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ABSTRACT

We derive a new intrinsic social motivation for multi-agent reinforcement learning
(MARL), in which agents are rewarded for having causal influence over another agent’s
actions. Causal influence is assessed using counterfactual reasoning. The reward does
not depend on observing another agent’s reward function, and is thus a more realistic
approach to MARL than taken in previous work. We show that the causal influence
reward is related to maximizing the mutual information between agents’ actions. We test
the approach in challenging social dilemma environments, where it consistently leads to
enhanced cooperation between agents and higher collective reward. Moreover, we find
that rewarding influence can lead agents to develop emergent communication protocols.
We therefore employ influence to train agents to use an explicit communication channel,
and find that it leads to more effective communication and higher collective reward. Fi-
nally, we show that influence can be computed by equipping each agent with an internal
model that predicts the actions of other agents. This allows the social influence reward
to be computed without the use of a centralised controller, and as such represents a sig-
nificantly more general and scalable inductive bias for MARL with independent agents.

1 INTRODUCTION

Deep reinforcement learning (RL) has made impressive progress on specific tasks with well-defined reward
functions, but is still difficult to learn intelligent behavior that generalizes across multiple domains. Intrinsic
motivation is a technique for solving this problem by developing general reward functions that encourage an
agent to learn across a variety of tasks (Singh et al., 2004). Previous approaches to intrinsic motivation have
broadly fallen into two categories: (1) curiosity, or a drive for novelty (e.g. Pathak et al. (2017); Schmidhuber
(2010)), and (2) empowerment, or a drive to be able to manipulate the environment (Klyubin et al., 2005).

We posit that this body of work has largely overlooked an important intrinsic motivation that is key to
human learning: social interaction. Humans have remarkable social learning abilities; some authors suggest
that it is social learning that has given rise to cultural evolution, and allowed us to achieve unprecedented
progress and coordination on a massive scale (van Schaik & Burkart, 2011; Herrmann et al., 2007). Others
emphasize that our impressive capacity to learn from others far surpasses that of other animals, apes, and
even other proto-human species (Henrich, 2015; Harari, 2014; Laland, 2017).

Therefore, we propose an intrinsic reward function designed for multi-agent RL (MARL), which
awards agents for having a causal influence on other agents’ actions. Causal influence is assessed using
counterfactual reasoning; at each timestep, an agent simulates alternate, counterfactual actions that it could
have taken, and assesses their effect on another agent’s behavior. Actions that lead to relatively higher
change in the other agent are considered to be highly influential and are rewarded. We show how this
reward is related to maximizing the mutual information between agents’ actions, and is thus a form of
social empowerment. We hypothesize that rewarding influence may therefore encourage cooperation
between agents. We also take inspiration from experiments in human cognition, showing that newborn
infants are sensitive to correspondences between their own actions and the actions of other people, and
use this to coordinate their behavior with others (Tomasello, 2009; Melis & Semmann, 2010).

To study our proposed social influence reward in the MARL setting, we adopt the Sequential Social
Dilemmas (SSDs) of Leibo et al. (2017). These are challenging MA environments with a game-theoretic
reward structure, similar to Prisoner’s Dilemma. For each individual agent, ‘defecting’ (non-cooperative
behavior) has the highest payoff. However, the collective reward will be better if all agents choose to
cooperate. The paradoxical payoff structure of these tasks make achieving cooperative social dynamics
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extremely challenging for typical RL agents. We show that social influence allows agents to learn to
cooperate in these environments, and make the following contributions:

• We demonstrate that deep RL agents trained with the proposed social influence reward cooperate
to attain higher collective reward than baseline deep RL agents (Mnih et al., 2016). In some cases,
this cooperation is attained because influencer agents learn to use their actions as an emergent
communication protocol, analogous to behavior seen in animals (von Frisch, 1969).

• Motivated by the previous point, we apply the influence reward to training deep RL agents to
use an explicit communication channel, as in Foerster et al. (2016). We demonstrate that the
communication protocols trained with the influence reward meaningfully relate to agents’ actions,
and that once again, agents trained with the influence reward achieve better collective outcomes.

• We demonstrate that there is a significant correlation between being influenced through
communication messages and obtaining higher individual return, suggesting that influential
communication is beneficial to the agents that receive it.

• Finally, rather than computing social influence using a centralised training framework as in prior
work (e.g. Foerster et al. (2017; 2016)), we extend the approach by attaching an internal Model
of Other Agents (MOA) network to each agent and training it to predict the actions of every
other agent. The agent can then simulate counterfactual actions and use its own internal MOA
to predict how these will affect other agents, thus computing its own intrinsic influence reward.

Using a MOA to predict and reward influence allows us to compute an intrinsic social reward by observing
other agents’ past actions, without a centralised controller, and without requiring access to another agent’s
reward function. We believe this is an important innovation over prior work (e.g. (Hughes et al., 2018;
Foerster et al., 2017; 2016)). When we consider likely future applications of MARL, such as autonomous
driving, it becomes apparent that centralised training or the sharing of reward functions are unrealistic
assumptions, since autonomous vehicles are likely to be produced by a wide variety of organizations and
institutions with mixed motivations. Rather, a social reward function which only depends on observing the
behavior of agents acting in the environment, and which can give rise to coordinated, cooperative behavior,
represents a more promising approach.

2 METHODS

We consider a MARL Markov game defined by the tuple 〈S,T,A,r〉, in which multiple agents which
do not share weights are trained to independently maximize their own individual reward. The environment
state is given by s∈S. At each timestep t, each agent k chooses an action akt ∈A. The actions of allN
agents are combined to form a joint action at=[a0t ,...a

N
t ], which produces a transition in the environment

T(st+1|at,st), according to the state transition function T . Each agent then receives its own reward
rk(at,st), which may depend on the actions of other agents. A history of these variables over time is
termed a trajectory, τ = {st,at,rt}Tt=0. We consider a partially observable setting in which each agent
k can only view a portion of the true state, skt . Each agent seeks to maximize its own total expected
future reward, Rk=

∑∞
i=0γ

irkt+i, where γ is a discount factor. A distributed asynchronous advantage
actor-critic approach (A3C) (Mnih et al., 2016) is used to train each agent’s independent policy πk. The
policy is learned via REINFORCE with baseline (Williams, 1992). Architecturally, our agents consist
of a convolutional layer, fully connected layers, a Long Short Term Memory (LSTM) network (Gers
et al., 1999), and linear layers which output πk and the value function V πk(s). We will refer to the internal
LSTM state of agent k at timestep t as ukt .

