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ABSTRACT

Overfitting is an ubiquitous problem in neural network training and usually mit-
igated using a holdout data set. Here we challenge this rationale and investigate
criteria for overfitting without using a holdout data set. Specifically, we train a
model for a fixed number of epochs multiple times with varying fractions of ran-
domized labels and for a range of regularization strengths. A properly trained
model should not be able to attain an accuracy greater than the fraction of prop-
erly labeled data points. Otherwise the model overfits. We introduce two criteria
for detecting overfitting and one to detect underfitting. We analyze early stopping,
the regularization factor, and network depth. In safety critical applications we are
interested in models and parameter settings which perform well and are not likely
to overfit. The methods of this paper allow characterizing and identifying such
models.

1 INTRODUCTION

Deep neural networks have shown superior performance for a wide range of machine learning task
such as speech recognition (Graves & Jaitly (2014)), image classification (Krizhevsky et al. (2012)),
playing board games (Silver et al. (2016)); machine translation (Kalchbrenner et al. (2016)); beating
previous methods by orders of magnitudes. To apply neural networks to safety critical problems
such as autonomous driving it is necessary to evaluate their performance on new previously unseen
data.

One of the major problems of neural networks is their vulnerability to adversarial attacks. It has
been shown that tiny unrecognizable changes of the input can fool the network to predict any class
the attacker has chosen. One way to interpret this vulnerability is that the neural network overfits to
the training data, with the output varying rapidly around each training point and thus slight changes
of the input can lead to big changes in the output. It is thus highly desirable to prevent the network
from overfitting during training.

Previously reported methods reduce the chance of overfitting by evaluating the neural network on
some holdout set, or by penalizing the complexity of the model class. This has the disadvantage
that a holdout set can only be used once. By using design choices proven to be successful in the
past the model becomes dependent on the holdout set. Penalizing the model class is only a heuristic
remedy to overfitting. In the present paper we devise a method which prevents overfitting by relying
on the training data only. We motivate l1-regularization of the kernel weights as a preferable choice
to control the network complexity. Using no holdout set requires an alternative notion of overfitting.
In the paper, we say that a model overfits if it is able to learn noise.

2 LITERATURE REVIEW

Heuristics. There exists several well known heuristics which reduce the chance of overfitting.
Typically one reduces the hypothesis space, or one increases the data set. We can directly control
the size of the hypothesis space by the number of parameters of the model. Typical choices are the
width, the depth and the filter size of the network. Dropout introduced by Srivastava et al. (2014)
at each training step, individual nodes and their incoming and outgoing edges are ignored (dropped
out) with probability p. This reduces the dependency of the model on individual nodes. In early
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stopping (Prechelt (1996)) the model complexity is controlled by the number of iterations, in weight
decay (Krogh & Hertz (1991)) an l2 penalty on the weights is added to the loss function.

Data augmentation. Data augmentation is a commonly used technique to prevent overfitting.
Here the size of the input data is artificially enlarged by applying a transformation to the input
signal which is supposed to keep the output fixed. In practice this is done by cropping, adding input
noise, applying affine transformations or small deformation to the input and so on. A more indirect
data augmentation technique is input normalization see for example Jaderberg et al. (2015).

Detecting overfitting. There are several known approaches to detect overfitting. In holdout testing
the data set is split in train and test sets. The models are learned on the training data only. After
training the models performance is tested with the test data, thereby providing an empirical estimate
of the true risk. If data is scarce cross validation techniques can be applied.

Generalization theory. Generalization theory relates the minimization of the empirical risk to
the minimization of the (unknown) expected risk. The difference between both risks is called the
generalization gap, see Kawaguchi et al. (2017). An important result by Bartlett (1998) proves that
the l1-norm of the weight matrices is more important for generalization than the number of weights.
Furthermore, in Bartlett et al. (2017) it was shown that the spectral complexity of the neural network
bounds the generalization gap. This norm based bound is independent of the architecture parameters,
except for log terms.

Overfitting and neural networks. For neural network not all of these techniques behave as one
would expect. For example it has been reported that deeper networks generalize better than shal-
lower networks. It seems that the number of parameters of a network is of lesser importance to
generalization as measured on the test set. Several large scale experiments supporting this claim are
reported in Figure 1 of Novak et al. (2018).

