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ABSTRACT

We address the efficiency issues caused by the straggler effect in the recently
emerged federated learning, which collaboratively trains a model on decentral-
ized non-i.i.d. (non-independent and identically distributed) data across massive
worker devices without exchanging training data in the unreliable and heteroge-
neous networks. We propose a novel two-stage analysis on the error bounds of
general federated learning, which provides practical insights into optimization.
As a result, we propose a novel easy-to-implement federated learning algorithm
that uses asynchronous settings and strategies to control discrepancies between the
global model and delayed models and adjust the number of local epochs with the
estimation of staleness to accelerate convergence and resist performance deterio-
ration caused by stragglers. Experiment results show that our algorithm converges
fast and robust on the existence of massive stragglers.

1 INTRODUCTION

Distributed machine learning has received increasing attention in recent years, e.g., distributed
stochastic gradient descent (DSGD) approaches (Gemulla et al., 2011; Lan et al., 2017) and the
well-known parameter server paradigm (Agarwal & Duchi, 2011; Li et al., 2013; 2014). However,
these approaches always suffer from communication overhead and privacy risk (McMahan et al.,
2017). Federated learning (FL) (Konečnỳ et al., 2016) is proposed to alleviate the above issues,
where a subset of devices are randomly selected, and training data in devices are locally kept when
training a global model, thus reducing communication and protecting user privacy. Furthermore,
FL approaches are dedicated to a more complex context with 1) non-i.i.d. (Non-independent and
identically distributed), unbalanced and heterogeneous data in devices, 2) constrained computing
resources with unreliable connections and unstable environments (McMahan et al., 2017; Konečnỳ
et al., 2016).

Typically, FL approaches apply weight averaging methods for model aggregation, e.g., FedAvg
(McMahan et al., 2017) and its variants (Sahu et al., 2018; Wang et al., 2018; Kamp et al., 2018;
Leroy et al., 2019; Nishio & Yonetani, 2019). Such methods are similar to the synchronous dis-
tributed optimization domain. However, synchronous optimization methods are costly in synchro-
nization (Chen et al., 2018), and they are potentially inefficient due to the synchrony even when
collecting model updates from a much smaller subset of devices (Xie et al., 2019b). Besides, wait-
ing time for slow devices (i.e., stragglers or stale workers) is inevitable due to the heterogeneity
and unreliability as mentioned above. The existence of such devices is proved to affect the conver-
gence of FL (Chen et al., 2018). To address this problem, scholars propose asynchronous federated
learning (AFL) methods (Xie et al., 2019a; Mohammad & Sorour, 2019; Samarakoon et al., 2018)
that allow model aggregation without waiting for slow devices. However, asynchrony magnifies the
straggler effect because 1) when the server node receives models uploaded by the slow workers,
it probably has already updated the global model for many times, and 2) real-world data are usu-
ally heavy-tailed in distributed heterogeneous devices, where the rich get richer, i.e., the straggler
effect accumulates when no adjustment operations in stale workers, and eventually it affects the
convergence of the global model. Furthermore, dynamics in AFL brings more challenges in param-
eter tuning and speed-accuracy trade-off, and the guidelines for designing efficient and stale-robust
algorithms in this context are still missing.
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Contributions Our main contributions are summarized as follows. We first establish a new two-
stage analysis on federated learning, namely training error decomposition and convergence analysis.
To the best of our knowledge, it is the first analysis based on the above two stages that address the
optimization roadmap for the general federated learning entirely. Such analysis provides insight into
designing efficient and stale-robust federated learning algorithms.

By following the guidelines of the above two stages, we propose a novel FL algorithm with asyn-
chronous settings and a set of easy-to-implement training strategies. Specifically, the algorithm
controls model training by estimating the model consistency and dynamically adjusting the number
of local epochs on straggle workers to reduce the impact of staleness on the convergence of the
global model.

We conduct experiments to evaluate the efficiency and robustness of our algorithm on imbalanced
and balanced data partitions with different proportions of straggle worker nodes. Results show that
our approach converges fast and robust on the existence of straggle worker nodes compared to the
state-of-the-art solutions.