2.1 INTRINSIC SOCIAL MOTIVATION VIA CAUSAL INFLUENCE

Social influence intrinsic motivation modifies an agent’s reward function so that it becomes
Rk=αEk+βIk, whereEk is the extrinsic or environmental reward, and Ik is the causal influence reward.
We compute Ik by generating counterfactual actions that the agent could have taken at each timestep, and
assessing how taking these would have affected other agents’ behavior. A counterfactual is the estimated
probability that “Y would be y hadX been x, in situationZ=z”, whereX,Y, andZ are random variables,
and x,y and z are their values (Pearl et al., 2016). Importantly, it is a counterfactual because we condition
on a set of evidence z, and because the assignment X =x is counter to what we actually observed; in
reality,X took on some other value.
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Figure 1: Causal
diagram of agent
A’s effect on B’s
action. We condition
on each agent’s view
of the environment
and LSTM state
u (shaded nodes),
and intervene on aAt
(blue).

To see how we can compute the causal effect of one agent on another, suppose
there are two agents, A and B, and that agent B receives A’s action at time t,
aAt , as input1. Agent B then uses this to compute a distribution over its own
action, p(aBt |aAt ,sBt ,uBt ). Because we have built the model for agent B, we
know all of its inputs: aAt , sBt , and its own internal LSTM state, uBt , as shown in
Figure 1. This allows us to exactly isolate the causal effect ofA’s action onB by
conditioning on the values we observed for the other inputs at this timestep (note
that by conditioning on these variables, including the LSTM state uBt , we remove
any dependency on previous timesteps in the trajectory). We can then intervene
on aAt by replacing it with a counterfactual action, do(ãAt ). This counterfactual
action is used to compute a new estimate of p(aBt |do(ãAt ),sBt ,uBt ). Essentially, the
agent asks a retrospective question: “How wouldB’s action change if I had acted
differently in this situation?”.

To simplify notation, let zt=〈uBt ,sBt 〉, so that conditioning on zt is equivalent to
conditioning on all relevant background variables (all shaded variables in Figure 1).
We can also forego the do operator, noting that p(aBt |do(ãAt ),zt)≡p(aBt |ãAt ,zt) in
this case, because z satisfies the back-door criterion (Pearl & Mackenzie, 2018).
Now, consider averaging over several counterfactuals ãAt . This gives us the marginal
policy ofB, p(aBt |zt)=

∑
ãAt
p(aBt |ãAt ,zt)p(ãAt |zt) —in other words,B’s policy

ifA were not considered. The discrepancy between the marginal policy ofB and
the conditional policy ofB givenA’s action is a measure of the causal influence of

A on B; it gives the degree to which B changes its planned action distribution because of A’s behavior.
Thus, the causal influence intrinsic reward for agentA is

IAt =DKL

[
p(aBt |aAt ,zt)

∥∥∥∑
ãAt

p(aBt |zt,ãAt )p(ãAt |zt)
]
=DKL

[
p(aBt |aAt ,zt)

∥∥∥p(aBt |zt)]. (1)

2.2 RELATIONSHIP TO MUTUAL INFORMATION AND EMPOWERMENT

The causal influence reward in Eq. 1 is related to the mutual information (MI) between the actions of agents
A andB, which is given by

I(AB;AA|z)=
∑
aA,aB

p(aB,aA|z)log p(aB,aA|z)
p(aB|z)p(aA|z)

=
∑
aA

p(aA|z)DKL

[
p(aB|aA,z)

∥∥∥p(aB|z)], (2)

where we see that theDKL factor in Eq. 2 is the causal influence reward given in Eq. 1. The connection
to mutual information is interesting, because a frequently used intrinsic motivation for single agent RL
is empowerment, which rewards the agent for having high mutual information between its actions and
the future state of the environment (e.g. Klyubin et al. (2005); Capdepuy et al. (2007)). To the extent
that the social influence reward defined in Eq. 1 is an approximation of the MI,A is rewarded for having
empowerment overB′s actions.

By sampling N independent trajectories τn from the environment, where A’s actions aAn are drawn
according to p(aA|z), we perform a Monte-Carlo approximation of the MI (see e.g. Strouse et al. (2018)),

I(AA;AB|z)=Eτ
[
DKL

[
p(AB|AA,z)

∥∥p(AB|z)]∣∣∣z]≈ 1

N

∑
n

DKL
[
p(AB|aAn ,z)

∥∥p(AB|z)]. (3)

Thus, in expectation, the social influence reward is the MI between agents’ actions.

Whether the policy trained with Eq. 1 actually learns to approximate the MI depends on the learning
dynamics. We calculate the intrinsic social influence reward using Eq. 1, because unlike Eq. 2, which
gives an estimate of the symmetric bandwidth between A and B, Eq. 1 gives the directed causal effect

1Note that this requires that agentA choose its action beforeB, and thereforeA can influenceB butB cannot
influence A; in other words, we must impose a sequential ordering on agents’ actions, and there cannot be mutual
influence. We improve upon this approach in Section 2.4. For now, we allow only a fixed number of agents
(∈ [1,N−1]) to be influencers, and the rest are influencees. Only an influencer gets the causal influence reward, and
only an influencee can be influenced. At each timestep, the influencers choose their actions first, and these actions are
then given as input to the influencees. If agent A and B are influencers, and C is an influencee, then C receives both
aAt and aBt as input. When computing the causal influence of A on C, we also add aBt to the conditioning set.
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of the specific action taken by agentA, aAt . We believe this will result in an easier reward to learn, since
it allows for better credit assignment; agent A can more easily learn which of its actions lead to high
influence. We also experiment with replacing the KL-divergence with several other measures, including the
Jensen-Shannon Divergence (JSD), and find that the influence reward is robust to the choice of measure.

