context information from representative regions of the target object
and successfully refine the feature maps with comprehensive understanding of the whole image and
the target object. For example, in Gold Fish 1, the head of the fishes are partially visible. Vanilla
ResNet-50 mistakes this image as Sea Slug, because it only pays attention to the tails of the fishes,
which are similar to sea slugs. However, our CGC utilizes the context of the whole image and guides
the convolution with information from the entire fishes, which helps the model to classify this image
correctly.

A.4 ANALYSIS OF THE GATE

To further validate that our CGC uses context information of the target objects to guide convolution
process, we calculate the average modulated kernel (in the last CGC of the model) for images of each
class in the validation set. Then we calculate inter-class L2 distances between every two average
modulated kernels, i.e., class centers, and the intra-class L2 distance (mean distance to the class
center) for each class. As is shown in Figure A.4, we visualize the difference matrix between inter-
class distances and intra-class distances. In more than 93.99% of the cases, the inter-class distance
is larger than the corresponding intra-class distance, which indicates that there are clear clusters of
these modulated kernels and the clusters are aligned very well with the classes.

This observation strongly supports that our CGC successfully extracts class-specific context infor-
mation and effectively modulates the convolution kernel to extract representative features. On the
other hand, the intra-class variance of the modulated kernels supports that for different images of
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Figure 5: Visualization of the difference matrix between inter-class distances and intra-class dis-
tances of the last gate in the network on ImageNet validation set. (Best viewed on a monitor when
zoomed in)

the same class, adjusting the kernels adaptively is beneficial for correct classification, which is con-
sistent with the neuroscience research that motivates our CGC.
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