Related Work Our work is targeting the AFL and staleness resilience approaches in this context.
Straggler effect (also called staleness) is one of the main problems in the similar asynchronous gradi-
ent descent (Async-SGD) approaches, which has been discussed by various studies and its remedies
have been proposed (Hakimi et al., 2019; Mitliagkas et al., 2016; Hadjis et al., 2016; Lian et al.,
2015; Chen et al., 2016; Cui et al., 2016; Chai et al., 2019; Zheng et al., 2017; Dai et al., 2018;
Zhou et al., 2018; Hakimi et al., 2019). However, these works are mainly targeting the distributed
Async-SGD scenarios, which is different from FL as discussed in the previous section. Existing
FL solutions that address the straggler effect are mainly consensus-based. Consensus mechanisms
are introduced where a threshold metric (i.e., control variable) is computed, and only the workers
who satisfy this threshold are permitted to upload their model (Chen et al., 2018; Smith et al., 2017;
Nishio & Yonetani, 2019). Thus it significantly reduces the number of communications and up-
dates model without waiting for straggle workers. However, current approaches are mainly focusing
on synchronized FL. Xie et al. (2019a) propose an AFL algorithm which uses a mixing hyperpa-
rameter to adaptively control the trade-off between the convergence speed and error reduction on
staleness. However, this work and above mentioned FL solutions only consider the staleness caused
by network delay instead of imbalanced data size in each worker and only evaluate on equal size of
local data, which is inconsistent with the real-world cases. Our approach is similar to (Xie et al.,
2019a), but instead we adaptively control the number of local epochs combined with the approxima-
tion of staleness and model discrepancy, and prove the performance guarantee on imbalanced data
partitions. We illustrate our approach in the rest of this paper.

2 PRELIMINARIES AND DEFINITIONS

We first summarize the general form of FL. Generally, an FL system consists of M distributed
worker nodes (e.g., mobile phones) and a server node. The goal is training a global model across
these worker nodes without uploading local data. Each worker node employs the same machine
learning model, and an optimizer (e.g., stochastic gradient descent) to iteratively optimize the loss
function of the local model. At t-th communication round, the server node uses an aggregation
operator (e.g., averaging) to aggregate the local models uploaded by worker nodes, and broadcasts
the aggregated global model to workers.

We use X(i) =
{
xi1, x

i
2, ..., x

i
mi

}
to present local data points in worker node i, where mi is the

size of data points in this worker. The whole dataset χ =
⋃
iX

(i), where i ∈ {1, 2, 3, ...,M}. We
assume that X(i)

⋂
X(j) = ∅ for i 6= j, and apparently, the total size of data m =

∑M
i=1mi. We

denote the model in worker node i by ωi ∈ Rd, and the objective function of worker node i by

Fi(ωi) =
1

m i

mi∑
j=1

f(xij ;ωi), (1)
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where f(·) : χ → R is user-defined loss function. Then the objective function of the global model
is

F (ω) =
1

m

m∑
j=1

f(xj ;ω) =

∑M
i=1

∑mi

j=1 f(xij ;ω)

m
=

M∑
i=1

mi

m
Fi(ω), (2)

where ω is the aggregated global model. The overall goal is to find a model ω∗ with:

ω∗ = arg minF (ω). (3)

Usually, we can use gradient-descent methods to solve equation 3. At the communication round
t+ 1, the global model can be formulated as

ωt+1 = ωt − ηt∇F (ωt), (4)

where ηt is the learning rate for model ωt. From equation 2 and equation 4, we can get

ωt+1 = ωt − ηt
M∑
i=1

mi

m
∇Fi(ωt) =

M∑
i=1

mi

m
(ωt − ηt∇Fi(ωt)) =

M∑
i=1

mi

m
ωt+1
i . (5)

Note that equation 5 is efficient only for reliable environment. To extend equation 5 to unreliable
and heterogeneous FL, we give a more general form as

ωt+1 = ωt − ηtg(ωt, ξt) = ωt +

M∑
i=1

h(ωt+1
i , τi) (6)

Figure 1: Illustration of initialization error,
local training error and local-global error.

where g(·) is the user-defined aggregation function,
and ξt is a vector which describes the settings of ac-
tivated workers, such as worker ID, number of lo-
cal epochs, and the learning rate. Here and there-
after, we use g(ωt) to represent g(ωt, ξt) for con-
venience. We denote update term as h(·), a user-
defined function which represents the model param-
eter differences between the collected models from
activated worker nodes and previous global model,
and −ηtg(ωt) =

∑M
i=1 h(ωt+1

i , τi). Here τi is the
time when worker node i received the global model
ωτi . When h(ωt+1

i , τi) = mi

m (ωt+1
i − ωt), we get

FedAvg (McMahan et al., 2017) as a special case of
equation 6.

3 METHODOLOGY

In this section, we aim to design an efficient and ro-
bust FL algorithm. To do so, we first establish a two-
stage analysis, and finally, propose our new FL algo-
rithm by combining the insights provided by the two
stages.

