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ABSTRACT

We present a personalized recommender system using neural network for recom-
mending products, such as eBooks, audio-books, Mobile Apps, Video and Music.
It produces recommendations based on customer’s implicit feedback history such
as purchases, listens or watches. Our key contribution is to formulate recommen-
dation problem as a model that encodes historical behavior to predict the future
behavior using soft data split, combining predictor and auto-encoder models. We
introduce convolutional layer for learning the importance (time decay) of the pur-
chases depending on their purchase date and demonstrate that the shape of the time
decay function can be well approximated by a parametrical function. We present
offline experimental results showing that neural networks with two hidden layers
can capture seasonality changes, and at the same time outperform other model-
ing techniques, including our recommender in production. Most importantly, we
demonstrate that our model can be scaled to all digital categories, and we observe
significant improvements in an online A/B test. We also discuss key enhance-
ments to the neural network model and describe our production pipeline. Finally
we open-sourced our deep learning library which supports multi-gpu model par-
allel training. This is an important feature in building neural network based rec-
ommenders with large dimensionality of input and output data.

1 INTRODUCTION

Recently, deep learning based recommender systems gained significant attention by outperforming
conventional approaches (Zhang et al., 2017). It shows promising results on products like videos
(Covington et al., 2016), mobile apps (Cheng et al., 2016), music (Van den Oord et al., 2013) etc.

In the papers mentioned above, we noticed that NN based recommenders are different for each
product category (videos, music, mobile apps), requiring unique feature extraction methods and
NN topologies. All of these challenges makes it harder to scale over different product categories.
In this paper we are exploring effectiveness of a multilayer neural network (NN) for personalized
recommendations of products which were never purchased before by a customer. The simplicity of
this approach allows us to scale it on various categories of Amazon catalog in production. We focus
on improving accuracy of the neural network based personalized recommender.

It is noticed in (Covington et al., 2016) that accuracy of NN depends on how the problem is for-
mulated. They found that NN performs better when it is trained to predict the user’s next purchase,
rather than a set of randomly held-out purchases. We use the same idea, but on top of this, we pro-
pose to train NN model to predict not only future purchase, but all future purchases in the certain
time (for example in the next week).

Capturing temporal popularity (trendiness) also called seasonal changes of consumption pattern is
a challenging and important problem in recommender systems (Wu et al., 2017), which can impact
the accuracy of the model over time. In (Wu et al., 2017; 2016; Ko et al., 2016) authors propose
methods to capture seasonality changes using sequence modeling. Another approach (Song et al.,
2016) models both long-term static and short-term temporal user preferences. In both cases they use
different versions of recurrent neural networks. In this paper we propose to combine predictor model
(which can captures short term preferences and recommend products which are currently popular)
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with auto-encoder model (which can capture static customer preferences and recommend products
which were popular at any time in the past) using feed forward NN. These models are combined by
training them jointly. We re-train NN model every day to learn new popular products and changes
in customer preferences. Even though our model is simpler then RNN, we show that it captures
seasonality changes well.

Improving NN based recommender is important problem, for example in (Covington et al., 2016)
authors observed that adding features and depth significantly improves precision on holdout data
from YouTube catalog. In (Cheng et al., 2016) authors show that wide and deep NN with multiple
features can improve performance of the neural network on mobile apps. So both methods (Cheng
et al., 2016) and (Covington et al., 2016) require different production pipelines for different data
sets: video and mobile apps. In this paper we use only purchase history and focus on improvements
of NN accuracy by applying different splits of the training data. It simplifies the production pipeline
and allows us to reuse it on all digital categories: video, eBooks, audio-books, mobile apps, and
music.

Another way of improving recommender system is time decay, which was introduced by (Xia et al.,
2010) for collaborative filtering. We also apply it on input data for the neural network based recom-
mender and observe positive impact on accuracy metrics. Our contribution is to use convolutional
layer (LeCun & Bengio, 1998) for estimating the shape of time decay function. Convolutional layers
are used in existing recommender systems, but it is applied for different purposes, for example in
(Hsu et al., 2016) convolutional layer is used for learning local relation between adjacent songs, in
(Zheng et al., 2017; Kim et al., 2016) it is used for text feature extraction and in (Van den Oord et al.,
2013) it is used for extracting features from audio signal.

There can be millions of products in the catalog and it is a hard problem to run NN based recom-
mender in production with such amount of items (Covington et al., 2016). Both (Covington et al.,
2016) and (Cheng et al., 2016) are splitting the problem into candidate generation and ranking. Can-
didate generation retrieves a small subset of products from a large corpus. These candidates should
be relevant to customer interest. Ranking does a fine-level scoring of the candidates and in addition
to consumption history it can use more features (context, impression, etc). Another way of scaling
this problem is to learn similarity between products using DSSM approach (Elkahky et al., 2015)
which is relying on content features. In this paper we focused on training end-to-end one neural
network which is using only purchases events. On one hand it simplifies the production pipeline,
because there is no splitting into candidate generation and ranking models and there is no special
feature extraction step. But on the other hand we have to deal with large dimensionality of input
features and labels. To solve this problem we use multi-GPU model parallelization, implemented by
our team in DSSTNE library (10). It allows us to re-train large NN models every day and produce
fresh recommendations for our customers.