2.3 INFLUENCE THROUGH COMMUNICATION

According to Melis & Semmann (2010), human children rapidly learn to use communication to influence
the behavior of others when engaging in cooperative activities. They explain that “this ability to influence
the partner via communication has been interpreted as evidence for a capacity to form shared goals with
others”, and that this capacity may be “what allows humans to engage in a wide range of cooperative
activities”. Therefore, we investigate a second use of the social influence reward: learning inter-agent
communication protocols. Using a similar approach to Reinforced Inter-Agent Learning (RIAL) (Foerster
et al., 2016), we equip the agents with an explicit communication channel. At each timestep, each agent k
chooses a discrete communication symbolmk

t ; these symbols are concatenated into a combined message
vector mt=[m0

t ,m
1
t ...m

N
t ], forN agents. This message vector mt is then shown to every other agent in

the next timestep, as in Figure 2. To train the agents to communicate, we augment our initial network with
an additional A3C output head, that learns a communication policy πc over which symbol to emit, and
a communication value function Vc (this is separate from the normal policy and value function used for
acting in the environment, πe and Ve, which are trained only with environmental rewardE).

The influence reward is used, in addition to environmental reward, to train the communication policy πc.
Counterfactuals are employed to assess how much influence an agent’s communication message,mA

t , has
on another agent’s action in the next timestep, aBt+1. Importantly, we hypothesize that communication
can only be influential if it is useful to another agent. There is nothing that compels agentB to act based
on agent A’s communication message; if it does not contain valuable information, B is free to ignore
it. In fact, previous work has shown that selfish agents do not learn to use this type of ungrounded,
cheap talk communication channel effectively (Cao et al., 2018). In contrast, forA to gain influence via
communication, mA

t must contain valuable information that informs B about how best to maximize its
own reward, so much so that it actually causesB to change its intended action.

Figure 2: The communication model has two
A2C heads, which learn a normal policy, πe, and
a policy for emitting communication symbols,
πc. Other agents’ communication messages mt

are input to the LSTM.

Figure 3: The Model of Other Agents (MOA) archi-
tecture learns both an RL policy πe, and a supervised
model that predicts the actions of other agents, at+1.
The predictions of the supervised model are used for
computing the influence reward.

2.4 INFLUENCE VIA MODELING OTHER AGENTS

Computing the causal influence reward as introduced in Section 2.1 requires knowing the probability of
B’s next action given a counterfactual, p(aBt |ãAt ,sBt ), which we previously solved by using a centralised
controller that could access other agent’s policy networks. While using a centralised training framework is
common in MARL (e.g. Foerster et al. (2017; 2016)), it is less realistic than a scenario in which each agent
is trained independently. We can relax this assumption and achieve independent training by equipping
each agent with its own internal Model of Other Agents (MOA). The MOA consists of a second set of
fully-connected and LSTM layers connected to the agent’s convolutional layer (see Figure 3), and is trained
to predict all other agents’ next actions given their current action, and the agent’s egocentric view of the
state: p(at+1|at,sAt ). The MOA is trained using cross-entropy loss over observed action trajectories.

A trained MOA can be used to compute the social influence reward in the following way. Each agent can
“imagine” counterfactual actions that it could have taken at each timestep, and use its internal MOA to
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predict the effect on other agents. It can then give itself reward for taking actions that it estimates were the
most influential. This has an intuitive appeal, because it resembles how humans reason about their effect
on others (Ferguson et al., 2010). We may often find ourselves asking counterfactual questions of the form,
“How would she have reacted if I had said or done something else in that situation?”, which we can only
answer using our internal model of others.

Both the MOA and communication approaches are an important improvement over the original model
shown in Figure 1, which computed influence within a given timestep and required that agentA choose its
action aAt first, and this action be transmitted to agentB as input. This meant that only some agents (those
acting first) could be influencers. In contrast, using influence for communication or with a MOA are general
approaches that can be implemented in any agent, and allow all agents to mutually influence each other.

Figure 4: Causal diagram in the MOA case.
Shaded nodes are conditioned on, and we in-
tervene on aAt (blue node) by replacing it with
counterfactuals. Nodes with a green background
must be modeled using the MOA module. Note
that there is no backdoor path between aAt and
st since it would require traversing a collider
that is not in the conditioning set.

We now seek to estimate influence in the next timestep,
meaning the influence of aAt on aBt+1, which requires
modeling p(aBt+1|aAt ,sAt ). The corresponding causal dia-
gram is shown in Figure 4. We can infer the causal effect
of aAt on aBt+1 by conditioning on the shaded variables
(so that there are no back-door paths) (Pearl et al., 2016).
Learning a model of p(aBt+1|aAt ,sAt ) requires implicitly
modeling both the environment transition function T (to
predict st+1), as well as relevant aspects of the internal
LSTM state of the other agent, uBt+1, as highlighted in
Figure 4.

We enable agents to condition their policy on the ac-
tions of other agents in the previous timestep (actions
are visible), and only give the social influence reward
to an agent when the agent it is attempting to influ-
ence is within its field-of-view, because the estimates of
p(aBt+1|aAt ,sAt ) are likely to be more accurate when B
is visible toA2. The latter constraint could have the side-
effect of encouraging agents to stay in closer proximity.
However, an intrinsic social reward based on proximity is also a reasonable approach to approximating
human social motivation. Humans seek affiliation and to spend time near other people (Tomasello, 2009).

2.5 SEQUENTIAL SOCIAL DILEMMAS

First proposed by Leibo et al. (2017), Sequential Social Dilemmas (SSDs) are spatially and temporally
extended multi-agent games that have a payoff structure similar to that of Prisoner’s Dilemma (PD). That is,
an individual agent can obtain higher reward by engaging in defecting, non-cooperative behavior (and thus
is rationally motivated to defect), but the average payoff per agent will be higher if all agents cooperate (see
Figure 9 of the Appendix). The paradoxical reward structure makes it extremely difficult for traditional RL
agents to learn to coordinate to solve the tasks (Hughes et al., 2018). We experiment with two SSDs in this
work, a public goods game Cleanup, and a tragedy-of-the-commons game Harvest (see Figure 5). In both
games apples (green tiles) provide the rewards, and agents also have the ability to punish each other with a
fining beam. Further details are available in Appendix Section 6.1.

Figure 5: The two SSD environments, Cleanup (left) and Harvest (right). Agents can exploit other agents
for immediate payoff, but at the expense of the long-term collective reward of the group.

