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Abstract

To communicate, to ground hypotheses and models, to analyse data, neuroscientists1

often refer to divisions of the brain. Here we consider atlases used to parcellate the2

brain when studying brain function. We discuss the meaning and the validity of3

these parcellations, from a conceptual point of view as well as by running various4

analytical tasks on popular functional brain parcellations.5

Breaking up the human brain in territories is a longstanding tradition, dating back to Brodmann areas6

[5]. While these subdivisions of the brain originated from a desire to reveal homogeneous neural7

populations, they have become a major communication tool in human neurosciences. As such, a8

brain parcellation shapes how we think about units of the brain. When studying brain function, eg9

the neural implementations of mental processes, the macroscopic brain structures that we investigate10

implicitly shape our decompositions of mental function and the models we fit to data. Even the11

seemingly-simple study of brain responses to stimuli is tied to a choice of functional units. For12

instance, in the ventral visual stream, the Fusiform Face Area (FFA) is generally associated to face13

recognition [15], yet it is also strongly associated with visual-expertise in object recognition [10], and14

neurons supporting face recognition overlap in a distributed way with place recognition [14]. Beyond15

stimuli response, brain-wide models call for macroscopic units, for instance to study small-word16

properties of brain functional connectivity [1], to build coupled-oscillator dynamical models of neural17

activity, [8], or fitting spiking-neuron network models to brain-activity data [17].18

Brain imaging has brought many different divisions of the brain into areas, available as brain atlases19

or parcellations. However, their extraction from brain-imaging data all entail different modeling20

choices. Even for atlases based on anatomical structures, there is weak concordance across different21

atlases used [4]. As functional subdivisions are not always simply visible in the microstructure or22

the brain anatomy, the problem is even more pronounced for the choice of functional units. Yet, the23

choice of functional parcellation impacts models of brain functions that are learned from these [26].24

Here, we discuss principles to guide these choices. We first consider the meaning and construct25

validity of functional brain units. We then conduct an empirical study using analytic questions that26

probe different aspects of functional parcels, on 6 popular brain-imaging functional parcellations.27

1 How to think about functional brain parcellations?28

What are functional units? A neurocognitive model entails brain units associated with specific29

functions. For instance, a model of spatial navigation could position long-term spatial-memory30

representations in the hippocampus and short-term visuospatial representation in the intra-parietal31

sulcus. Both structures are fairly big, and encompass many millions of neurons. Should they be32

subdivided? What should be their specific boundaries? The problem is particularly pronounced33

in the cortex which is a continuous sheet of neurons. Models of vision provide a paradigmatic34

example of successful cognitive decomposition of a functional system. We understand vision well-35

enough to break it down in elementary constituents that can be mapped precisely to neural supports36

[13]. Studying local descriptors of the visual field, edge detection, color, or orientation, leads to37

Submitted to the NeuroAI workshop at NeurIPS 2019, Vancouver, Canada.



retinotopic maps that reveal neural populations with local gradients and yet large-scale organizations38

in functional modules: from low-level functional units V1, V2... all the way to mid and high-level39

representations as in IT or the FFA. From a cognitive modeling perspective, these visual areas can be40

seen as implementing an elementary operation, analogous to layers of an artificial neural network [9].41

In an ideal world, a functional brain parcellation would capture such units.42

Can a large-scale division of the brain true, or merely useful? There is very active research on43

full-brain functional parcellations, used for instance to model functional connectivity. Multimodal44

imaging data has been used to seek a division of the brain in units with homogeneous neurobiological45

properties [11]. One goal is to reflect intrinsic brain structure with parcels that characterize better46

brain locations than stereotactic coordinates. Yet, representing brain function on a few hundred47

parcels is a vast simplification compared to the 100 billions neurons in the human brain, or the48

100 thousands voxels in an fMRI volume. Even prototypical functional areas well known for sharp49

intrinsic functional properties, such as V1, have finer topological functional organization, as with50

retonotopic maps or ocular-dominance columns. Sharp boundaries are not present in other, higher-51

level, paradigmatic functional areas, such as the FFA, characterized by functional properties –face52

recognition– that partly overlap with neighboring areas [14]. The picture of functionally-uniform53

units is a convenient simplification with no intrinsic truth. And yet, it is very useful. A functional54

parcellation is a crucial component to build a rich picture of the neural basis of mental function: At55

the level of a study, it provides a necessary data reduction to fit full-brain models to the data. At the56

level of the field, the brain structures that it delineates define common objects of study.57

Better MR-based functional parcellations Some brain parcellations are however more useful58

than others. Nodes adapted to the functional signal give better models of functional connectivity59

[22, 7]. Given the weak concordance between anatomical atlases [4], grounding a functional analysis60

on anatomical labels brings little benefit. Rather, the functional subdivisions can be learned from61

large-scale fMRI data [20].62

2 An empirical investigation of some functional atlases for MR imaging63

Measuring the analytic utility of an atlas To serve as a common object in the field, a good64

functional brain parcellation should be well suited for a variety of analytic tasks that model brain65

activity and its relationship to behavior.66

a. Mapping brain responses Standard analysis in fMRI strives to detect difference in brain re-67

sponses. Performing it on parcels mitigates multiple comparisons and inter-subject spatial vari-68

ability [23]. Good parcels lead to detecting brain structure that match at the voxel level with69

well-powered analysis on the original volumetric data.70

b. Decoding brain function Assign a functional label to a brain structure calls for decoding: pre-71

dicting mental processes from observed brain activity [19]. Good functional units would have72

clear-cut functional labels and thus help decoding performance.73

c. Fidelity to the original signal Summarizing brain activity on large parcels necessarily leads to74

signal loss. A good parcellation should minimize this distortion for a given number of regions.75

d. Functional-connectivity biomarkers Brain parcellations are often used to define the nodes of76

functional-connectivity models. An independent validation of such a model is whether it can be77

well associated with variations of behavioral or clinical traits across subjects [7].78