Stage 1: Traning Error Decomposition. We first discuss the main errors of the general FL. We
assume that each worker node has a local optimal model ω∗i = arg minFi(ω). Then at the commu-
nication round t, we define the global error as

‖ωt − ω∗‖︸ ︷︷ ︸
global error

≤
M∑
i=1

mi

m
‖ωti − ω∗i ‖︸ ︷︷ ︸

initialization and local error

+

M∑
i=1

mi

m
‖ω∗i − ω∗‖︸ ︷︷ ︸

local-global error

, (7)

where ‖·‖ isL2 norm. For worker node i, two terms in the right-hand side of inequality 7 respectively
represent 1) initialization and local error: the error between the local model at communication round
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t and the optimal local model (the well known empirical risk). Here, the initialization error (i.e., the
error between the initial model and local model at communication round t) partially contributes to
the first term. 2) local-global error: the error between optimal local models and optimal global
solution, which is a constant given a specific learning task. Figure 1 illustrates these errors. Usually,
the error between the initial model and the optimal global model is greater than the local-global error,
and thus at the early stage of training, the first term is greater than the second term in the right-hand
side of inequality 7. Therefore, reducing the initialization error and the local error at the beginning
of model training can reduce the global error ‖ωt − ω∗‖. Afterward, when initialization and local
error is minimized, the local-global error dominates the global error. However, as we mentioned
previously, the local-global error is a constant that can not be solved directly. Therefore, we need a
more sophisticated analysis to reach ω∗ since 7 is no longer appropriate to guide the optimization
other than the early stage of FL training. Following the above analysis, we analyze the convergence
bounds of the general FL (Eq. 6) on the rest of the training stages other than the early stage.

Stage 2: Convergence Analysis. First, we make the following assumptions on the objective func-
tions:

Assumption 1. Smoothness. For all i in {1, 2, 3, ...,M} and given constant β, the objective func-
tion F (ω) and Fi(ω) are β-smooth, i.e.,

‖∇F (ω)−∇F (ω′)‖ ≤ β‖ω − ω′‖,
‖∇Fi(ω)−∇Fi(ω′)‖ ≤ β‖ω − ω′‖.

Assumption 2. The first and second moment conditions. The objective function F (ω) and the
aggregation operation g(ωt) satisfy the following:

(a) The objective function F (ω) is bounded by a scalar Finf = F (ω∗).

(b) There exist scalars δG ≥ δ > 0 such that ∇F (ωt)>E(g(ωt)) ≥
δ‖∇F (ωt)‖2 and ‖E(g(ωt))‖ ≤ δG‖∇F (ωt)‖.
(c) There exist scalars L ≥ 0 such that V(g(ωt)) = E(‖g(ωt)‖2)−‖E(g(ωt)‖2 ≤ L+‖∇F (ωt)‖2.
E(·) is abbreviation of Eξt(·) which denotes the expected value w.r.t. the distribution of the random
variable ξt given t.

Assumption 3. Strong convexity. For all i in {1, 2, 3, ...,M} and given constant c, the objective
function F (ω) and Fi(ω) are c-strong convex, i.e.,

F (ω′) ≥ F (ω) +∇F (ω)>(ω′ − ω) +
1

2
c‖ω′ − ω‖2,

Fi(ω
′) ≥ Fi(ω) +∇Fi(ω)>(ω′ − ω) +

1

2
c‖ω′ − ω‖2.

Theorem 1. Convergence for strongly-convex problems. When c and β in assumption 1 and 3
satisfy c ≤ β, we can set the step size ηt = η̄, where 0 < η̄ ≤ δ

βLG
, and LG = 1 + δ2

G. With η̄, the
upper error bound of global model satisfies:

E(F (ωt)− F (ω∗)) ≤ η̄βL

2cδ
+ (1− η̄cδ)t−1

(
F (ω1)− F (ω∗)− η̄βL

2cδ

)
. (8)

The proof of theorem 1 is provided in appendix A.1. Theorem 1 gives an error bound for the general
form of model aggregation without assuming that g(ωt) should come from ∇F (ωt). Note that
the scalars δ and δG are equal to 1 when g(ωt) is the unbiased estimation of ∇F (ωt). However,
current convergence bound in theorem 1 is too loose, and it can be further optimized by introducing
controlled local epoch settings.