Randomization experiments. Several papers used randomized labels to investigate generaliza-
tion and memorization in neural networks. Most notably Zhang et al. (2017) showed that a neural
network can memorize randomized training data well, concluding that a theory based on the com-
plexity of the model space alone can not explain the generalization puzzle. Arpit et al. (2017)
analyzed memorization in deep networks based on randomization of the training data.

3 METHODS

3.1 COMPLEXITY AND l1-REGULARIZATION OF THE KERNEL WEIGHTS

The complexity of a neural network is controlled by its hyper parameter and the hyper parameter of
the training algorithm. We propose to control the model class by adding the l1 norm of the kernel
weights ||Wj ||1 multiplied with a regularization factor λ to the loss function. Some additional
background for this section is provided in the appendix.

Notation. This paper considers feed forward networks f : Rd0 → Rk which maps the input space
V0 = Rd0 to some target space VL = Rk. This is followed by an argmax function which picks as
output the coordinate of the largest value. The margin measures the gap between the output for the
correct label and the other labels, γ = f(x)y −maxj 6=y f(x)j . A positive margin means a correct
classification, whereas a negative margin means an incorrect classification.

Each layer of the network consists of a linear blockAk : Vk−1 →Wk and a non linearity φk : Wk →
Vk. The networks are thus written as:

f(x) = φL ◦AL(· · · (φ1 ◦A1(x)))

Here of course φ ◦ A(x) is just another way of writing φ(A(x)). The concatenation ηk = φk ◦ Ak
will be called a block of the network. In this paper only the standard relu nonlinearity φ : R→ R+,
which is defined by φ(x) = x ∨ 0 = max{x, 0} = x+, is considered. The input data is denoted
by x0 ∈ Rd0 . Further, the output of layer k of the network is denoted by yk = fk(x) := φk ◦
Ak(· · · (φ1 ◦ A1(x))) ∈ Rdk and the network which outputs the k-th layer by fk : Rd0 → Rdk .
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Finally, the width of the network is defined by d = max{d0, . . . , dL}. In the paper we will call
the data yk, passing through the layers, signal. Finally, we arrange all data points and signals in
matrices, denoted by X ∈ Rd0×n and Y k ∈ Rdk×n. So we write by slightly abusing notation,
Y k = fk(X) = fk(x1, . . . , xn) = [fk(x1), . . . , fk(xn)].

l1-regularization A typical convolutional kernel W is determined by the filter size, and the num-
ber of incoming and outgoing features. If the convolution is written as matrix operation y = Ax
and zero padding is being assumed, then the matrix A can be arranged as a vertically stacked block
matrix each subblock Ai representing one outgoing feature. The entries of each these blocks are
determined by the weights of the i-th filter. Due to zero padding and weight sharing, each weight
occurs precisely once in each row and each column of Ai. It follows that the filter matrix A contains
in each column each weight precisely once.

Lemma 3.1.1. The spectral norm of a convolution matrix A is bounded by the l1-norm of its kernel
weights.

||A||σ ≤ ||W ||1

Proof. The inequality follows as the spectral norm can be bounded by the row and columns norms
of A, which can be estimated by the weight matrix W .

||A||σ ≤
√
||A||1→1||A||∞→∞ =

√√√√ max
j∈{1,...,n}

m∑
i=1

|aij | max
i∈{1,...,m}

n∑
i=1

|aij | ≤ ||W ||1 (1)

Recently shown generalization bounds are dominated by RA||X||2
nγ (Bartlett et al. (2017)) see also

Theorem A.1.1. Here γ > 0 is the margin, X denotes the training data arranged in a matrix, and
RA is the spectral complexity. We will use a simplified version of RA defined by

RA :=

L∏
j=1

||Aj ||σ

(
L∑
i=1

||ATi ||
2/3
1

||Ai||2/3σ

)3/2

. (2)

Lemma 3.1.2. The spectral complexity can be bounded by the l1-norm of the kernel weights Wj .

RA ≤ dL3/2
L∏
i

||Wi||1

Proof.