Popular functional atlases We investigate 6 popular atlases derived from fMRI, detailed in Table 1.79

The atlases differ in their number of regions, whether these regions are defined with continuous or80

binary maps, and which method was used to extract them.81

Experimental procedures82

a. Consistency in detection of neural responses We run an fMRI standard analysis at the parcel83

level and compare the overlap of detected brain territories to detections at the voxel level. We84

calibrate the noise level with the consistency of single subjects with regards to group-level results.85

b. Decoding brain function We compare the performance of an SVM decoders trained on the data86

extracted on various parcellations and at the voxel level.87
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Table 1: Func-
tional atlases
that we inves-
tigate

Name # regions Fuzzy Extraction method Reference

BASC 64, 122, 197, 325, 444 No Hierarchical clustering [3]
Craddock 200, 400 No Spectral clustering [6]
FIND 90, 499 Yes ICA; Ward clustering [21, 2]
Gordon 333 No Local-gradient approach [12]
UKBB ICA 21, 55 Yes Selected ICA components [16]
Schaefer 100, 200, 300, 400,

500, 600, 800, 1000
No Gradient-weighted Markov

Random Field (gwMRF)
[20]

a.
Consistency in detection of neural
responses for the 6 conditions of the
RSVP task of [18].
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b.
Performance in decoding mental
processes in 6 tasks from the HCP
project.
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c.
How well does the reduced data ap-
proximates the original signal across
16 000 brain maps from Neurovault.
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d.
Performance for functional-
connectivity biomarkers for 6 traits
across various cohorts as in [7].
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Figure 1: Usefulness of different atlases for various analytic questions across different datasets
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Figure 2: Some brain parcellations used in functional-connectivity models – Several boundaries
in the AAL, an anatomical parcelation hand-drawn from one subject, are straight lines which is
anatomical improbable. The Craddock parcellation does not capture the shape of local brain structures.
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c. Fidelity to the original signal We compute the fraction of variance of the original signal ex-88

plained by the summarizing brain images on parcels.89

d. Functional biomarkers We measure the prediction performance using a standard functional-90

connectivity prediction pipeline [7] on the different parcellations.91

Results: which atlases lead to clear analysis For standard analysis (Figure 1a) and data approxi-92

mation (Figure 1c), where analysis on the voxel-level data defines the gold standard, the larger the93

number of regions, the better the performance. On the other hand, for predictive tasks –decoding brain94

responses (Figure 1b) or biomarkers from functional connectivity (Figure 1d)– a reduced number of95

regions acts as a regularizer and using a few hundred regions outperforms voxel-level analysis. At a96

low dimensionality, ICA-derived functional atlases performed comparatively well, confirming the97

usefulness of continuously defined node reported in [7]. At higher dimensions, BASC [3] gave the98

best overall compromise, aside from very high-dimensional settings (> 500) only covered by the99

Schaefer parcellation [20]. Overall, for most analytic tasks, very high-dimensional atlases –with a100

number of regions neighboring the thousand– are beneficial. Only to build connectomes is it useful to101

limit the number of nodes to a few hundreds. This can be explained because the number of edges102

grows quadratically, and quickly encounters the curse of dimensionality.103

3 Conclusion104

Atlases defining functional regions can lead to better constructs and better data analysis. Validating105

these functional regions is challenging, yet a guiding principle is that they should improve statistical106

modeling. More research is needed in high-dimensional atlases, which prove very useful. Consensus107

and adoption of easily-accessible functional atlases is important. Indeed, in the mean time, many108

computational modeling studies [1, 8] default to the AAL, an atlas that is neither functionnal, nor109

captures well anatomical boundaries (Figure 2).110

But the evidence to ground the choice of a functional atlas is subtle and there is not simple story.111

From a pure signal-processing point of view (Figure 1 a and c), the best option at low dimensionality112

are ICA-derived modes, and at higher dimensionality the BASC atlas, built by clustering fMRI with113

weak spatial constraints. Decoding performance (Figure 1b) gives a useful measure of the functional114

specificity of the units defined [24]. In this respect, for higher dimensionalities the Schaefer atlas115

[20] –built from clustering with more spatial constraints– appears to give the most useful functional116

units. Finally, the best option to build brain-connectivity models (Figure 1d) is the BASC atlas.117

Continuously-defined modes, as opposed to hard parcellations, give excellent expressive power for118

low dimensionality, however no such atlas is currently available at high dimensionality.119

It is unclear how close any of these atlases get to actual functional units, when these exist. In120

some regions for which functional organization is well known, [25] confirmed the face validity of121

parcels extracted from clustering fMRI. When an atlas is used to define the units of models of brain122

dynamics and function, these units should ideally capture coherent neural populations. Yet, when the123

data modeled are fMRI, these come with many measurement imperfections, including intersubject124

variability. Multimodal approaches promise to define parcellations that capture this variability [11].125

Yet, as they entail a significant increase in complexity, most studies prefer to use a predefined atlas.126

Such an atlas is a simplified view on brain architecture at the population level. Its choice should be127

guided by its suitability to an analytic task, as studied here: all atlases are wrong, some are useful.128
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