We assume that ∇Fi(ωt+1
i ) = γ∇Fi(ωti) + Rti with step size η̄ ≤ ν

β . Here γ is the projection
length of ∇Fi(ωt+1

i ) on ∇Fi(ωti), v = 1− γ, and Rti is the remainder term which is perpendicular
to∇Fi(ωti). Then given a local epoch Ē, we have

δ ∝ Ē − o(νĒ), L ∝ Ē2 + o(νĒ2). (9)

Then we can extend theorem 1 with the local epoch Ē.
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Theorem 2. Convergence with selected local epoch. We use δ0 and L0 to represent the scalar δ
and L in assumption 2 when Ē = 1, and all worker nodes are assumed to participate in model
training, then under 9, 8 can be rewritten as

E(F (ωt)− F (ω∗)) ≤ η̄βL0Ē

2cδ0
+ (1− η̄cδ0Ē)t−1

(
F (ω1)− F (ω∗)− η̄βL0Ē

2cδ0

)
. (10)

The theorem 2 gives us the error bound of FL with the selected number of local epochs for strongly-
convex problems. The proof of theorem 2 is provided in appendix A.2. The right-hand side of
theorem 2 implies the dynamics of hyper-parameters in local models for efficiency and robustness
trade-off. In a general FL algorithm, e.g., FedAvg, the model settings in worker nodes are always
predefined and kept fixed, which may lead to a higher variance. We now discuss such dynamics and
practical insights on designing efficient and robust FL algorithms.

Selection of local epochs. We discuss how to reduce the global error and communication round
simultaneously for general FL. From the second term of the right-hand side of 10, we can see that
theorem 2 yields to linear convergence when E(F (ωt) − F (ω∗)) � η̄βL0Ē

2cδ0
. In this condition,

to quickly reduce the global error, we can reduce the second term of the right-hand side of 10 by
increasing the local epoch Ē while reducing the communication round t. Therefore, we can dynam-
ically assign each worker with a bigger number of local epoch while reducing the communication
round.

Asynchronous acceleration with stragglers. We discuss why asynchronous strategies are needed
in FL. We rearrange 10 as:

E(F (ωt)−F (ω∗)) ≤
(
1− (1− η̄cδ0Ē)t−1

) η̄βL0Ē

2cδ0
+(1− η̄cδ0Ē)t−1

(
F (ω1)− F (ω∗)

)
. (11)

When t increases, and we fix Ē and η̄, the global error only depends on L0. L0 can be controlled
by sampling more worker nodes within a communication round. Specifically, we compare n-worker
participation withM -worker participation for model aggregation at the server node. When we select
nworkers out ofM , L0 increases according to assumption 2(c) since the variance increases. Thus, to
get the same precision, we decrease η̄, while it significantly slows the convergence speed. However,
in practice, waiting for all the workers to be ready is time-consuming. Thus, we can introduce
asynchronous mechanisms in model aggregation without waiting for all workers.

Robust training on straggle workers. We discuss how to reduce the global error for FL on the ex-
istence of stragglers. As we mentioned above, asynchronous strategies can accelerate model training
by reducing the waiting time at each communication round. However, the straggler effect is mag-
nified by asynchrony, as discussed in section 1. Stale workers accumulate their staleness, which
increases the variances and affects the convergence of the global model. A practical strategy to tame
such effect is increasing the number of local epoch under the considerations that when the distri-
butions of local data are far away from the global data, we use more epochs to train from the local
data. However, the divergence of these local epoch numbers between stale and non-stale workers
may affect variance adversely, and we can adjust the number of local epoch with the normalized
epochs from all workers to reduce such variance.
Theorem 3. Convergence for non-convex problems With the Assumption 1 and 2, we can select a
step size ηt = η̄ with 0 < η̄ ≤ δ

βLG
, LG = 1 + δ2

G. The expected error bound satisfies:

E(
1

t

t∑
i=1

‖∇F (ωi)‖2) ≤ η̄βL0Ē

δ0
+

2(F (ω1)− Finf )

tη̄δ0Ē
. (12)

Theorem 3 is similar to theorem 2 that the first term of the right-hand side of (12) does not decrease
by iterative training. Note that the above remarks are also applicable to theorem 3. We provide proof
of theorem 3 in appendix A.3.

Proposed Algorithm. Under the guidance of the above analysis and the practical insights discussed
above, we propose a fast and stale-robust AFL algorithm. Algorithm 1 and 2 illustrate the processes
in worker nodes and the server node, respectively. H(t) is a predefined function at communication
round t which determines how long should the server node waiting for the updated models from
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workers. H(t) can be used to control the accuracy-speed trade-off. The training processes on the
server node can be divided into two stages, i.e., the initial stage and the converging stage. We switch
the stages by estimating the consistency of model updates.

Algorithm 1 Process at the server node
Input: Function H(t), model F (ω), initial

epoch Einit, initial waiting time ∆t, threshold
of communication rounds T2.
Output: Updated model F (ω)

1: Initialize ωt as a constant or a random vec-
tor, t← 0.