RA =

 L∑
i=1

L∏
j 6=i

||Aj ||2/3σ ||Ai||
2/3
1

3/2

≤ L3/2

L

L∑
i=1

L∏
j 6=i

||Aj ||σ||Ai||1 ≤ d
√
L

L∑
i=1

L∏
i

||Wi||1 (3)

≤ dL3/2
L∏
i

||Wi||1 (4)

Here the first inequality holds because of inequalities between the generalized 2/3-mean and 1-
mean. The second inequality follows as the spectral norm can be bounded by ||W ||1 by Lemma
3.1.1.

Both lemmas show that it is beneficial to l1-norm of the kernel weights. In fact Lemma 3.1 shows
by looking at RA||X||2

nγ that the margin scales as ||W ||1. Since we do not use a bias in our model,
we may rescale each kernel matrix by ||W ||−11 . This is compensated by decreasing the margin
accordingly. So in order to achieve better generalization bounds we can penalize the kernel weights
by λ||W ||1. Here λ > 0 is a regularization parameter to be determined.
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3.2 ACCURACY CURVES

Assumptions. To simplify the analysis we make three assumptions. First, we assume that the
data is independent and identically distributed. This implies that the with an increasing level of
randomness the complexity of the data also increases. In dependent data, this is not necessarily the
case. As in that case correlation in the data can be destroyed by the introduction of randomness
making the data faster to learn. Second, we assume that the model complexity is controlled by a
regularization parameter in such a way that an increase of the regularization parameter implies a
strict decrease of the complexity of the model. Third, we assume that the regularization parameter
and the randomness are on a similar scale. To explain this, note that the accuracy is a function of
the regularization parameter and randomness. The assumption simply means that the norm of the
gradient of the accuracy taking in direction of the regularization is of the same order as the norm of
the gradient taken in direction of randomness.

Creating randomized data. In this paper we consider a classification problem. Each data point
consists of a pair (x, y) which is typically an image and a corresponding class. For a fixed level of
randomness p ∈ [0, 1] we split the training data Z = (X,Y ) in two parts. The first split Zp contains
a random sample of p-percent of each class of the training data. The second part Z1−p contains the
rest of the training data. The classes of the first set are randomly permuted to give the set Z̃p. The
randomized data is obtained by joining Dp = Z̃p ∪ Zp−1. With this D0 is equal to the original data
set Z and D1 is obtained by randomly permuting all class labels Y of the data set Z.

Accuracy curves. Central to our paper are accuracy plots. Here we plot the accuracy as computed
on the training data over the randomness of the training data. Alternatively the plot of the accuracy
as computed on the training data over the regularization parameter. In the paper we call such curves
in the plots accuracy over randomness curves and accuracy over regularization curves. To generate
the plots we keep everything fixed except the randomness of the training data or the regularization
parameter.

Monotony. Let us assume that we successfully trained our model on the unperturbed data set
D0 = Z. This means that the accuracy over randomness curve starts in the left upper corner at
some point close to 1. As we increase the level of randomness the training data Dp becomes more
complex and it is thus more difficult to learn, which means our algorithm will take longer to achieve
the same training error. Thus, we expect that the accuracy drops. In other words the accuracy
curve is strictly monotonically decreasing for increasing randomness. Further, if we increase the
regularization parameter the model complexity drops. Thus we also expect that accuracy drops if
the regularization of the model is increased. This shows that our assumption imply that the accuracy
is strictly monotonically decreasing as a function of randomness and regularization.

Figure 1 shows the qualitative behavior of accuracy over randomness curves which follows the
assumption we made.

Real accuracy curves To compare these idealized curves with accuracy curves of real data we
computed the accuracy curves for different data sets, see Figure 2. In each subfigure we trained a
neural network on either mnist(a), cifar10(b), and patched-noise(c) - a generated data set. For each
curve we varied the l1 regularization parameter. Furthermore, for each randomness value on the
x-axis, the network was trained for five different randomization of the labels.

More details on the networks, the data sets and more plots can be found in the appendix.