In this paper, we are focused on modeling consumption patterns in digital products (For example,
recommending movies to customers based on the movies already purchased). Depending on the do-
main, we also exclude movies that were already purchased by the customer while computing offline
metrics as well as recommending online. We present different methods of splitting the training data
and observed that it can improve NN based recommender accuracy metrics. Techniques like the one
presented here feed into recommendation technology deployed at Amazon.

The rest of the paper is organized as follows. Section 2 introduces offline metrics used for algorithm
evaluation. Section 3 details our NN model development procedure, including how different meth-
ods are compared. Section 4 provides extensive offline evaluation results, in conjunction with model
property exploration. Section 5 presents how to run NN model in production and describes on-line
A/B test. Finally, section 6 presents our conclusions.

2 OFFLINE EVALUATION METHODOLOGY

There are many different metrics focusing on specific properties of the recommendation algorithm
(6, 2014). Among all, root mean square error (RMSE) is the most popular one ((Qu et al., 2016),
(Sedhain et al., 2015)). It requires explicit feedbacks (ratings). Nevertheless, in many practical
applications recommender systems need to be centered on implicit feedbacks (Hu et al., 2008).
Implicit information like clicks and purchases are normally tracked automatically, customers do not
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need to explicitly express their attitude, therefore are easier to collect. In the scenario of predicting
future purchase from implicit feedback data, we use two metrics throughout evaluations in this
paper: Precision at K and Product Converted Coverage (PCC) at K.

Precision at K is the accuracy of the predicted recommendations with respect to the actual purchases:

Precision@K =
1

C

C−1∑
c=0

|{Recc} ∩ {Tc}|
K

, (1)

where K is the position/rank of a recommendation, c is the customer index, Recc is top K recom-
mended items for customer c, Tc is actual consumptions for customer c represented as the set of
items the customer purchased in the evaluation period (where interaction can be purchases, watches,
listens), |Rec| is the number of items in set Rec, Rec ∩ T is the intersection between sets Rec and
T , and C is the number of customers.

While having high precision is necessary, it is not sufficient. A personalized recommender should
also recommend diverse set of items (Adomavicius & Kwon, 2012). For example, if precision is
high with no diversity, then recommendations looks like a hall of mirrors showing only products in
a single topic. Therefore, to guarantee the diversity of recommendations, we use products converted
coverage at K. It captures the number of unique products being recommended at top K and at the
same time purchased:

PCC@K =
1

P
| ∪C−1c ({Recc} ∩ {Tc})|, (2)

where ∪C−1c (Xc) represents union of sets X0, X1 . . . XC−1, P is total number of products.

Using held-out labels to measure a recommender’s efficacy is leaking future purchase information
(Covington et al., 2016). Consequently, there exists the risk of having inconsistent performance
between offline and online evaluation. In order to reduce this gap and emulate real production
environment, the test metrics in this paper are measured on future purchases instead of held out
data.

3 OFFLINE MODEL DEVELOPMENT

3.1 DATA PRE-PROCESSING

Apart from metric selection, one general issue related to a recommender system is how to reduce the
gap between offline and online A/B test results. With the intention of using historical consumptions
for training and future purchases for testing, we split data as shown in Figure 1. Users’ consumption
history is divided into past and future parts by pre-selected date (dyz), after which offline accuracy
metrics are measured on future part. Each purchase event of a particular customer is represented
by one-hot encoding in vectors: X,Y, Z, as shown in Figure 1, where: X – training data input;
Y – training data output; XY – testing data input (concatenation of X and Y ); Z – testing data
output; dx, dxy – minimum and maximum dates in training data input X; dyz, dz – minimum and
maximum dates of purchase in testing data output Z. They are selected so that dz − dyz is between
1 week and 2 weeks.

Figure 1: Purchase history data split. Consumption history is divided into three pieces X , Y and
Z, by date split dx, dxy, dyz and dz. p is index of the product purchased at YYYY/MM/DD. For
example, p = 1 – product 1 purchased at 2012/11/15, p = 2 – product 2 purchased at 2013/06/21.

In practice, dxy is selected so that dyz−dxy is between 1 week and 3 months. By doing this, neural
network will capture seasonality change. dx is selected so that dxy−dx is less than 2 years. During

3



Workshop track - ICLR 2018

training we consider X as past purchases and our goal is to predict future purchases Y . During
testing we concatenate X and Y data and XY is used to predict Z.

Purchase history is inherently noisy (Hu et al., 2008). It has different kinds of noises. For example,
customers with a small number of purchases (which may not be reflected of their true taste due to the
small sample), customers with a lot of purchases (which might indicate a company or bulk account).
To deal with this, we set the minimum and maximum number of purchases and exclude customers
outside of these limits.

We apply the same data split (Figure 1) for extracting validation data sets which are used for hyper
parameters optimization. Validation data for X,Y, Z are extracted using date thresholds shifted
by one month dx − month, dxy − month, dyz − month, dz − month. Then we train models
with different hyper parameters on X and Y and pick the one which has highest accuracy on Z.
Date thresholds dx and dxy can be treated as hyper-parameters too which are optimized to achieve
maximum accuracy on output data Z.