2: Broadcast ωt and Einit to each worker.
3: repeat // optimizing the initialization and

local error.
4: Set t← t+ 1.
5: During ∆t time, receive the triplet

(ωi, τi, Ei) from any worker i.
6: Update ωt with ωi with τi = t− 1 using

5.
7: Broadcast (ωt, t) to each worker.
8: Calculate U using 13.
9: until U ≤ 0.1

10: Broadcast start flag to each worker.
11: repeat // the converging stage.
12: Set t← t+ 1,∆t← H(t).
13: During ∆t time, receive the triplet

(ωi, τi, Ei) from any worker i.
14: Update ωt by 6 and 14.
15: Update mean(E) by 15.
16: Broadcast the triplet (ωt, t,mean(E)) to

each worker
17: until t > T2

Algorithm 2 Process at the worker node
Input: Number of local epoch Einit, commu-

nication round t, global model ωt, batch size Bi,
average global epochsmean(E), local optimizer
opt, communication time ∆ti, start flag sent by
the server node
Output: Triplet (ωi, τi, Ei)

1: Estimate staleness s using s←
⌊

∆ti
H(t)

⌋
.

2: Set E′i ← Einit.
3: if start flag is True then
4: Set E′i ← mean(E) ∗ s.
5: end if
6: Set τi ← t, Ei ← 0.
7: for e in 1, 2, 3, ..., E′i do
8: Ei ← Ei + 1.
9: Randomly divide X(i) with batch size
Bi.

10: Update ωi by using opt for each batch.
11: if e = E′i then
12: if communication to the server is

available then
13: Send triplet (ωi, τi, Ei) to the

server.
14: else
15: e← e− 1.
16: end if
17: end if
18: end for

Definition 1. Update consistency. The model update consistency of n worker nodes is the similari-
ties between worker models at communication round t, i.e.,

U =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

cos(ωt+1
i − ωt, ωt+1

j − ωt). (13)

U is consistent with the global error in inequality 7, and in algorithm 1 we empirically set 0.1 as the
threshold to switch from the initial stage and the converging stage of the global model training. At
the initial stage of global model training, we use a bigger local epoch to accelerate training time as
discussed above, and repeat this process until U ≤ 0.1. After the initial stage, we define the update
term as

h(ωt+1
i , τi) =

ϕi
ϕ

(
ωt+1
i − ωt

)
. (14)

ϕi

ϕ is the above mentioned normalized local epoch Ē with ϕi = mean(E′)mi

Eid(ωt+1
i )

, and

mean(E′) =
1

nt

nt∑
j=1

Ej
t+ 1− τj

. (15)

ϕ is the regularization term where ϕ =
∑n
i=1 ϕi. Finally, we define a stale-related penalty function

of ϕi as:

d
(
ωt+1
i

)
=

{
et−τi , cos(ωt+1

i − ωti , ωt+1
fresh − ω

t) ≤ −0.1

t− τi + 1, others
. (16)
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Here, ωt+1
fresh is the average model of worker nodes with τi = t. The key processes of worker nodes

are 1) estimating its staleness level, and 2) assign the number of local epoch using mean(E) in the
received triplet from the server node and the previously estimated staleness level. In the next section,
we evaluate the performance of our algorithms.

4 EXPERIMENTS

We evaluate the performance of our approach on both imbalanced and balanced data partitions with
the existence of stale worker nodes.

Experiment Settings. We conduct experiments on Fashion-MNIST (Xiao et al., 2017) and CIFAR-
10 (Krizhevsky et al., 2009) to test the accuracy of our approach on 100 simulated workers, where
60 workers are stale. We use 55,000 on Fashion-MNIST and 50,000 on CIFAR-10 for training and
10,000 for testing. [0, 1] normalization is used in the data preprocessing. We conduct all experi-
ments on CPU devices. We use a light-weight convolutional neural network (CNN) model, which is
suitable for mobile edge devices. It has 4 convolutional layers that use 3 × 3 kernels with the size
of 32, 64, 64, 128. Rectified linear unit (ReLU) is used in each convolutional layer, and every two
convolutional layers are followed by a 2 × 2 max-pooling layer and a dropout of 50%. Finally, we
use a 512-unit dense layer with ReLU and a dropout of 50% and an output layer with softmax. We
use an SGD optimizer with a learning rate of 0.01. We set batch size as 50, and the initial number of
local epochs Ē as 50. We randomly split the data size in each worker node ranging from 2 to 2122
with a standard deviation of 480 on CIFAR-10, and 9 to 2157 with a standard deviation of 540 on
Fashion-MNIST. For the balanced cases we randomly assign each worker with 500 samples. The
communication speed of nodes is divided into ten levels ranging from 100 milliseconds to 1 second,
and the 60 stale workers are assigned with bigger levels (6-10). Finally, we set H(t) = 0.4s.