3.3 THREE CRITERIA TO DETECT OVERFITTING

Criterion 1 - Convexity of accuracy curve. In Figure 1(a) three types of accuracy curves can be
seen: dashed concave curves, dotted convex curves, and a full straight line. If the accuracy curve
of our model is above the straight line, the model is able to learn noise. In other words the model
overfits. Analogously, an accuracy curve below the straight line, shows underfitting. The model
class has not enough capacity to learn the data.
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Figure 1: The figure shows the qualitative behavior of the accuracy curves. The dashed accuracy
over randomness curves(a) depicts models which overfit, as the model has enough capacity to fit
noise. The dotted accuracy curves(a) on the other hand show model which underfit. The shape of
the accuracy curves(a) is controlled by a regularization parameter λ1. Each curve in (b) depicts
qualitatively a accuracy over regularization curves. The mark(b) depicts the point there the accuracy
begins to descent.
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Figure 2: The figures show the accuracy curves for three different data sets. Each curve represents
a different l1-regularization. The curves start with no regularization, depicted in blue, to strong
regularization depicted in red. As the regularization is increase the curve tend to pushed below the
straight line, confirming our intuition.
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The model overfits if the accuracy computed on the true data set is close to one and the accuracy
over randomness curve of the model is strictly concave. The model underfits if the accuracy curve
is strictly convex.

This criterion can be computed by measuring the squared distance of the accuracy curve to
the straight line connecting the points (0, 1) and (1, 1

number of classes ). So assuming the r1, ..., rn
parametrize the randomization of the labels, a(ri) denotes the accuracy at ri the criterion can be
computed by:

crit1 =

n∑
i

(
a(ri)−

(
(1− ri) +

ri
number of classes

))2
(5)

The criterion if met if crit1 is small.

Criterion 2 - Steep decrease in accuracy. Following our criterion 1 we want to determine if the
accuracy curves are convex. Let us recall the accuracy curves are both strictly monotone decreasing
in randomness and regularization. And that we are assuming that randomness and regularization
are on a similar scale. If we look at the point in the upper left of Figure 1(a) we see that the curves
are convex if the accuracy drops sharply as the randomness increases. As the accuracy curve is also
monotone decreasing with increasing regularization we will also detect the convexity by a steep drop
in accuracy as depicted by the marked point in the Figure 1(b).

The model overfits if the accuracy on the training data is close to one and the accuracy over regu-
larization curve (plotted in log-log space) is constant. Otherwise it underfits.

This criterion can be detected by approximating the derivative crit2 = ∂
∂λa(λ) of the accuracy a

as the regularization parameter λ increases. If the derivative becomes larger than a threshold, the
optimal value is found.

Criterion 3 - Two modes in margin histograms. Finally we derive a criterion based on the margin
histograms of the fully randomized training data. Looking again at 1 we see that the accuracy of the
underfitting curves remains constant if we decrease the randomness just a tiny bit.

While training our model several things happen simultaneously. At starting time the network outputs
random noise. If the parameter settings leads to a successful training, the model typically has a phase
in which it outputs one class for all inputs. Looking at the margins of this phase, the distribution
has two modes, one negative and a positive one containing the mass of 1

number of classes examples.
Once we train further the two modes combine to one and the network starts to converge. Our third
criterion looks for these two mode, because the accuracy will remain constant for a tiny decrease in
randomness, as the two modes have to collapse before the accuracy can increase, we are thus in the
underfitting regime.

The model overfits if the margin histograms computed with fully random data D1 respectively with
true data D0 are both positive. The model underfits if the margin histogram computed with fully
randomized training data D1 has two mode.

This criterion can also be evaluated, by simply computing the quotient of positive margins to nega-
tive margins. So if i denotes the index of a training sample, and hi its margin, then the criterion is
computed by

crit3 =

∑
i χ{hi>0}∑
i χ{hi<0}

(6)

where χ denotes the indicator function. The criterion is fulfilled if crit3 is close to 1
number of classes .

4 EXPERIMENTAL SET UP

4.1 DATA SETS

Three data sets have been used to validate the criteria of this paper: cifar10, minist and noise.
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Figure 3: The plots show the accuracy curves of the network trained on cifar10 over different de-
grees of randomness with increasing degree of l1-regularization, after 19999 iterations. We select λ
such that the blue accuracy curve stays below the optimal green line and is convex. Following our
convexity criterion we choose λ∗1 = 0.00011 as regularization factor.