During offline evaluation, we limit number of products to order of 105 and reduced number of testing
samples to order of 106. It is worth noting that the purchase data has two dominating properties.
First, the distribution is long-tailed, more than 90% of purchases are covered by less than 20% of
products. This fact allows us to reduce dimensionality of recommended products by four times with
minimum influence on precision, but PCC can be impacted. Second, the purchase history is sparse.
On average customers have purchased less then 1% of the all products in the input data X . For
efficient model training, we use sparse matrix multiplication in our production pipeline.

3.2 NEURAL NETWORK BASED RECOMMENDER – PREDICTOR MODEL

It is important to learn what customers are interested in buying now. For example, given one cus-
tomer’s purchase history in the last two years, we aim to predict their next purchases in the next
week. We use NN based approaches because they are showing promising results (Covington et al.,
2016; Cheng et al., 2016).

(a) Standard NN (b) NN with convolutional layer (c) Predictor and auto-encoder

Figure 2: Neural Network topologies

The recommender model for L layers is defined by the function at each layer, and the loss function,
as shown in Figure 2a and illustrated below using the equations corresponding to each layer:

A0 = X + ξ; Aj = Drop(Act(Wj ·Aj−1 +Bj)); Ŷ = Sigm(WL ·AL−1 +BL);

loss = Cost(Y, Ŷ ) + λ

L∑
j=1

|Wj |2 + β

L−1∑
j=1

KL(ρ, ρ′j); (3)

where weighted cross-entropy is used as the cost function:

Cost(Y, Ŷ ) = −
P−1∑
p=0

(w1 · yp · log(ŷp) + w0 · (1− yp) · log(1− ŷp))

with, X,Y – training input and output data in Figure 1; X,Y ∈ {0, 1}P , P – number of rec-
ommended products; Ŷ – output scores of the NN; L – number of layers in the NN; Wj , Bj –
weight matrix and bias to be learnt. j = 1, . . . , L; Aj is the activation at layer j; Act(∗) –
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the nonlinear activation function (Relu, Sigmoid, (Nair & Hinton, 2010) etc.); Drop(∗) – drop
out function (Srivastava et al., 2014); ξ – noise added to input data, for increasing robustness
of the model (Vincent et al., 2008); w1, w0 – constant weights for purchased and non-purchased
products respectively, introduced for balancing number of purchased vs non-purchased products;
KL(ρ, ρ′j) = ρ · log( ρρ′j ) + (1 − ρ) · log 1−ρ

1−ρ′j
– penalty function (Ng, 2011) on hidden and output

nodes to force the network to only activate some percentage of the hidden and output nodes; ρ –
sparsity parameter; ρ′j – average activation of hidden unit j (Ng, 2011).

Parameters of the noise ξ, drop-out function, number of layers L, set of activation function Act(∗),
weights w1, w0, λ and β are hyper-parameters of the neural network model (3), which can be tuned
via hyper-parameter search on validation data. We also explore learning rate, momentum, mini
batch size, number of epochs, type of the optimizer (SGD, Nesterov (Nesterov, 1983), etc). We
tested deeper networks on our data sets but did not observe significant improvements. In all the
experiments mentioned in this paper, our models used neural networks with two hidden layers.

During evaluation we feed XY data to the NN model and produce output scores Ŷ . Then these
scores are sorted and the top K products are returned as recommendations. Before sorting, all pre-
vious purchases (products belonging to data XY ) of the selected customer are removed from the
recommendations, so that only new products are recommended. During evaluation, these recom-
mendations are compared with data Z for accuracy calculation.

The data split method used for training model (3) via the multi-label classification is shown in Figure
1. We call it predictor model because it predicts future purchases Y given past purchases X . This
model can produce personalized recommendations of products which were popular during the last
week. As a result we can expect high precision of predicting future purchases, but PCC will be
constrained by the products which were purchased in the last week (Y ) only.

Gradient vanishing can be a problem in deep predictor model, so we use ReLU activation function
to mitigate it on some categories of data. With increase of the depth (number of hidden layer) of
predictor model, accuracy metrics can degrade significantly (vanishing gradient is one of the reason
of such effect). That is why we measured the impact of the NN depth on Precision@1, and observed
that with increasing the NN depth, Precision@1 is going down as follow (even with ReLU):

Depth 1 2 3 4 5 6
Precision@1 0.072 0.072 0.07 0.068 0.067 0.065

One of the method of mitigating the accuracy degradation (due to depth of NN) is residual neural
networks (He et al., 2015). We explored residual NN with predictor model on our data sets, and
observed that it mitigates vanishing gradient effect, so that Precision@1 stayed the same regardless
of the depth of the NN: around 0.072. But it does not improve accuracy metrics in comparison with
two layers NN. That is why we picked neural network model with number of hidden layer no more
than 2. Above experiment was done on AIV data sets (which is also used below in sections 3.3, 3.4,
4.1, 4.3, 4.4, 4.5).