Baselines. We compare the performance of our proposed method with four approaches: 1) FedAvg
(McMahan et al., 2017) (synchronized). We set the sampling rate C = 0.1 FedProx (Sahu et al.,
2018) (synchronized). We set C = 0.1, µ = 1 as the best parameters provided in their paper.
FedAsync (Xie et al., 2019a) (asynchronized). We set γ = 0.1, ρ = 0.005, t− τ ≤ 4. FedAsync +
Hinge (Xie et al., 2019a) (asynchronized). We set a = 4, b = 4, γ = 0.1, ρ = 0.005, t− τ ≤ 10 as
shown in their paper. All the baselines besides FedProx use the same strategy of local epoch decay
with local epoch E decreases by 1 per 50 global communication rounds until it decays to 1. All the
four approaches use the same batch size of 50 and initial local epochs of 10.

Results and Analysis. Figure 2 shows the performance of our proposed algorithm and four base-
lines. Our method converge faster compared to all the baselines, and the convergence is promised
with 60% stale workers. Furthermore, the whole upload times of our method do not increase with
the same level of accuracy. From the experiment results on Fashion-MNIST, we can see that our
method has the same accuracy level on test data compared with synchronized approach such as Fe-
dAvg. We can also see that on imbalanced data partitions (i.e., more realistic FL scenarios), our
method is faster and more stable compared to other baselines. Finally, we can clearly see the stage
transition from the initial training stage to the converging stage (e.g., the transitions in imbalanced
cases in figure 2(b) and (d)), which validates the efficiency of our approach. Figure 3 shows the
performance of our method with different proportion of stale nodes in 1,000 global communication
rounds. Our method outperforms the AFL baseline (i.e., FedAsync) in both accuracy and loss, and
when the proportion of stale workers is less than 80%, our method outperforms the synchronized FL
baseline (i.e., FedAvg).

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new two-stage analysis on federated learning, and inspired by such
analysis, we propose a novel AFL algorithm that accelerates convergence and resists performance
deterioration caused by stragglers simultaneously. Experimental results show that our approach
converges two times faster than baselines, and it can resist the straggler effect without sacrificing
accuracy and communication. As a byproduct, our approach improves the generalization ability
of neural network models. We will theoretically analyze it in future work. Besides, while not the
focus of our work, security and privacy are essential concerns in federated learning, and as the
future work, we can apply various security methods to our approach. Furthermore, besides the stale-
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(a) Accuracy on Fashion-MNIST (balanced case)
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(b) Accuracy on Fashion-MNIST (imbalanced case)
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(c) Accuracy on CIFAR-10 (balanced case)
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(d) Accuracy on CIFAR-10 (imbalanced case)

Figure 2: Accuracy on test data of CIFAR-10 and Fashion-MNIST with imbalanced and balanced
data partitions.
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Figure 3: Test accuracy and loss with different proportion of stale workers on CIFAR-10 dataset in
1,000 communication rounds. We respectively test the performance with 20%, 60%, 80%, and 90%
of stale workers. The green dotted line is FedAvg which waits all selected workers.
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resistance ability, the discrepancy estimation in our method also has the potential ability to resist
malicious attacks to the worker nodes such as massive Byzantine attacks, which has been addressed
in (Bagdasaryan et al., 2018; Li et al., 2019; Muñoz-González et al., 2019). We will analyze and
evaluate such ability in future work.
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A PROOFS

A.1 PROOF OF THEOREM 1

Lemma 1. Under the assumption 1, we can get:

E(F (ωt+1))− F (ωt) ≤ −ηt∇F (ωt)>E(g(ωt)) +
1

2
η2
t βE(‖g(ωt)‖2). (17)

Proof: Under the assumption 1, for any ω and ω′, we have:

F (ω) = F (ω′) +

∫ 1

0

dF (ω′ + t(ω − ω′))
dt

dt

= F (ω′) +

∫ 1

0

∇F (ω′ + t(ω − ω′))>(ω − ω′)dt

= F (ω′) +∇F (ω′)>(ω − ω′) +

∫ 1

0

[∇F (ω′ + t(ω − ω′))−∇F (ω′)]>(ω − ω′)dt

≤ F (ω′) +∇F (ω′)>(ω − ω′) +

∫ 1

0

β‖t(ω − ω′)‖‖ω − ω′‖dt

= F (ω′) +∇F (ω′)>(ω − ω′) +
1

2
β‖ω − ω′‖2.