Cifar10. We tested our criteria on cifar-10. This data set consists of 50000 images, equally divided
in ten classes. As described above we generated random samples of the training data which we
denote by cifar-100.0, cifar-100.1,...,cifar-101.0. A superscript stands for the fraction of randomized
samples per class. So cifar-100.0 stands for the original data. In cifar-100.5 half of the labels of
each class are randomly permuted while the other half remains fixed. Finally, in cifar-101.0 all class
labels are randomly permuted. Details on the architecture and training parameter can be found in
the appendix.

Mnist. The data sets were created similar to cifar10.

Noise. This data set consists of 50000 randomly generated rgb noise, equally divided in ten classes.
For each class a set of 100 random 5x5x3 patches were generated. Each image sampled 36 patches
from the set of patches to build a 30x30x3 rgb image. In this way 50000 training and 50000 test
images were generated. The randomization was similar to cifar10.

5 RESULTS

5.1 REGULARIZATION AND OVERFITTING

The capacity of a neural network is controlled by the number of parameters and (optionally) by a
regularization term. In this section we show that the techniques of the paper can be used to tune the
regularization parameter in order to avoid overfitting while still performing well.

Convexity criterion. For the convexity criterion, we compute the accuracy curves over increas-
ingly randomized data for different accuracy parameters as shown in Figure 3. We expect that
our algorithm achieves zero training error for true data. Furthermore for p-percent of randomized
training data we expect the algorithm to achieve an error of p-percent. In other word we expect the
algorithm to stay below a straight line starting at 1 for data0.0 and going down to 1/number of classes
for data1.0. Let us call this line the optimal line. We pick the smallest λ for which the training error
stays below the optimal line and is convex.

l1-regularization. In these set of experiments we varied the regularization factor of the l1 regular-
ization of our Alexnet-type network on cifar10. To get more reliable results we run the experiments
for five different random samples. From the samples we computed the mean and the standard devi-
ation, which we indicated in the plots by shading. Our experiments show that all criteria lead to a
similar regularization factor λ∗.
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Figure 4: For (a) an Alexnet-type network was trained on mnist with varying degrees of randomness.
With increasing regularization the curves approach the straight line, from which the optimal regu-
larization parameter 0.0023 can be determined. In (b) the same network was trained on mnist with
varying dropout rate and no other regularization. With decreasing drop out rates the curves approach
the straight line. In the setting of the experiment a drop out rate of 0.1 is optimal. For (c) we trained
an Alexnet-type neural network with l2 regularization with parameter 0.0012, and computed the ac-
curacy curves for the steps 1000, 2000, ..., 60000. For 1000 training steps the curve is the lowest,
for 60000 training steps the curve approaches the constant 1.

In Figure 3 the optimal line is depicted in green. According to our criterion we choose λ1 =
0.00011. Both criteria (C2) and (C3) lead to a similar regularization parameter, details can be found
in appendix B.1.

l2-regularization. In these set of experiments we varied the regularization factor of the l2 reg-
ularization of a (different) Alexnet-type network on mnist. Again we run the experiments for five
different random samples and computed the mean and the standard deviation, which we indicated in
the plots by shading. The resulting accuracy curves are shown in Figure(a) 4, the resulting parameter
is λ2 = 0.0023.

Dropout. Dropout is another way to regularize a neural network. To analyze its effect on overfit-
ting we trained a Alexnet-type network on mnist with different probabilities of drop out ranging from
0.1 to 1.0. The resulting accuracy curves are shown in Figure(b) 4, in the setting of the experiment
the optimal drop out value is 0.1.

Early stopping. Early stopping follows the rational less training time leads to better generalization
properties. In Figure(c) 4 we can observe this rational. The more we train the network the more the
network overfits. The curves are a bit more bumpy as we trained the models only once.

5.2 COMPARISON WITH TEST SET

In this section we compare the training accuracy with the test accuracy. The plots of Figure show
nine panels with different regularization factors. In each panel the accuracy as computed on the
training data is plotted in blue, and the accuracy of the test data in red. So each blue dot represents
the accuracy of the different training sets cifar100.0 ... cifar101.0. Each red point is computed for the
same test set.