2This contrasts with our previous models in which the influence reward was obtained even from non-visible agents.
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3 RELATED WORK

Several attempts have been made to develop intrinsic social motivation rewards3. Sequeira et al. (2011)
developed hand-crafted rewards specific to a foraging environment, in which agents were punished for
eating more than their fair share of food. Another approach gave agents an emotional intrinsic reward based
on their perception of their neighbours’ cooperativeness in a networked version of the iterated prisoner’s
dilemma (Yu et al., 2013). This approach is limited to scenarios in which it is possible to directly classify
each action as cooperative or non-cooperative, which is untenable in complex settings with long-term
strategies, such as the SSDs under investigation here. Hughes et al. (2018) introduced an inequity aversion
motivation, which penalized agents if their rewards differed too much from those of the group. Another
approach used prosocial reward shaping to show that if even a single agent is trained to optimize for the
rewards of other agents, it can help the group obtain better collective outcomes (Peysakhovich & Lerer,
2018). However, these both require the ability to observe other agent’s rewards, which may be an unrealistic
assumption, depending on the application.

Another body of work has focused on training agents to learn emergent communication protocols (Foerster
et al., 2016; Cao et al., 2018; Choi et al., 2018; Lazaridou et al., 2018; Bogin et al., 2018), with many authors
finding that selfish agents do not learn to use an ungrounded, cheap talk communication channel effectively.
Crawford & Sobel (1982) find that in theory, the information revealed in communication (in equilibrium)
is proportional to amount of common interest; thus, as agents’ interests diverge, no communication is
to be expected. And while communication can emerge when agents are prosocial (Foerster et al., 2016;
Lazaridou et al., 2018) or hand-crafted (Crandall et al., 2017), self-interested agents do not to learn to
communicate (Cao et al., 2018). We test whether the social influence reward can encourage agents to learn
to communicate more effectively in complex environments with challenging social dilemma dynamics.

Interestingly, Oudeyer & Kaplan (2006) show that a robot trained with a curiosity-based intrinsic motivation
to maximize learning progress learns to prefer vocalizing sounds imitated by another robot over interaction
with other objects in the environment. Follow-up papers suggest that curiosity may be a sufficient motivation
to encourage agents, or even children, to learn to communicate with others (Oudeyer & Smith, 2016;
Forestier & Oudeyer, 2017).

Our MOA network is related to work on machine theory of mind (Rabinowitz et al., 2018), which
demonstrated that a model trained to predict agents’ actions is able to model false beliefs. With LOLA,
Foerster et al. (2018) train agents that model the impact of their policy on the parameter updates of other
agents, and directly incorporate this into the agent’s own learning rule.

Barton et al. (2018) propose causal influence as a way to measure coordination between agents, specifically
using Convergence Cross Mapping (CCM) to analyze the degree of dependence between two agents’
policies. The limitation of this approach is that CCM estimates of causality are known to degrade in the
presence of stochastic effects (Tajima et al., 2015). Counterfactual reasoning has also been used in a
multi-agent setting, to marginalize out the effect of one agent on a predicted global value function estimating
collective reward, and thus obtain an improved baseline for computing each agent’s advantage function
(Foerster et al., 2017). A similar paper shows that counterfactuals can be used with potential-based reward
shaping to improve credit assignment for training a joint policy in multi-agent RL Devlin et al. (2014).
However, once again these approaches rely on a centralised controller.

Following in the tradition of the empowerment literature, authors have investigated mutual information
(MI) as a powerful tool for designing social rewards. Strouse et al. (2018) train agents to maximize or
minimize the MI between their actions and a categorical goal, and show how this can be used to signal
or hide the agent’s intentions. However, this approach depends on agents pursuing a known, categorical
goal. Guckelsberger et al. (2018), in pursuit of the ultimate video game adversary, develop an agent that
maximizes its empowerment over its own states, minimizes the player’s empowerment over their states, and
maximizes its empowerment over the player’s next state. This third goal, termed transfer empowerment, is
obtained by maximizing the MI between the agent’s actions and the player’s future state. While similar
to our approach, the authors find that agents trained with transfer empowerment simply tend to stay near
the player. Further, the agents are not trained with RL, but rather analytically compute these measures in
simple grid-world environments. As such, the agent cannot learn to model other agents or the environment.

3Note that intrinsic is not a synonym of internal; it is possible to be intrinsically motivated by other people
(Stavropoulos & Carver, 2013).
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4 EXPERIMENTS

The following sections present the results of training agents with the social influence reward in three
settings: (1) using a centralised controller, (2) using an explicit communication channel, and (3) using a
learned model of other agents (MOA). In each case we compare against a standard A3C agent, and an
ablated version of the model which is architecturally identical, but does not receive the influence reward.
We measure the total collective reward obtained using the best hyperparameter setting tested with 5 random
seeds. It is worth noting that we use a curriculum learning approach which gradually increases the weight
of the social influence reward over C steps (C∈ [0.2−3.5]×108); this can lead to a slight delay before the
influence models’ performance improves.

We also provide the results of an additional experiment Section 6.2 of the Appendix, which tests the social
influence reward in a simplified environment where the effects of influence are clear. We encourage the
reader to examine that section to gain a better intuition for how social influence can foster cooperative
behavior in an otherwise selfish agent.

4.1 CENTRALISED CONTROLLER

Figures 6(a) and 6(d) show the results of training influence with a centralised controller as described
in Section 2.1. With this method, the influencer agents transmit their intended action to the influenced
agents at each timestep. Therefore, we benchmark against an ablated version of the influence model with
visible actions but no influence reward. As is evident in Figures 6(a) and 6(d), introducing an awareness of
other agents’ actions helps, but having the social influence reward eventually leads to significantly higher
collective reward in both games.

(a) Cleanup - Centralised controller (b) Cleanup - Communication (c) Cleanup - model of other agents

(d) Harvest - Centralised controller (e) Harvest - Communication (f) Harvest - Model of other agents

Figure 6: Total collective reward obtained in all experiments. Error bars show a 99.5% confidence interval
(CI) over 5 random seeds, computed within a sliding window of 200 agent steps. The models trained with
influence reward (red) significantly outperform the baseline and ablated models.

