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ABSTRACT

Unsupervised learning is an important tool that has received a significant amount
of attention for decades. Its goal is ‘unsupervised recovery,’ i.e., extracting salient
factors/properties from unlabeled data. Because of the challenges in defining
salient properties, recently, ‘contrastive disentanglement’ has gained popularity
to discover the additional variations that are enhanced in one dataset relative
to another. Existing formulations have devised a variety of losses for this task.
However, all present day methods exhibit two major shortcomings: (1) encodings
for data that does not exhibit salient factors are not pushed to carry no signal; and
(2) introduced losses are often hard to estimate and require additional trainable
parameters. We present a new formulation for contrastive disentanglement which
avoids both shortcomings by carefully formulating a probabilistic model and by
using non-parametric yet easily computable metrics. We show on four challenging
datasets that the proposed approach is able to better disentangle salient factors.

1 INTRODUCTION

Unsupervised machine learning requires to extract latent information from unlabeled data points.
For instance, given a dataset of digits we want data points to be grouped according to the depicted
number, e.g., by clustering into a set of groups. Many algorithms have been developed and commonly
their goal is ‘unsupervised recovery,’ i.e., to extract salient factors/properties from unlabeled data.

However, unsupervised recovery is inherently challenging because saliency of a fac-
tor/property/feature can be hard to define and in case of visual data, can depend on the viewpoint.
Recent work (Abid et al., 2017; Severson et al., 2018; Ruiz et al., 2019) has therefore advocated
for ‘contrastive disentanglement’: Given two sets of data without obvious correspondence between
their members, discover the additional variations that are enhanced in one dataset relative to another.
For instance, one dataset may depict grass while the other illustrates grass with digits overlaid. In
this case the digits are the additional variations/enhancements that need to be disentangled. This
contrastive setting is useful across many important applications in unsupervised learning, e.g., when
comparing to control groups or when disentangling variations from data.

For this contrastive setting a set of techniques have been proposed very recently to disentangle
variations (Abid et al., 2017; Severson et al., 2018; Ruiz et al., 2019). Common to all those techniques
is the idea that observed data is modeled as the linear or non-linear combination of two transformed
latent signals. For example, one latent signal enables reconstruction of one entangled dataset (e.g.,
grass dataset), while a second latent signal models the ‘additional variations’ of the second dataset
when compared to the first (e.g., the digits). Furthermore, these methods introduce additional
losses in order to better disentangle background factors from salient features. While those losses
were shown to improve results, they exhibit two key shortcomings: (1) the formulation ignores
information about the prior, i.e., the salient features of the background data should be zero; and
(2) additional KL-divergence-based losses which are hard to estimate in practice are introduced to
improve disentanglement. However, reasonably accurate estimation of those losses requires additional
trainable parameters, which increases the model size.

To fix those two shortcomings we instead propose two new losses for disentanglement. The first
actively encourages the salient factors to be zero if additional variations are not available. We show
that this loss originates from a careful probabilistic derivation of the disentanglement setting. The
second non-parametric loss encourages the background distributions to be identical. Different from
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Figure 1: Our VAE framework to achieve contrastive disentanglement. We propose the two new
losses LW2 and LC to improve disentanglement. Clustering in z space has overlapping clusters
because the common factors are encouraged to be distributionally similar. Clustering in the s space
has clearly distinct clusters representing target, background, and intra-target classes.

existing methods we propose to use a non-parametric loss which is easy to compute and does not
require additional trainable parameters.

We demonstrate our contributed loss functions on a variety of datasets as highlighted in Table 1.
We validate through a set of challenging qualitative and quantitative benchmarks that our first new
loss gives rise to a pair of disentangled latent features. Further, we empirically establish that our
second new loss encourages the common factors of the target and background data to have identical
distributions, while baseline losses do not exhibit a similar behavior.

2 BACKGROUND

In this section, we formally state the contrastive disentanglement objective and recall existing
approaches to address it as well as their shortcomings. Let {x(i)}ni=1 and {y(j)}mj=1 be two unlabelled
datasets with each x(i),y(j) ∈ Rd. We refer to {x(i)} as the target dataset, whereas {y(j)} is the
background dataset. We assume that the samples {x(i)} are drawn i.i.d. from a target distribution
pt(x), whereas {y(j)} are drawn i.i.d. from a background distribution pb(y). For example, in
the Grassy-MNIST dataset (detailed in Section 4), the target dataset {x(i)} is the set of images
with MNIST digits superimposing image patches showing grass, and the background set {y(j)} is
comprised of images showing only grass. The target dataset exhibits features that have commonality
with the features of the background data, e.g., grass, in addition to some unique interesting features
that are specific only to the target data, e.g., digits. Thus the primary objective in the contrastive
disentanglement setting is the following:

Goal: Contrastive disentanglement aims to extract a pair of disentangled latent features (s, z) such
that the salient feature s encodes the generative factors of interest, e.g., digits, that are enhanced in
{x(i)} relative to {y(j)}, whereas the background feature z explains the common sources of variation
in these two datasets, e.g., grass background.