With no regularization the model highly overfits. The model learns randomized data rather well as
shown in λ1 = 0.0 in Figure 7. We further observe that it is easier for the network to learn more
random data. With no l1-regularization the accuracy curves decreases with increasing randomness in
the data and then starts to increase again. We attribute this to correlation in the data set which make
the training data more complex for lower noise levels. Higher noise levels destroy these correlations
and the data complexity of the data reduces. Recall that the small animal classes and also the car /
truck class are correlated in cifar10. Finally, we note that the variance for learning entirely random
data is very high.
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As the regularization parameter increases the blue accuracy show that the network is less able to
learn random data. For λ1 = 0.00011 the curve is convex, showing the optimal regularization
parameter. In λ1 > 0.00011 the model underfits. Looking again at λ1 = 0.00011 we see that the
model is able to learn from noisy data with lots of label noise. This confirms that l1-regularization
is a good parameter to adjust the model complexity.

5.3 EARLY STOPPING

Plots similar to Figure 5 can be used to analyze early stopping and overfitting. Due to lack of space
we will only describe the results verbally. Early in the training, at 19999 steps, we see that almost
all curve are convex, hence the models underfit. Once we train the network to 59999 iterations, the
model trained without any regularization begins to overfit with the others still underfitting. Training
the networks further the more and more models begin to overfit. Flipping through the plots in the
appendix illustrates this nicely.

5.4 FILTER SIZE AND NETWORK DEPTH

We also looked at models with different filter sizes in the first convolutional layer. We trained
several networks with filter sizes starting from 2 × 2 to 9 × 9 and a regularization parameter of
λ1 = 0.00011. We observed that all networks showed underfitting, revealed by the convexity of
the accuracy over randomness curves. This hints that l1 regularization of the kernel weights is more
important to overfitting than the number of parameters. Experiments with different network depths
showed a similar behavior.

6 DISCUSSION AND CONCLUSION

In the paper we measure the capacity of a neural network by injecting different noise levels in
the training data. The criteria we introduced in the paper are based on the assumption that the
network should only be able to achieve a training accuracy corresponding to the injected noise level.
This advances previous method in the neural network setting as they rely on either a hold out set,
heuristics, or generalization theory. All of which are not mature enough to detect overfitting at
present. In our experiments we saw that the hyper parameters fall in two classes, one which has
no effect on overfitting (kernel size) and another which controls overfitting (regularization factor,
number of iterations). In other experiments on mnist and cifar10 we observed the dominance of l1
regularization for overfitting, while structural parameters such as network width, depth did not had
an effect.

The convexity criterion is the most reliable, as outliers and high variance are easily detected. On
the downside it requires the most training runs. The steep decrease criterion only requires to train
the model on the real data and and the fully random data. It can be used to narrow the parameter
range. On the down side correlation between the classes are not easily detected by the steep decrease
criterion. The mode criterion, is the most easiest to use as only the totally randomized training data
is used. On the downside the margin plots are not always easy to interpret. Either the entire margin
is positive, then the model clearly overfits, or two modes are observed in the plots, then the model
clearly underfits. Yet most of the time, the margin is somewhere in between, which makes it hard to
make a judgment based on the margin histograms alone.

Let us put criteria (C2) and (C3) in perspective. Criterion (C2) comes close to what has been done
before. We basically train a network on true and randomly shuffled labels, and analyze the attained
accuracies. An analysis of the margin histograms for networks trained on true labels and random
labels has been explored before. For example in Bartlett et al. (2017) margin histograms are used
to conclude that regularization only seems to bring minor benefits to test error, Liang et al. (2017)
use the margin histograms of networks trained on fully randomized labels and true labels to discuss
normalization effects. Our contribution is to show that the regularization parameter can be set such
that network does train on true labels, but is unable to do so for random labels. Both criteria are able
to note this effect.

All criteria can be numerically evaluated and put into an automated parameter search. At present it
seems that the number of parameters do not contribute to overfitting. Thus to use the criteria of this
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paper one would proceed in two steps: search for an architecture which achieves zero training error,
and then reducing the complexity of the model by regularizing it such that it does not overfit. So the
additional burden is not that much .