(18)

Then using 18, we have:

F (ωt+1)− F (ωt) ≤ ∇F (ωt)>(ωt+1 − ωt)

+
1

2
β‖ωt+1 − ωt‖2

= −∇F (ωt)>ηtg(ωt) +
β

2
‖ηtg(ωt)‖2. (19)

Taking expectations in 19 w.r.t the distribution of ξt, we complete the proof.
Lemma 2. Under the assumption 1 and 2, we can get:

E(F (ωt+1))− F (ωt) ≤ −ηt(δ −
ηtβLG

2
)‖∇F (ωt)‖2 +

1

2
η2
t βL. (20)

Proof: Using assumption 2(b) and 2(c), we have:

E(‖g(ωt)‖2) ≤ ‖E(g(ωt))‖2 + L+ ‖∇F (ωt)‖2

≤ L+ (1 + δ2
G)‖∇F (ωt)‖2

= L+ LG‖∇F (ωt)‖2. (21)

Then using 21, assumption 2(b) and lemma 1, we have:

E(F (ωt+1))− F (ωt) ≤ −ηt∇F (ωt)>E(g(ωt))

+
1

2
η2
t βE(‖g(ωt)‖2)

≤ −ηtδ‖∇F (ωt)‖2 +
η2
t

2
β(L+ LG‖∇F (ωt)‖2). (22)

We can easily get Lemma 2 by rearranging 22.

Then we prove Theorem 1 under the assumption 1, 2, 3. First, we define

F(ω̂) = F (ωt) +∇F (ωt)>(ω̂ − ωt) +
c

2
‖ω̂ − ωt‖2. (23)

Function F is a quadratic model relevant to ω̂. Then it has the minimal value when all the partial
derivatives are 0. That is

∂F(ω̂)

∂ω̂
= ∇F (ωt) + c(ω̂ − ωt) = ~0.

11
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Then, when we select ω̂ = ω̂∗ = ωt − ∇F (ωt)
c for 23, we get the minimal of 23, which is

Fmin = F (ωt)− ‖∇Fω
t‖2

2c
. (24)

From assumption 3, we have

F (ω∗) ≥ F(ω∗) ≥ Fmin = F (ωt)− ‖∇Fω
t‖2

2c
, (25)

which is equivalent to
2c(F (ωt)− F (ω∗)) ≤ ‖∇Fωt‖2. (26)

Then from Lemma 2, when a fixed η̄ ≤ δ
βLG

is selected, we have:

E(F (ωt+1))− F (ωt) ≤ −ηt
δ

2
‖∇F (ωt)‖2 +

1

2
η2
t βL. (27)

And using 26, we have

E(F (ωt+1))− F (ωt) ≤ −ηtδc(F (ωt)− F (ω∗)) +
1

2
η2
t βL. (28)

Subtracting F (ω∗) from both sides and moving F (ωt) from left to right, we get

E(F (ωt+1))− F (ω∗) ≤ −ηtδc(F (ωt)− F (ω∗)) + (F (ωt)− F (ω∗)) +
1

2
η2
t βL. (29)

Taking the whole expectations and rearranging 29, we obtain

E(F (ωt+1)− F (ω∗)) ≤ (1− ηtδc)E(F (ωt)− F (ω∗)) +
1

2
η2
t βL. (30)

Substracting the constant η̄βL2cδ from both sides of 30, we have

E(F (ωt+1)− F (ω∗))− η̄βL

2cδ
≤ (1− ηtδc)(E

(
F (ωt)− F (ω∗))− η̄βL

2cδ

)
. (31)

The left hand side of 31 is a geometric series with common ratio 1 − ηtδc, then we complete the
proof.

A.2 PROOF OF THEOREM 2

We first prove 9. Assume∇Fi(ωt+1
i ) = (1− ν)∇Fi(ωti) +Resti, we have

‖Resti‖ = ‖∇Fi(ωt+1
i )− (1− ν)∇Fi(ωti)‖

= ‖(1− ν + ν)∇Fi(ωt+1
i )− (1− ν)∇Fi(ωti)‖

≤ ‖(1− ν)
(
∇Fi(ωt+1

i )−∇Fi(ωti)
)
‖+ ‖ν∇Fi(ωt+1

i )‖
≤ (1− ν)β‖ωt+1

i − ωti‖+ ν‖∇Fi(ωt+1
i )‖

= (1− ν)βηt‖∇Fi(ωti)‖+ ν‖∇Fi(ωt+1
i )‖

≤ (1− ν)ν‖∇Fi(ωti)‖+ ν‖∇Fi(ωt+1
i )‖. (32)

Let ‖∇Fi(ωti)‖ = a and ‖ν∇Fi(ωt+1
i )‖ = b, we define

h(ν) = a(1− ν)ν + bν =
ν

a
(
a+ b

a
− ν). (33)

Since a+b
a > 1 and ν ≤ 1, we have h(ν)min = h(0) = 0, and a ≈ b when ηt is small. We know

that the smaller ν is, the smaller ‖Resti‖ is.