While these aggregated results demonstrate the success of our models, they are not sufficient to understand
the mechanism through which social influence is helping the agents achieve cooperative behavior. Therefore,
we investigated the trajectories produced by high scoring models in both Cleanup and Harvest; the
analysis revealed interesting behavior. As an example, in the Cleanup video available here: https:
//youtu.be/iH_V5WKQxmo a single agent (shown in purple) was trained with the social influence
reward. We see that unlike the other agents, which continue to randomly move and explore while waiting
for apples to spawn, the influencer has a strange economy of motion; it only moves on the map when it is
pursuing an apple, then stops. Interestingly, examining the trajectory reveals that the influencer uses only
two moves to explore the map: turn left, which turns the agent in place without traversing the map, and
move right, which moves the agent one square to the right on the map.
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Figure 7: A mo-
ment of high influ-
ence when the pur-
ple influencer sig-
nals the presence of
an apple outside the
yellow influencee’s
field-of-view (yellow
outlined box).

Why did the influencer learn to use only these two moves? We can see that the
influencer agent only chooses to move right (i.e. traverse the map) when it is
pursuing an apple which is present. The rest of the time it simply turns left on the
spot. At t=49, there is a moment of high influence between the influencer and the
yellow influencee, which is shown in Figure 7. The influencer has chosen to move
right towards an apple that is outside of the ego-centric field-of-view of the yellow
agent. Because the purple agent only moves when apples are available, this signals
to the yellow agent that an apple must be present above it which it cannot see.
This changes the yellow agent’s distribution over its planned action, p(aBt |aAt ,sBt ),
and allows the purple agent to gain influence. A similar moment occurs when the
influencer signals to an agent that has been cleaning the river that no apples have
appeared by continuing to turn left (see Figure 12 in the Appendix).

In this example, the influencer agent learned to use its own actions as a sort of
binary code, which signals the presence or absence of apples in the environment.
We also observe this effect in the influence agents in the Harvest task. This type of
action-based communication could be likened to the bee waggle dance discovered
by von Frisch (1969). Thus, rewarding agents for increasing the mutual information
between their actions gave rise not only to cooperative behavior, but in this case, to
emergent communication. These results further support the idea of using influence
as a reward for training agents to communicate.

4.2 INFLUENCE THROUGH COMMUNICATION

Figures 6(b) and 6(e) show the results of training the agents to use an explicit communication channel, and
its effect on their collective reward. In this case, the ablated baseline is a model that has the same structure
as in Figure 2, but in which the communication policy πc is trained only with environmental reward. We
observe that the agents which are trained to use the communication channel with additional social influence
reward achieve significantly higher collective reward in both games. In fact, in the case of Cleanup, we
found that α=0 in the optimal hyperparameter settings, meaning that it was most effective to train the
communication head with zero extrinsic or environmental reward (see Table 2 in the Appendix). This
suggests that influence alone can be a sufficient mechanism for training an effective communication policy.

To analyze the communication behaviour learned by the agents, we introduce three metrics. Speaker
consistency, is a normalized score ∈ [0,1] which assesses the entropy of p(ak|mk) and p(mk|ak) to
determine how consistently a speaker agent emits a particular symbol when it takes a particular action,
and vice versa (the formula is given in Appendix Section 6.3.4). We expect this measure to be high if,
for example, the speaker always emits the same symbol when it is cleaning the river. We also introduce
two measures of instantaneous coordination (IC), which are both measures of mutual information (MI):
(1) symbol/action IC =I(mA

t ;a
B
t+1) measures the MI between the influencer/speaker’s symbol and the

influencee/listener’s next action, and (2) action/action IC = I(aAt ;a
B
t+1) measures the MI between the

influencer’s action and the influencee’s action in the next timestep. To compute these measures we first
average over all trajectory steps, then take the maximum value between any two agents, to determine if
any pair of agents are coordinating. Note that these measures are all instantaneous, as they consider only
short-term dependencies across two consecutive timesteps, and cannot capture if an agent communicates
influential compositional messages, i.e. information that requires several consecutive symbols to transmit
and only then affects the other agents behavior.

Figure 8: Metrics describing the quality of learned communication protocols.
The models trained with influence reward exhibit more consistent communica-
tion and more coordination, especially in moments where influence is high.

Figure 8 presents the
results. The speaker
consistencies metric re-
veals that agents trained
with the influence
reward communicate
less ambiguously about
their own actions, indi-
cating that the emergent
communication is more
meaningful. The instan-
taneous coordination
metrics demonstrate

8
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that the baseline agents trained without influence reward show almost no signs of co-ordinating behavior
with communication, i.e. speakers saying A and listeners doing B consistently. This result is aligned with
both theoretical results in cheap-talk literature (Crawford & Sobel, 1982), and recent empirical results in
MARL (e.g. (Foerster et al., 2016; Lazaridou et al., 2018; Cao et al., 2018)).

In contrast, we do see highly coordinated behavior between influence agents, but only when we limit the
analysis to timesteps on which influence was high (cf. influential moments in Figure 8). If we inspect the
results for agents trained with influence on the two tasks, a common pattern emerges: influence is sparse in
time. An agent’s influence is only greater than its mean influence in less than 10% of timesteps. Because
the listener agent is not compelled to listen to any given speaker, listeners selectively listen to a speaker only
when it is beneficial, and influence cannot occur all the time. Only when the listener decides to change
its action based on the speaker’s message does influence occur, and in these moments we observe high
I(mA

t ;a
B
t+1); an effect that is lost when averaging over the entire trajectory. It appears the influencers

have learned a strategy of communicating meaningful information about their own actions, and gaining
influence when this becomes relevant enough for the listener to act upon it.

Examining the relationship between the reward obtained by individual agents and the degree to which
they were influenced by other agents gives a compelling result: agents that are the most influenced also
achieve higher individual environmental reward,Ek. We sampled 100 different experimental conditions
(i.e., hyper-parameters and random seeds) for both games, collected the influence and individual rewards,
normalized them across the 5 agents in each condition, and correlated the resulting list of values. We
found that agents who are more often influenced tend to achieve higher task reward in both Cleanup,
ρ= .67, p<0.001, and Harvest, ρ= .34, p<0.001. This supports the hypothesis stated in Section 2.3:
in order to gain influence from another agent by communicating with it, the communication message
should contain information that helps the listener maximize its own environmental reward. Since better
listeners/influencees are more successful in terms of task reward, we have evidence that useful information
was transmitted to them.