Analyzing neural networks with randomized training data has been done before (Zhang et al.
(2017)). In the paper the authors show that a neural network is able to train random labels, and
they note that regularization ... is neither necessary nor by itself sufficient for controlling general-
ization error. In the paper we argued that l1-normalization of the kernel weights is a good measure
to control the capacity of a network. In the experiment we saw that adjusting l1-normalization leads
to models which do not overfit and hence we expect them to generalize better. Using an l1 regu-
larization (the LASSO) is one of the popular choices for regularization. The rational is typically to
enforce sparsity of the network weights. Our Lemma 3.1.1 adds another reason to the list why it
might be a good choice for convolutional networks.

We want to highlight another unexpected illustrative result. By tuning the hyper parameter to pass
our overfitting tests, we see that the test accuracy of the model is much higher than the training accu-
racy. This shows that our criteria can also be used to learn from noisy data and that a generalization
gap does not need to be a bad thing.

Although the paper focused on neural networks the methods can be applied for other machine learn-
ing algorithms as well. For example it would be interesting to apply our criteria for a systematic
architecture search. Another line of research could investigate whether the criteria make adversarial
attacks more difficult.
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Figure 5: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 199999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red). We observe that
the model does not overfit for λ = 0.00011. Furthermore, we note that with this choice of λ the
model is able to learn from noise data, as the red curve is clearly above the green noise level curve.
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A MATH

A.1 ADDITIONAL MATH BACKGROUND

Matrix norms. A matrix A : V → W can be viewed as a linear operator between two normed
spaces (V, || · ||p) and (W, || · ||q). We equip these normed spaces with a p-norms. So for x ∈ V
we set ||x||p = (

∑
i |xi|p)

1
p and for y ∈ W we set ||y||q = (

∑
i |yi|q)

1
q . These vector space norms

induce a matrix norm for A:

||A||p→q :=
||Ax||q
||x||p

Special cases of this norm include the spectral norm ||A||σ = ||A||2→2, ||A||1→1 =
max1≤j≤n

∑m
i=1 |aij| and ||A||∞→∞ = max1≤j≤m

∑n
i=1 |aij|. In the paper we use the following

fact:

||A||2→2 ≤
√
||A||1→1||A||∞→∞ (7)

A definition of these norms can be found in books about matrix analysis see for example §2.3.1
Golub & Van Loan (1996) for a definition of the ||A||p→q norm (in a slightly different notation).
Equation (7) can be found in Corollary 2.3.2 of the same reference.

Generalized mean. For a non zero real number p and positive reals x1, . . . , xn we define the
generalized mean by

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xpi

) 1
p

. (8)

We will use the following inequality which holds true for all real p < q and positive x

Mp(x1, . . . , xn) ≤Mq(x1, . . . , xn). (9)

Theorem A.1.1 (Bartlett et al. (2017) Theorem 1.1). Let nonlinearities (φ1, . . . , φL) and ref-
erence matrices (M1, . . . ,ML) be given with σi is ρi-Lipschitz and σi(0) = 0. Then for
(x, y), (x1, y1), . . . , (xn, yn) drawn iid from some probability distribution over Rd0 × {1, . . . , k},
with probability at least 1 − δ over ((xi, yi))

n
i=1, every margin γ > 0 and admissible network

f : Rd → Rk with weight matrices A1, . . . , AL satisfy

Prob

[
argmax

i
f(x)i 6= y

]
≤ R̂γ(f) + Õ

(
RA||X||2

γn
+

√
ln(1/δ)

n

)
(10)

where R̂γ(f) is the empirical ramp risk and ||X||2 =
√∑

i ||xi||22
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Figure 6: In our steep descent criterion we propose to detect the first change point at which the
accuracy is not constant anymore but falls linearly. In the figure this is depicted by the green curves:
around 10−4 the accuracy begins to fall. As a measure of how much the net learned about the data,
we also provide the accuracy curves for random data. We conclude from the gap between the red and
the blue curve that the net learned something meaningful about the data, instead of just memorizing
the data.