3.3 OFFLINE COMPARISON OF PREDICTOR MODEL WITH OTHER APPROACHES

We check the effectiveness of predictor model by comparing it against the following models 1 on
AIV datasets:
FISM (Kabbur et al., 2013) is based on item-to-item similarity matrix factorization, in which two
low dimensional latent factor matrices are learned. Bayesian Personalized Ranking (BPR) (Rendle
et al., 2009) loss with negative sampling is used. The model is tuned for different values of rank k
and learning rate l.
Fossil (He & McAuley, 2016) combines similarity matrix factorization which utilizes Markov chains
to capture temporal dynamics. In addition to rank and learning rate, we also tune for L2 regularizer
and order of the Markov chains.
LSTM is commonly used for dealing with sequence of items (Graves, 2013). We use the unidi-
rectional LSTM with a softmax output layer to choose top k recommendations, as implemented in

1FastXML is implemented by https://github.com/Refefer/fastxml, all the rest is im-
plemented by https://github.com/rdevooght/sequence-based-recommendations (De-
vooght & Bersini, 2016)
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(Devooght & Bersini, 2016). Best result is selected upon different layer sizes {32, 64}, batch sizes
{16, 32} and size of an extra embedding layer before the recurrent layer {0, 32, 128}.
GRU Similar to LSTM, GRU is also a gated RNN in which information flows are controlled, but
with a different gated recurrent unit (Hidasi et al., 2015). The model is tuned in same manner as
LSTM.
FastXML Our recommender system can be formulated as an extreme multi-label classification
problem. Therefore, we compare our approach with Fast and Accurate Tree Extreme Multi-label
Classifier (Prabhu & Varma, 2014).

On Figure 3, we see that our model (3) has the best Precision, and our production CF has the best
PCC. The next best model is FastXML. In the rest of this paper, we will be focusing on improving
the NN model in terms of Precision and PCC.

Figure 3: Accuracy metrics of different approaches on AIV purchase history

LSTM is well applied on sequences like text, speech etc. These sequences has strong grammatical
rules, which are well captured by LSTM. We explain lower accuracy of LSTM (On Figure 3 ) by
our data properties (or lack of strong grammatical rules in sequences of purchases in our data).
For example on ebooks data, if one customer buy books in order: Harry Potter, Golden Compass,
Inkheart, another customer can buy these books in different order: Inkheart, Harry Potter, Golden
Compass and another one in different order, etc. So these purchases can be done in any order and
long term dependencies can be noisy. Another important properties of our data(video, ebooks) is
the popularity of the recommended products at particular date. Our approach (predictor model)
is modeling these properties by re-training the model every day and predicting the next purchases
which are popular in the current week, whereas LSTM is recommending only next purchases (which
are not necessary popular at current week). We can expect better performance of LSTM on other
categories of products (where order of purchases is more important), for example probability of
buying a game for a cell phone after purchasing a cell phone is higher than probability of buying
these products in reversed order.

3.4 LEARNING TIME DECAY FUNCTION WITH CONVOLUTIONAL LAYER

One of the ways to improve a recommender is by using time decay function (Xia et al., 2010), so
that the importance of recent purchases can be increased. There are multiple parametrical functions
that can be used for this purpose but we do not know which one of them is the best. That is why we
propose to use a NN with convolutional layer that can learn the shape of the time decay function.
NN model with convolutional layer is described below and shown on Figure 2b.

Date of purchase XT is processed by Bin() function, it converts purchase date into 32 binary
encodings. For example, recent purchase will be represented as [1, 0 . . . , 0], whereas purchase which
was done 2 years ago will be encoded as [0 . . . , 0, 1]. Two years of purchase events are divided into
32 buckets, so that 22 days belongs to one bucket. All binary encoded data are concatenated into
one vector V , which will be used by one dimensional convolutional layer (with stride 32).

V = Bin(XT );

A0 = Conv(V ) = Act(

31∑
i=0

(Vi+p·32 · wfi + wb)),
(4)

where wf is the one dimensional convolutional kernel (with size 32), and wb is the bias for p =
0 . . . P −1, where P is the total number of products. The remaining functions are the same with (3).
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To see how convolutional layer can explore the shape of time decay, we use a parametric function
as a baseline. It is defined as:

Td(d, decay) =

{
1/(1 + ref−d

decay ), d < ref

0, else
(5)

where d – input day; decay – time decay parameter measured in days; ref – reference day, which
is equal to dxy during training and dyz while generating recommendations.

We trained three models, the first model was a NN predictor defined by (3), the second used a
convolutional layer defined by (4) and shown in Figure 2b, and the third one took dates of input
purchases decayed by (5) and then fed this data to the input of model (3). The time decay pa-
rameter of the third model was learnt using hyper-parameter optimization on validation data, as
described in section 3.1. The optimal value for this parameter was found to be 40. These models
were trained on AIV data sets with different date splits: October data set (dx = 2012/10/31,
dxy = 2014/09/23, dyz = 2014/10/01, dz = 2014/10/08) and Christmas data set (dx =
2011/10/31, dxy = 2013/12/15, dyz = 2013/12/22, dz = 2013/12/29). We selected Christ-
mas week to see that time decay function with convolutional layer will have a spike at Christmas
week one year in the past.

Figure 4: Shape of time decay function (4), (5). Parameter d belongs to two years range:
0, . . . , 365× 2.

The shape of time decay function learnt by convolutional layer is shown on Figure 4. We observed
that the function modeled on October data (date split dyz = 2014/10/01) is going down with
increasing d (red dashed line). So it can be well approximated by the parametrical function (5)
(green dashed line).