Then we consider the situation that Ei = E = 1, and define

∇F (ωt)>E(gE=1(ωt)) ≥ δ0‖∇F (ωt)‖2 and

V(gE=1(ωt)) = E(‖gE=1(ωt)‖2)− ‖E(gE=1(ωt))‖2

≤ L0 + ‖∇F (ωt)‖2.

12
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When∇Fi(ωt+1
i ) = (1− ν)∇Fi(ωti) +Resti is satisfied, we have

E(gE=Ē(ωt))

= E(gE=1(ωt)(1 + (1− ν)+, ...,+(1− ν)Ē−1 +Res′t))

=
1− (1− ν)Ē

ν
E(gE=1(ωt) +Res′t)). (34)

Based on Taylor expansion, we can get

(1− ν)Ē = 1− Ēν + o(Ēν) (35)
Then equation 34 can be written as

E(gE=Ē(ωt)) = ĒE(gE=1(ωt) +Res′t), (36)
Res′t is the sum of all Resti, and it is perpendicular gE=1(ωt). Then we have

∇F (ωt)>E(gE=Ē(ωt))

≥ Ē∇F (ωt)>E(gE=1(ωt) +Res′t)

≥ Ēδ0‖∇F (ωt)‖2 = δ‖∇F (ωt)‖2. (37)
Variance is the second moment of expectation. Based on 37, we have 9. Then using 9 and 8, we
complete the proof.

A.3 PROOF OF THEOREM 3

When assumption 1, 2 are satisfied, and lemma 2 is hold. If ηt = η̄ ≤ 1
βLG

holds and we take
expectation at both sides of 20, we have

E(F (ωt+1))− E(F (ωt)) ≤ −ηt
δ

2
E(‖∇F (ωt)‖2) +

1

2
η2
t βL. (38)

Then sum all the form of 38 from 1 to t. We have
E(F (ωt+1))− E(F (ω1)) =

E(F (ωt+1))− F (ω1) ≤ −ηt
δ

2

t∑
i=1

E(‖∇F (ωi)‖2)

+
1

2
tη2
t βL. (39)

Besides, we can easily understand that Finf ≤ E(F (ωt+1)), because Finf is the minimal value of
F . Then we have

Finf − F (ω1) ≤ E(F (ωt+1))− F (ω1) ≤ −ηt
δ

2

t∑
i=1

E(‖∇F (ωi)‖2) +
1

2
tη2
t βL. (40)

By rearrange 40, we have

E(

t∑
i=1

‖∇F (ωi)‖2) ≤ tηtβL

δ
+

2(F (ω1)− Finf )

ηtδ
. (41)

Dividing t from both sides of 41, we get

E(
1

t

t∑
i=1

‖∇F (ωi)‖2) ≤ ηtβL

δ
+

2(F (ω1)− Finf )

tηtδ
. (42)

Then using equation 9, we complete the proof.

B ADDITIONAL EXPERIMENTS ON STALE-ROBUSTNESS

We conduct additional experiments to evaluate stale-robustness of our algorithm on CIFAR-10 based
on the settings in section 4. We visualize the impact of different staleness levels at different com-
munication rounds with cosine angles (i.e., discrepancies) between the update terms (i.e., update
directions of local models) of stale workers and fresh workers in figure 4. The results show that our
method (in the first row) effectively adjusts the update direction of the reversed stale nodes while
angles of stale nodes reverse with FedAvg compared to our algorithm, which shows the robustness
of our method.
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(a) Proposed method
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(b) FedAvg

Figure 4: Impact visualization of different levels of staleness using cosine angles between the update
terms defined in section 2 of fresh nodes (40 out of 100) and stale nodes (60 out of 100 worker nodes)
on CIFAR-10 at different communication round. The blue numbers represent the staleness levels by
using the differences of version numbers of models between the stale nodes and the fresh nodes.
E.g., the staleness level is 10 at this communication round means that the fresh nodes has updated
10 more versions compared to the stale nodes.
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