B COMPARISON OF THE CRITERIA

In this section we empirically show that criteria (C2) and (C3) lead to similar conclusions than
criterion (C1).

B.1 REGULARIZATION FACTOR

Regularization. In these set of experiments we varied the regularization factor of the l1 regular-
ization of our Alexnet-type network. To get more reliable results we run the experiments for five
different random samples. From the samples we computed the mean and the standard deviation,
which we indicated in the plots by shading. The following experiments show that all criteria lead to
a similar regularization factor λ∗.

Steep decrease criterion. To test our steep decrease criterion we computed the accuracy over
regularization curve. As the regularization increases we expect the accuracy to drop. This is shown
in Figure 6. Following our criterion the point of interest λ∗ occurs, at which the curve is not constant
anymore. This occurs around λ1 = 0.0001.

Mode criterion. To test our mode criterion we computed the margin histograms of cifar-101.0 after
training. As the regularization increases we expect the distribution to split up in two modes. This
can be seen in Figure 7. Following our criterion the point of interest occurs around λ1 = 0.00011.
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Figure 7: The plots(a)-(d) show the margin histograms as trained in cifar101.0 for an increasing regu-
larization factor. According to our third criterion we choose the λ = 0.00011, as here(d) the margin
distribution developed a second mode for the first time.

C ARCHITECTURE DETAILS

Architecture and training parameter. Figure 8 shows a sketch of the architecture used in most
experiments. We start with 5 × 5 convolutional filters, followed by 3 × 3-convolutional filters and
two fully connected layers. In all layers the linear part is followed by a relu nonlinearity. We did
not use a bias. In addition we apply three non overlapping 2 × 2-max-pooling. Further we used
drop-out between the first and second fully connected layer. Everything was coded in Tensorflow,
with SGD, a fixed learning rate of 0.01, a batch size of 32 and l1 normalization of all weights.
The networks were trained for 199999 steps. The input images were normalized to zero mean and
standard deviation using one of tensorflows build in function. Additionally, we used some standard
data augmentation.

Figure 8: The figure shows a sketch of the networks used for most experiments on cifar10.
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Figure 9: The plots show different l1-regularizations for cifar10(a)-(d) and cifar10-random(e)-(h). Be-
ginning in (a) (and (f)) the regularizations are e−5, 0.0001, 0.048, 1.0. We note that for (a) and (e)
the model overfits, for (b) and (f) it is just right, and for (c) and (g) it underfits.

D ADDITIONAL PLOTS

D.1 l1 REGULARIZATION

Here we provide additional plots of our l1 regularization experiments, showing that all criterion have
their uses. Figure shows how we would detect overfitting with the margin based criterion. Let us
recall that a positive margin corresponds to a correct classification and a negative margin corresponds
to an incorrect classification. In (a) and (e) of Figure D.1 the model clearly overfits, as it is able to
learn random data(e) and true data(a). In (c) and (g) of Figure D.1, we clearly see underfitting the
model neither able to learn random data nor true data. Based on this observation we would select
λ = 0.0001 as our regularization parameter.

D.2 EARLY STOPPING

Here we report similar plot for our early stopping experiments. Flipping through the plots we see
that initial the regularization factor does not matter at 19999 steps all curves are convex. At later
iterations the models begin to memorize the data.

16



Under review as a conference paper at ICLR 2019

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

λ1 = 0.0

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ1 = 1e−5

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ1 = 1.183e−5

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

λ1 = 3.36e−5

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ1 = 6.16e−5

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ1 = 0.00011

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

randomness p

ac
cu

ra
cy

λ1 = 0.00021

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

randomness p

λ1 = 0.00037

train
test

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

randomness p

λ1 = 0.00069

train
test

Figure 10: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 019999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 11: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 039999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 12: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 059999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 13: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 079999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 14: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 099999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 15: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 119999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 16: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 139999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 17: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 159999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 18: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 179999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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Figure 19: The plots shows the accuracy of the network trained on cifar10 over different degrees of
randomness with increasing degree of l1-regularization. The network trained for 199999 iterations.
For the error curves five different samples were sampled for each data point. The network was
evaluated on the training set (depicted in blue) and on the test set (depicted in red).
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