For modeling seasonal activities like movies popular during Christmas every year, one would expect
movies that were popular last Christmas week will be popular this Christmas week as well. In our
experiment, as we expect, the convolutional layer learns a different shape of the time decay function
for the Christmas week (dyz = 2013/12/22, blue solid curve). It is demonstrated by a local spike
observed during that time, highlighting the popularity of Christmas movies at the same time of the
year. This spike is located at Christmas week of the previous year.

Table 1 shows the results that compare predictor model with and without time decay. Time decay
on input data slightly improves precision, but PCC is reduced. We demonstrate that the shape of the
time decay function learned by the convolutional layer can be well approximated by the parametrical
function (5). Given that, and for production pipeline efficiency, we use parametrical function (5) as
an approximation of time decay shape in rest of this paper. But the idea of integrating a convolutional
layer into the architecture can be adjusted to more general framework of NN-based recommenders.

Table 1: Predictor models with different time-decay
Predictor models Precision@1 PCC@1
Default model (3) 0.072 0.018
with conv time decay (4) 0.074 0.016
with parametrical time decay (5) 0.075 0.017

3.5 NN BASED RECOMMENDER WITH COMBINED PREDICTOR AND AUTO-ENCODER MODELS

On Figure 3 we observe that predictor model has highest precision@K but lower PCC@K. The rea-
son for lower PCC lies in the method of splitting the training data as we train the model to predict
more recent purchases from the past week. As a result NN model cannot predict products which
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were purchased only one month ago because they were never seen in training output data Y . Predic-
tor model is recommending personalized popular products. It captures short term preferences and
recommend products which are popular now. One of the methods of increasing PCC is to use auto-
encoder neural network (Hinton & Salakhutdinov, 2006), which learns representations of the input
data X by learning to predict itself in the output. By training the representation and reconstructing
all of a user’s purchases, it can capture static customer preferences and predict products purchased
at any time in the past. As a result, we can expect an increase in PCC in auto-encoder compared to
predictor model since the diversity of products over a two year period learned by an auto-encoder is
more than a one week period learned by a predictor.

In light of this, we introduce a hybrid approach which combines predictor and auto-encoder models.
We show that they can increase both precision and PCC, or increase one of them and do not change
another one.

The combined model may be illustrated by the equations describing the per-layer functions and
shown on Figure 2c.

A0 = Td(XT, ti) + ξ; Aj = Drop(Act(Wj ·Aj−1 +Bj)); Ŷ = Sigm(WL ·AL−1 +BL);

loss = Cost(XT,X, Ŷ ) + λ ·
L∑
j=1

|Wj |2 + β ·
L−1∑
j=1

KL(ρ, ρ′j); (6)

Cost(XT,X, Ŷ ) = auto(XT,X, Ŷ ) + predict(Y, Ŷ ), (7)

in which

auto(XT,X, Ŷ ) = −
P−1∑
p=0

{wa1 · Td(xtp, to) · log(ŷp) + wa0(1− xp) · log(1− ŷp)} (8)

predict(Y, Ŷ ) = −
P−1∑
p=0

{wp1 · yp · log(ŷp) + wp0 · (1− yp) log(1− ŷp)}. (9)

Here, we have wa1, wa0 – constant weights for purchased and non-purchased products respectively,
set to be 1 by default. They introduced for balancing number of purchased vs non-purchased prod-
ucts, these weights are used for auto-encoder model; ti – time decay parameter applied on input
data; to – time decay parameter applied on output data in cost function; XT – purchase dates of
products X . xtp is the scalar value of vector XT ; Td(d, decay) – time decay function defined in
(5) applied on input data and cost function of auto-encoder; d – purchase date; decay – time decay
hyper-parameter measured in days. The remaining variables are as in model (3).

Auto-encoder (8) and predictor (9) models are trained jointly using mixed cost function (7). Each
output label X in the auto-encoder is weighted by the function Td(), which is controlled by decay
parameter. It controls the impact of auto-encoder model. We selected function (5) for controlling
the impact of auto-encoder. We also apply time decay on the input data XT where shape of time
decay function is defined by parametrical definition (5) or can be learned using a conv layer (4).
Model (7) can be interpreted as multi-task learning (Caruana, 1998), where loss for predicting past
purchases (8) is task one, and loss for predicting future purchases (9) is task two. Model (6) is a
generalized version of model (3) and by adjusting ti and to we can get predictor model (3) or a
mixture of predictor and auto-encoder models.

Predictor model is defined by fixed parameters, ti = 106, to = 10−6, wa1 = wa0 = 0 and other
NN parameters were found using hyper-parameter optimization on validation data as described in
section 3.1. Shape of the time decay function Td() applied on input and output data are shown on
Figure 5a by red and black color respectively. Predictor model uses past consumptionsX as training
input data and predicts future purchases Y , therefore it has higher precision and lower PCC.

Our first proposed approach is Equally Weighted (EW) auto-encoder and predictor model. It is
defined by fixed parameters, ti = 106, to = 106. Because ti and to are very large, there is no time
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(a) Predictor (b) Equally Weighted (EW) (c) Soft split

Figure 5: Different weighted combinations of predictor and auto-encoder models

decay applied. Shape of the time decay functions applied on input data and cost function (8) is
shown on Figure 5b. It uses past purchases X as training input data and predicts both past X and
future purchases Y . We can expect higher PCC in comparison to predictor model because auto-
encoder and predictor model can predict products which belong to both input X and output Y data
sets.