4.3 INFLUENCE VIA MODELING OTHER AGENTS

Finally, we investigate whether the influence reward is still effective when computed without a centralised
controller, but rather through each agent’s own internal Model of Other Agents (MOA) network. In this
case, we extend the training period from 3·108 steps to 5·108, in order to give the MOA model time to
train. We also allow the policy LSTM to condition on the actions of other agents in the last timestep. We
compare against an ablated version of this architecture (shown in Figure 3), which does not use the output
of the MOA module to compute a reward; rather, the MOA module can be thought of as an unsupervised
auxiliary task that may help the model to learn a better shared embedding layer, encouraging it to encode
information relevant to predicting other agents’ behavior.

Figures 6(c) and 6(f) show the collective reward obtained for agents trained with a MOA module. While
we see that the auxiliary task does help to improve reward over the A3C baseline, the influence agent gets
consistently higher collective reward. Impressively, for Cleanup, the MOA model scores higher than the
original influence agents computed using the centralised controller (CC). As shown in Figure 6(c), the
MOA baseline also achieves high collective reward, suggesting that the auxiliary task of modeling other
agents helps the MOA agents cooperate more effectively in Cleanup. Further, the independent design of
the MOA method allows each agent to influence every other agent, thus generating more reward signal and
a greater chance to develop two-way cooperative behavior.

Table 4 of the Appendix gives the final collective reward obtained by each model for all three experiments.
Interestingly, several influence models are able to achieve higher collective reward than the previous
state-of-the-art scores for these environments (275 for Cleanup and 750 for Harvest) (Hughes et al., 2018).
This is compelling, given that previous work relied on the assumption that agents could view one another’s
rewards; we make no such assumption, instead relying only on agents viewing each other’s actions.

5 DISCUSSION AND CONCLUSIONS

The experiments above have demonstrated that an intrinsic social reward based on having causal influence
on the actions of other agents consistently improves cooperation and leads to higher collective return in
the MA social dilemmas under investigation. In some cases, the influence reward drove agents to learn
an emergent communication protocol via their actions. This is compelling, and confirms the connection
between maximizing influence and maximizing the mutual information between agents’ actions.

9
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However, it is important to consider the limitations of the influence reward. Whether it will always give rise
to cooperative behavior may depend on the specifics of the environment, task, and the trade-off between
environmental and influence reward. Although influence is arguably necessary for cooperation (e.g. two
agents cooperating to lift a box would have a high degree of influence between their actions), it may not
be sufficient, in that it may be possible to influence another agent without helping it. For example, it is
possible that agents could have gained influence in the tasks studied here by threatening to attack other
agents with their fining beam. We believe this type of behavior did not emerge because communicating
information represents the cheapest and most effective way to gain influence. Influencers do not have to
sacrifice much in terms of their own environmental reward in order to communicate to other agents.

Rewarding influence over an explicit communication channel may not be subject to this limitation, because
influential communication may be inherently beneficial to the listener (at least in the case where listeners
and speakers interact repeatedly). Since listeners can easily ignore communication messages if they do
not help to obtain environmental reward, a speaker must transmit valuable information in order to gain
influence through communication. There is no advantage to the speaker for communicating unreliably,
because it would lose influence with the listener over time (although this is no longer guaranteed in
one-shot interactions). Indeed, our results reveal that agents benefit from being influenced by (listening
to) communication messages by obtaining higher individual reward, suggesting that the messages contain
valuable information. Further, we found that the communication protocols learned via influence reward
were more meaningful, and that the influence reward allowed agents to obtain higher collective return.
Therefore, we suggest that influence could be a promising way to train emergent communication protocols
in various settings.

Finally, we have shown that influence can be computed by augmenting agents with an internal model that
predicts the actions of other agents, and using this MOA model to simulate the effect of an agent’s actions
on others. This represents an important step forward in multi-agent intrinsic social motivation, because
it implies that the influence reward can be computed without having access to another agent’s reward
function, or requiring a centralised controller.

5.1 FUTURE WORK

Using counterfactuals to allow agents to understand the effects of their actions on other agents could be a
promising approach with a number of extensions. Perhaps agents could use counterfactuals to develop
a form of ‘empathy‘, by simulating how their actions affect another agent’s value function. Or, social
influence could be used to drive coordinated behavior in robots attempting to do cooperative manipulation
and control tasks. Finally, if we view multi-agent networks as a single agent, influence could be used as a
regularizer to encourage different modules of the network to integrate information from other networks; for
example, perhaps it could prevent collapse in hierarchical RL.
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6 APPENDIX

6.1 SEQUENTIAL SOCIAL DILEMMAS

In each of the sequential social dilemma (SSD) games studied above, an agent is rewarded +1 for every
apple it collects, but the apples are a limited resource. In Harvest (a tragedy of the commons game), apples
regenerate more slowly the faster they are harvested, and if an exploiting agent consumes all of the apples,
they will not grow back; agents must cooperate to harvest sustainably. In Cleanup (a public goods game),
apples are generated based on the amount of waste in a nearby river. Agents can use a cleaning beam action
to clean the river when they are positioned in it; or they can simply consume the apples the other agent
produces. Agents also have a fining beam action which they can use to fine nearby agents−50 reward.

Figure 9 gives the Schelling diagram for both SSD tasks under investigation. A Schelling diagram
(Schelling, 1973; Perolat et al., 2017) shows the relative payoffs for a single agent’s strategy given a fixed
number of other agents who are cooperative. Schelling diagrams generalize payoff matrices to multi-agent
settings, and make it easy to visually recognize game-theoretic properties like Nash equilibria (see Schelling
(1973) for more details).

(a) Cleanup (b) Harvest

Figure 9: Schelling diagrams for the two social dilemma tasks show that an individual is almost always
motivated to defect, even though the group will get higher reward if there are more cooperators.

6.2 ADDITIONAL EXPERIMENT - BOX TRAPPED

Figure 10: The Box trapped environment in which
the teal agent is trapped, and the purple agent can
release it with a special open box action.

As a proof-of-concept experiment to test whether
the influence reward works as expected, we con-
structed a special environment, shown in Figure 10.
In this environment, one agent (teal) is trapped in a
box. The other agent (purple) has a special action
it can use to open the box... or it can simply choose
to consume apples, which exist outside the box and
are inexhaustible in this environment.

As expected, a vanilla A3C agent learns to act
selfishly; the purple agent will simply consume
apples, and chooses the open box action in 0%
of trajectories once the policy has converged. A
video of A3C agents trained in this environment
is available at: https://youtu.be/C8SE9_
YKzxI, which shows that the purple agent leaves
its compatriot trapped in the box throughout the
trajectory.