Another approach is to use time decay weighted auto-encoder and predictor model (soft split). It is
defined by parameters: ti = 40, to = 4, which were found using hyper-parameter optimization. It
applies time decay on input dataX to capture the importance of recent purchases. Its shape is shown
in Figure 5c by red color. This model predicts both past and future purchases, but the importance
of predicting past purchases is weighted by function Td() highlighted by the black curve in Figure
5c. Therefore, it will allow to keep properties of predictor model (for example high precision) and
at the same time have properties of EW model (for example, higher PCC). We call this model soft
split because the training output data has time decayed training input data included in it, compared
to the hard split of predictor model based on a fixed date split.

4 EXPERIMENTS

We evaluate EW and soft split NN models on AIV dataset. Then we present our model’s scalability
to work on different digital product categories, and explicate the learning pattern along training
process. We also demonstrate the model’s ability to capture seasonality effects.

4.1 METRICS ON AMAZON INSTANT VIDEO (AIV)

As observed in Figure 3, predictor model has high precision against other methods, but compara-
tively low PCC. We trained both EW and soft split NN model to check how our proposed model is
impacting accuracy metrics.

We select predictor model and production collaborative filtering from Figure 3 to serve as baselines,
other approaches are excluded because NN is already outperforming. All pre-processed data and
model metrics remain unchanged. Results are shown in Figure 6a. We observe that predictor model
has higher precision and lower PCC than other methods. The model with soft split has slightly
lower precision, but at the same time PCC is boosted to be twice. EW model increases diversity of
recommendations by two times, but at the same time precision was reduced significantly. That in
return explains our intuition of combing predictor and auto-encoder models in a soft way.

4.2 OFFLINE EVALUATION ON PUBLIC DATA SETS

We have evaluated several recommenders on public data sets (MovieLens) and showed that both
predictor and soft split models have the highest accuracy metrics in comparison with the existing
baseline. More details can be found in the Appendix.
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(a) Amazon Instant Video (AIV)

(b) Music

(c) Audible

(d) Apps

(e) eBooks
Figure 6: Accuracy metrics on different categories

4.3 MODEL SCALABILITY

It is important for recommendation algorithms to be easily operated across different categories,
especially at Amazon scale. In this section, we present how our approach can be trained on all
categories of digital products without additional feature engineering.

As expected, auto-encoder’s ability to model long term static user preference allows us to increase
PCC. Model with soft data split has higher precision in comparison with other approaches and higher
PCC than predictor model. But PCC is comparable or lower than EW model (Figure 6).

Production collaborative filtering has higher PCC than any other approaches (Figure 6). One of the
reasons why NN based recommender has lower PCC is due to input/output dimensionality reduction
that we apply in production for daily model re-training.

We show that by applying the learning process of proposed model to different categories dataset, we
can gather information from those different patterns. For example, predictor approach is modeling
short-term user preferences: given two years history of past purchases it predicts future purchases
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in the next week. This approach works well on popularity driven categories like video, in which
customers are biased more to purchasing popular video products. It has the highest precision@K, but
PCC@K is much lower in comparison with other models. Soft split allows to keep high precision@K
and at the same time increase PCC@K by two times (Figure 6a).

Meanwhile, there are other categories which have different consumption pattern and predictor model
is not the best. For example, we observe that predictor model on video data (Figure 6a) has much
higher precision than production collaborative filtering. Predictor model is producing personalized
recommendations which are popular now. In contrast, on eBooks and audio-books (Figure 6e, 6c)
we observe that predictor model has the same precision with production collaborative filtering, it
indicates that consumption pattern of these two categories is different with video data set (where
predictor has the highest precision). In both eBooks and Audible model with soft split has the
highest accuracy, so there is a consumption pattern similarity between both of these categories. Soft
split model outperforms predictor model on all accuracy metrics on ebooks and audiobooks data
sets. On Music and Apps dataset, soft split has significantly higher Precision and higher PCC than
predictor model. We showed that by combining predictor and auto-encoder models we can achieve
significant accuracy improvements. The simplicity of the model allows us to scale it in production
on all digital categories. It makes it different from other referred papers where one category is picked
and then a model is specifically designed for it.

Figure 7: Properties of predictor model on AIV data. (a)(left) Convergence of metrics over epochs.
(b)(right) Metrics dependent on minimum number of purchases

4.4 MODEL PROPERTIES

To understand the strength and weakness of our model, we explore the convergence properties in
NN model training process. Here we demonstrate how Precision and PCC change along epochs,
together with how they are affected by number of purchases. From Figure 7, we observe that pre-
cision converged after 10 epochs, whereas PCC is converging after 70 epochs. NN learns most
popular products and reaches high precision fast. With more iterations precision stays stable, but
PCC increases significantly as NN learns to predict less popular products or the tail of the products
distribution (PCC is increased by 3 times after 70 epochs).

It is observed in Figure 7 that the model accuracy depends on number of purchases customer has.
Recommendations will be more popularity biased if customer is inactive and has few purchase,
therefore as a result, becomes less accurate. As shown in the figure, Precision@1 and PCC@1
are low on customers who has number of purchases n <= 3, but for customer who has a lot of
purchases, recommendations will be more accurate and more diverse: Precision@1 and PCC@1 are
increasing with growth of minimum number of purchases n.

Influence of different number of layers are also studied. We noticed that deeper NN models did not
improve accuracy significantly and two hidden layers was enough. This is not surprising as we do
not use more complex feature (product description, customer features etc) as in (Covington et al.,
2016). Number of hidden units in hidden layer was important for increasing accuracy metrics, thus
we did hyper parameters optimization with number of hidden units in range 128, . . . , 8000. On
the most of the categories, NN with ReLu activation has higher accuracy metrics. This result is
consistent with (Covington et al., 2016).

4.5 SEASONALITY EVALUATION

To ensure that our model captures seasonality changes or trendiness, we re-train it every day and test
how it reacts to seasonal effects. This is validated by comparing the most popular products produced
by NN with the most popular products which are actually purchased by customer at different time.
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We trained and evaluated NN model on two data sets: October and Christmas data sets, as described
earlier in Section 3.4.

In Table 2, we show the most popular products recommended by our model for each date set on left
side, and as a contrast, the most purchased ones on the right side. The overlaps between the most
recommended and the most purchased products are highlighted in bold. By training the model every
day and targeting on future purchases, it successfully captures temporal dynamics. For example,
the old movie “National Lampoon’s Christmas Vacation” is recommended most during Christmas
season and at the same it was the most purchased one. So our model is able capture the trendiness
of movies that are watched during Christmas.

Table 2: Top six the most recommended and the most popular videos at different dates

Most recommended in October Most purchased in October
Jackass Presents: Bad Grandpa(2013) Jackass Presents: Bad Grandpa(2013)
Defiance(2009) Transformers: Age of Extinction(2014)
The Duchess(2008) Space Jam(1996)
All Is Lost(2013) Defiance(2009)
Neighbors(2014) The Duchess(2008)
Thanks For Sharing(2013) Neighbors(2014)

Most recommended in Christmas Most purchased in Christmas
National Lampoon’s Christmas Vacation(1989) National Lampoon’s Christmas Vacation(1989)
Cirque Du Soleil: Worlds Away(2012) Scrooged(1988)
Scrooged(1988) Skyfall(2012)
Skyfall(2012) Elysium(2013)
The Hunger Games(2012) The Lone Ranger(2013)
Spring Breakers(2013) Cirque Du Soleil: Worlds Away(2012)

Figure 8: Metrics in October and Christmas

We also measure accuracy metrics to validate the performance of NN models quantitatively. Preci-
sion@K and PCC@K are calculated in October and Christmas week and shown on Figure 8. As can
be seen, Christmas recommendations has higher Precision@K and lower PCC@K, in comparison
with October recommendations. There is an acceptable temporal variation in the accuracy metrics,
so we can confirm that out NN model is adapting to seasonality changes. At the time of this test our
model was not in production yet, so our recommendations did not impact customer consumption
pattern.

In spite of these promising offline results, we must recognize that these algorithms are evaluated
against historical data. That data is based on customer consumption history influenced by collab-
orative filtering algorithms running in production. Therefore, online A/B tests are conducted and
discussed in next section.

5 RUNNING NN MODELS IN PRODUCTION AND ONLINE A/B TEST

One of the pipeline requirements is to produce fresh NN model with recommendations every day.
Another one is to scale this approach to all digital products. For this reason, the designed NN
pipeline as shown in Figure 9, consists of several steps: data pre-processing, model training, recom-
mendations generation and serving database of recommendations. It allows us to train multiple NN
models for different categories offline, then generate recommendations for all customers offline and
store it into database, and in the end serve multiple databases online for all digital products.

We re-train NN model every day and generate recommendations for all customers belonging to a
selected category daily. This approach will produce different recommendations every day even if
particular customer has not bought anything recently. Daily re-training also helps to learn new items
which become popular at that time. Date splits, described in section 3.1, are updated every day so
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that dyz = current day, dxy = dyz − one week, dx = dyz − two years. We feed XY data
to the input of the NN model and produce output scores Ŷ . These scores are sorted and the top K
products with the highest scores are returned as recommended products. Before sorting, all previous
purchases (products belonging to data XY ) of the selected customer are removed from the recom-
mendations so that only products which customer has never purchased before are recommended.

The first step of the pipeline is data pre-processing, described in Section 3. For this we use Spark on
multi host map-reduce cluster. Training time can be impacted by number of training samples, so we
control it by keeping number of training samples constant and by removing noisy samples. Another
factor impacting training time is the model size which is defined by number of recommended prod-
ucts and number of units in hidden layer. We control number of recommended products by clipping
the tail of the product distribution. The next step is neural network model training. Training time
is governed by the size of the weight matrixes Wj . Bigger size of model takes more time to train.
We use multi-GPU model parallelization which we implemented in the DSSTNE library (10) and
open-sourced it. Model parallelization allows us to train a neural networks with million of input and
output dimensionalities (so that model size can be more than several gigabytes) in timely manner.