In contrast, an agent trained with the social influ-
ence reward chooses the open box action in 88% of trajectories, releasing its fellow agent so that they are both
able to consume apples. A video of this behavior is shown at: https://youtu.be/Gfo248-qt3c.
Further, as Figure 11(a) reveals, the purple influencer agent usually chooses to open the box within the first
few steps of the trajetory, giving its fellow agent more time to collect reward.
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Most importantly though, Figure 11(b) shows the influence reward over the course of a trajectory in the
Box trapped environment. The agent chooses the open box action in the second timestep; at this point, we
see a corresponding spike in the influence reward. This reveals that the influence reward works as expected,
incentivizing an action which has a strong — and in this case, prosocial — effect on the other agent’s
behavior.

(a) Number of times the open box action occurs at each
trajectory step over 100 trajectories.

(b) Influence reward over a trajectory in Box trapped

Figure 11: The Box trapped proof-of-concept experiment reveals that an agent gets high influence for
letting another agent out of a box in which it is trapped.

6.3 IMPLEMENTATION DETAILS

All models are trained with a single convolutional layer with a kernel of size 3, stride of size 1, and 6 output
channels. This is connected to two fully connected layers of size 32 each, and an LSTM with 128 cells.
We use a discount factor γ= .99. The number of agentsN is fixed to 5.

As mentioned in Section 2.2, the social influence reward can be computed using a number of diver-
gence measures, including JSD. We also experiment with training the agents using the pointwise mutual
information (the innermost term of Eq. 3), which is given by:

pmi(aA;aB |Z=z)=log
p(aB |aA,z)
p(aB |z)

=log
p(aA,aB |z)

p(aA |z)p(aB |z)
. (4)

This PMI term is precisely the local information flow proposed by Lizier & Prokopenko (2010) as a
measure of direct causal effect; the expectation of the PMI over p(aB,aA|z) is the MI. and gives us a
measure of influence of a single action ofA on the single action taken byB.

In addition to the comparison function used to compute influence, there are many other hyperparameters
that can be tuned for each model. We use a random search over hyperparameters, ensuring a fair comparison
with the search size over the baseline parameters that are shared with the influence models. For all models
we search for the optimal entropy reward and learning rate, where we anneal the learning rate from an initial
value lr init to lr final. The below sections give the parameters found to be most effective for
each of the three experiments.

6.3.1 CENTRALISED CONTROLLER HYPERPARAMETERS

In this setting we vary the number of influencers from 1−4, the influence reward weight β, and the number
of curriculum steps over which the weight of the influence reward is linearly increased C. In this setting,
since we have a centralised controller, we also experiment with giving the influence reward to the agent
being influenced as well, and find that this sometimes helps. This ‘influencee’ reward is not used in the
other two experiments, since it precludes independent training. The hyperparameters found to give the best
performance for each model are shown in Table 1.

6.3.2 COMMUNICATION HYPERPARAMETERS

Because the communication models have an extra A2C output head for the communication policy, we use
an additional entropy regularization term just for this head, and apply a weight to the communication loss
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Cleanup Harvest

Hyperparameter A3C
baseline

Visible actions
baseline Influence A3C

baseline
Visible actions
baseline Influence

Entropy reg. .00176 .00176 .000248 .000687 .00184 .00025
lr init .00126 .00126 .00107 .00136 .00215 .00107
lr end .000012 .000012 .000042 .000028 .000013 .000042
Number of influencers - 3 1 - 3 3
Influence weight β - 0 .146 - 0 .224
CurriculumC - - 140 - - 140
Policy comparison - - JSD - - PMI
Influencee reward - - 1 - - 0

Table 1: Optimal hyperparameter settings for the models in the centralised controller experiment.

Cleanup Harvest

Hyperparameter A3C
baseline

Comm.
baseline

Influence
comm.

A3C
baseline

Comm.
baseline

Influence
comm.

Entropy reg. .00176 .000249 .00305 .000687 .000174 .00220
lr init .00126 .00223 .00249 .00136 .00137 .000413
lr end .000012 .000022 .0000127 .000028 .0000127 .000049
Influence weight β - 0 2.752 - 0 4.825
Extrinsic reward
weight α - - 0 - - 1.0

CurriculumC - - 1 - - 8
Policy comparison - - KL - - KL
Comm. entropy reg. - - .000789 - - .00208
Comm. loss weight - - .0758 - - .0709
Symbol vocab size - - 9 - - 7
Comm. embedding - - 32 - - 16

Table 2: Optimal hyperparameter settings for the models in the communication experiment.

Cleanup Harvest

Hyperparameter A3C
baseline

MOA
baseline

Influence
MOA

A3C
baseline

MOA
baseline

Influence
MOA

Entropy reg. .00176 .00176 .00176 .000687 .00495 .00223
lr init .00126 .00123 .00123 .00136 .00206 .00120
lr end .000012 .000012 .000012 .000028 .000022 .000044
Influence weight β - 0 .620 - 0 2.521
MOA loss weight - 1.312 15.007 - 1.711 10.911
CurriculumC - - 40 - - 226
Policy comparison - - KL - - KL
Train MOA only
when visible - False True - False True

Table 3: Optimal hyperparameter settings for the models in the model of other agents (MOA) experiment.

in the loss function. We also vary the number of communication symbols that the agents can emit, and
the size of the linear layer that connects the LSTM to the communication policy layer, which we term
the communication embedding size. Finally, in the communication regime, we experiment to setting the
weight on the extrinsic reward E, α, to zero. The best hyperparameters for each of the communication
models are shown in Table 2.

6.3.3 MODEL OF OTHER AGENTS (MOA) HYPERPARAMETERS

The MOA hyperparameters include whether to only train the MOA with cross-entropy loss on the actions
of agents that are visible, and how much to weight the supervised loss in the overall loss of the model. The
best hyperparameters are shown in Table 3.
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Cleanup Harvest
A3C baseline 89 485
Inequity aversion (Hughes et al., 2018) 275 750
Influence - Basic 190 1073
Influence - Communication 166 951
Influence - Model of other agents 392 588

Table 4: Final collective reward over the last 50 agent steps for each of the models considered. Bolded
entries represent experiments in which the influence models significantly outperformed the scores reported
in previous work on inequity aversion(Hughes et al., 2018). This is impressive, considering the inequity
averse agents are able to view all other agents’ rewards. We make no such assumption, and yet are able to
achieve similar or superior performance.