In order to scale up and compute the predictions daily we do data parallel predictions. We split
data into batches of customers and run predictions through Spark on a GPU cluster (11). Each
predictor receives customer purchase history and the trained NN model generates recommendations
(predictions) which are stored in database. The online recommender service reads these predictions
and displays them to customers.

Above steps are repeated every day, so that NN model uses the freshest purchase history and can
capture seasonality changes.

Figure 9: Production pipeline

Our pipeline is similar with (Cheng et al., 2016), the main difference is that we pre-generate rec-
ommendations offline. As a result, our online recommender remains simple and supports multiple
categories with no modifications. Also Data pre-processing, Model training and Recommendations
generations pipeline can be used by multiple category recommenders sequentially or in parallel if
there is an extra hardware available. The side effect of our approach is offline recommendations
generation is delaying the propagation of recent purchases into our model.

We conduct online A/B tests of the proposed NN based recommender on several digital categories.
The length of the test is four weeks. Fifty percent of all customers in the selected category are
exposed to new recommendations and remaining fifty percent to existing recommendations. We
observed p-value to be less than 0.05 for all categories and significant improvements in number of
purchases of mobile apps on Apps Storefront (Amazon digital devices), ebooks on Kindle devices,
and audio books on Audible. We also observed a similar increase in Amazon Instant Video minutes
streamed on Amazon.com.

6 CONCLUSION AND FUTURE PLANS

We described a personalized neural network based recommender system which was launched in pro-
duction on categories like eBooks, Audible, Apps and Video. We are currently working on expand-
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ing it to non-digital categories. We showed that splitting customer purchases into a history period
(input) and a future period (output) in our models led to good results, and some of our production
models use this approach (with soft split which combines the auto-encoder model with the future
predictor model). We have applied time decay learnt by convolutional layer, or defined by para-
metrical function to consumption event. It captures the importance of recent activity, and combined
with soft split, it leads to significant improvements in offline metrics. We demonstrated that two
layer neural networks are outperforming other NN based approaches which are more complicated
than our method, both on public dataset (MovieLens) and company’s internal datasets. Because of
simplicity of the NN model we can scale it on all digital categories. We observed significant KPI
improvements during online A/B tests in production. Finally we open sourced our deep learning li-
brary which supports multi gpu model parallel training and allows us to train large models in timely
manner.
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A OFFLINE EVALUATION ON MOVIELENS DATA SETS

We compare our models (predictor, soft split) with FastXML based recommender on 20M Movie-
Lens data set (Harper & Konstan, 2015). FastXML is selected for baseline accuracy estimation
because it is designed for extreme multi-label problem. It is optimizing ranking loss which is impor-
tant feature for recommender problems, and it has the best accuracy among other baseline methods
on Figure 3.

MovieLens data is selected because it belongs to the same category (video) which was evaluated
earlier in this paper. Our recommendation approach is based on positive implicit feedback, we chose
ratings greater than three as relevant for the user and ignore all the other ratings (for consistency we
will call all ratings greater than three as purchases). Similar conversion of the ratings to implicit
feedbacks was used in (Ostuni et al., 2013).

We train model to predict future purchases, so we split training data into past (X) and future (Y )
purchases using dates: dx = 2002/04/14; dxy = 2004/04/01; dyz = 2004/04/14; dz = 2004/04/28.
We generate training input and output data by selecting users that have at least two purchases in
period of time dx . . . dxy and at least one purchase in period of time dxy . . . dyz. So we get 923
customers in training data. Purchases belonging to dates dx . . . dxy assigned to training input data
X , and belonging to dxy . . . dyz assigned to training output data Y .
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There are around 6200 products (movies) purchased (rated) by these customers in the above period
of time. Distribution of customers sorted by number of purchases is shown on Figure 10 (b), where
H(c) number of purchases made by customer c, c customer index. It shows that 90 percent of the
customers have less than 400 purchases. Distribution of products in data X and Y are shown on
Figure 10 (a), where PX(p), PY (p) number of purchases of product p in the input (X) and output
(Y ) training data accordingly, p product index. Both of these distributions have long tail: 90 percent
of purchases are covered by 1000 products.

Figure 10: Distribution of products (a) and customers (b)

During evaluation we feed XY data to the models and produce output scores Ŷ . These scores
are sorted and the top K products are returned as recommendations. Before sorting, all previous
purchases (products belonging to data XY ) of the selected customer are removed from the recom-
mendations, so that only new products are recommended. These recommendations are compared
with future purchases (data Z) for accuracy calculation. We get testing input data XY and testing
output data Z by selecting customers who has at least two purchases in period of time dx . . . dyz and
at least one purchase in period of time dyz . . . dz. There are 921 customers who satisfy these condi-
tions. Purchases belonging to dates dx . . . dyz assigned to testing input data XY , and belonging to
dyz . . . dz assigned to testing output data Z. Accuracy metrics of predictor, soft split and fastXML
models are presented on Figure 11.

Figure 11: Accuracy metrics

Predictor model has the same PCC@K with soft split and lower precision@K. Both of these models
have higher accuracy metrics than fastXML. We observe similar difference in precision between
predictor model and fastXML on Figure. 3, but fastXML has higher PCC@K. These results can
be used only as an approximation of a performance on real implicit feedbacks (purchase history),
because in this section we were using ratings converted to implicit feedbacks.
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