6.3.4 COMMUNICATION ANALYSIS

The speaker consistency metric is calculated as:
N∑
k=1

0.5[
∑
c

1−H(p(ak|mk=c))

Hmax
+
∑
a

1−H(p(mk|ak=a))
Hmax

], (5)

where H is the entropy function and Hmax is the maximum entropy based on the number of discrete
symbols or actions. The goal of the metric is to measure how much of a 1:1 correspondence exists between
a speaker’s action and the speaker’s communication message.

6.4 ADDITIONAL RESULTS

Figure 12: A moment of
high influence between the
purple influencer and ma-
genta influencee.

Figure 12 shows an additional moment of high influence in the Cleanup
game. The purple influencer agent can see the area within the white box, and
therefore all of the apple patch. The field-of-view of the magenta influencee
is outlined with the magenta box; it cannot see if apples have appeared, even
though it has been cleaning the river, which is the action required to cause
apples to appear. When the purple influencer turns left and does not move
towards the apple patch, this signals to the magenta agent that no apples have
appeared, since otherwise the influence would move right.

Table 4 presents the final collective reward obtained by each of the models
tested in the experiments presented in Section 4. We see that in several cases,
the influence agents are even able to out-perform the state-of-the-art results on
these tasks reported by Hughes et al. (2018), despite the fact that the solution
proposed by Hughes et al. (2018) requires that agents can view other agents’
rewards, whereas we do not make this assumption, and instead only require
that agents can view each others’ actions.

It is important to note that collective reward is not always the perfect metric
of cooperative behavior, a finding that was also discovered by Barton et al.
(2018) and emphasized by Leibo et al. (2017). In the case, we find that there

is a spurious solution to the Harvest game, in which one agent fails to learn and fails to collect any apples.
This leads to very high collective reward, since it means there is one fewer agent that can exploit the others,
and makes sustainable harvesting easier to achieve. Therefore, for the results shown in the paper, we
eliminate any random seed in Harvest for which one of the agents has failed to learn to collect apples, as in
previous work (Hughes et al., 2018).

However, here we also present an alternative strategy for assessing the overall collective outcomes:
weighting the total collective reward by an index of equality of the individual returns. Specifically, we
compute the Gini coefficient over theN agents’ individual returns:

G=

∑N
i=1

∑N
j=1|ri−rj|

2N
∑N
i=1r

i
, (6)

which gives us a measure of the inequality of the returns, whereG∈ [0,1], withG=0 indicating perfect
equality. Thus, 1−G is a measure of equality; we use this to weight the collective reward for each
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experiment, and plot the results in Figure 13. Once again, we see that the influence models give the highest
final performance, even with this new metric.

(a) Cleanup - Centralised controller (b) Harvest - Centralised controller

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 13: Total collective reward times equality,R∗(1−G), obtained in all experiments. Error bars show
a 99.5% confidence interval (CI) over 5 random seeds, computed within a sliding window of 200 agent
steps. Once again, the models trained with influence reward (red) significantly outperform the baseline and
ablated models.

Finally, we would like to show that the influence reward is robust to the choice of hyperparameter settings.
Therefore, in Figure 14, we plot the collective reward of the top 5 best hyperparameter settings for each
experiment, over 5 random seeds each. Once again, the influence models result in higher collective reward,
which provides evidence that the model is robust to the choice of hyperparameters.
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(a) Cleanup - Centralised controller (b) Harvest - Centralised controller

(c) Cleanup - Communication (d) Harvest - Communication

(e) Cleanup - Model of other agents (f) Harvest - Model of other agents

Figure 14: Total collective reward over the top 5 hyperparameter settings, with 5 random seeds each, for
all experiments. Error bars show a 99.5% confidence interval (CI) computed within a sliding window of
200 agent steps. The influence models still maintain an advantage over the baselines and ablated models,
suggesting the technique is robust to the hyperparameter settings.

6.4.1 OPTIMIZING FOR COLLECTIVE REWARD

In this section we include the results of training explicitly prosocial agents, which directly optimize for the
collective reward of all agents. Previous work (e.g. Peysakhovich & Lerer (2018)) has shown that training
agents to optimize for the rewards of other agents can help the group to obtain better collective outcomes.
Following a similar principle, we implemented agents that optimize for a convex combination of their
own individual reward Ek and the collective reward of all other agents,

∑N
i=1,i6=kE

i. Thus, the reward

function for agent k isRk=Ek+η
∑N
i=1,i6=kE

i. We conducted the same hyperparameter search over the
parameters mentioned in Section 6.3.1 varying the weight placed on the collective reward, η∈ [0,2].
As expected, we find that agents trained to optimize for collective reward attain higher collective reward
in both Cleanup and Harvest, as is shown in Figure 15. In both games, the optimal value for η=0.85.
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(a) Cleanup (b) Tragedy

Figure 15: Total collective reward obtained by agents trained to optimize for the collective reward, for the 5
best hyperparameter settings with 5 random seeds each. Error bars show a 99.5% confidence interval (CI)
computed within a sliding window of 200 agent steps.

Interestingly, however, the equality in the individual returns for these agents is extremely low. Across
the hyperparameter sweep, no solution to the Cleanup game which scored more than 20 points in terms
of collective return was found in which all agents scored an individual return above 0. It seems that in
Cleanup, when agents are trained to optimize for collective return, they converge on a solution in which
some agents never receive any reward.

Note that training agents to optimize for collective reward requires that each agent can view the rewards
obtained by other agents. As discussed previously, the social influence reward is a novel way to obtain
cooperative behavior, that does not require making this assumption.

20


	Introduction
	Methods
	Intrinsic social motivation via causal influence
	Relationship to Mutual Information and Empowerment
	Influence through communication
	Influence via modeling other agents
	Sequential social dilemmas

	Related work
	Experiments
	Centralised controller
	Influence through communication
	Influence via modeling other agents

	Discussion and conclusions
	Future Work

	Appendix
	Sequential Social Dilemmas
	Additional experiment - Box Trapped
	Implementation details
	Centralised controller hyperparameters
	Communication hyperparameters
	Model of other agents (MOA) hyperparameters
	Communication analysis

	Additional results
	Optimizing for collective reward