A key aspect of this setting is that the salient feature s is constant across the background dataset
{y(j)} and is enhanced only in the target set {x(j)}. However, apart from the unlabelled datasets of
images, no additional information about these generative factors of interest, such as the background-
target pairs nor target images with a specific salient feature are provided. Thus the key challenge is to
exploit this implicit information inherent to the structure of the two datasets to learn disentangled
features. We now review some relevant approaches to learn these disentangled factors.

VAE. Given training samples generated from a single unknown distribution p(x), a variational auto-
encoder (VAE) models the joint distribution of the observation and the latent space through parametric
deep nets pθ(x, z). Hereby z is the lower dimensional latent vector and x is the high dimensional
observation, such as an image. The joint distribution factorize into pθ(x, z) = p(z)pθ(x|z), where
the prior p(z) is assumed to be a standard Gaussian and the conditional pθ(x|z) is assumed to
be parameterized by a deep net referred to as the ‘decoder.’ Since the posterior pθ(z|x) is hard
to compute, VAEs approximate this posterior with a parameterized deep net qφ(z|x), called the
‘encoder.’ In particular, qφ(z|x) too is assumed to be a factored Gaussian with mean and diagonal
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Figure 2: Latent variable model for target and background. Shaded circles represent observed
variables.

covariance determined by the encoder deep net. For training, the encoder and decoder parameters φ
and θ are learnt by minimizing the objective function L(θ,φ), given by

L(θ,φ) = Ep(x)[DKL(qφ(z|x) ‖ p(z))− Eqφ(z|x) log pθ(x|z)], (1)

where L(θ,φ) serves as an upper bound to the negative log-likelihood of the data.

This classical VAE framework for a single dataset can be extended to the contrastive setting which
involves multiple datasets (Ruiz et al., 2019; Abid & Zou, 2019). The main idea is that the samples
generated from the two unknown distributions, i.e., the target distribution pt(x) and the background
distribution pb(y), can be captured by a pair of independent generative latent factors (z, s). Here z
is thought of as a ‘common’ factor that captures variations in samples from both the distributions,
whereas s is the ‘salient’ factor that encodes generative factors of interest that are unique only to
the target samples. Thus the generative model for the target dataset is modeled by a conditional
Gaussian distribution, i.e., xi ∼ pθ(x|zi, si), where θ denotes the set of decoder parameters. Since
the common factor z alone encodes the background dataset, we model it as yj ∼ pθ(y|zj , sj = 0),
where we set the constant salient factor to zero, without loss of generality. Further, similar to the VAE
setup above, we approximate the posteriors over the latent features by a factored conditional Gaussian
distribution, i.e., (zi, si)|xi ∼ qφ(z|xi)qφ(s|xi) and (zj , sj)|yj ∼ qφ(z|yj)qφ(s|yj), where φ
denotes the set of encoder parameters which capture and the mean and diagonal variances of these
approximate posterior distributions. Note that both datasets share the same encoder and decoder.

Another key component of the generative model is the latent prior. Since both of the indepen-
dent latent factors z and s encode the target samples, we define the target latent prior pt(z, s)
as pt(z, s) , pt(z)pt(s) = N (z;0, Idz ) · N (s;0, Ids), where N (z;0, Idz ) denotes a standard
Gaussian distribution in dz-dimensional Euclidean space, and N (s;0, Ids) is defined similarly. Fur-
thermore, to accommodate the special structure of the contrastive disentanglement setting, i.e., the
background {y(j)} is captured by z alone with s being a constant, we define the background latent
prior pb(z, s) as

pb(z, s) , pb(z)pb(s) = N (z;0, Idz ) · δ{s = 0}, (2)

where δ{s = 0} denotes the Dirac distribution centred at zero. Figure 2 illustrates this latent variable
model. Using this latent variable model setup, Ruiz et al. (2019) and Abid & Zou (2019) derive the
following loss LVAE as an upper bound for the sum of negative log-likelihood of both the datasets:

LVAE = Ept(x)[DKL(qφ(z|x)qφ(s|x) ‖ pt(z)pt(s))− Eqφ(z|x)qφ(s|x) log pθ(x|z, s)]+
Epb(y)[DKL(qφ(z|y) ‖ pb(z))− Eqφ(z|y) log pθ(y|z, s = 0)].

(3)

This classical VAE loss LVAE defined above is the basis for cVAE and sRbVAE which we discuss
below. However, we already want to highlight an important observation regarding the loss in Eq. (3):
by using the above latent variable model for the contrastive setup and plugging them in Eq. (1), the
actual combined negative log-likelihood is bounded by a loss that contains a crucial KL divergence
term between the posterior qφ(s|y) and the Dirac latent prior pb(s) = δ{s = 0} in addition to the
LVAE defined above. We elaborate on this further in Section 3.

cVAE. In a recent work, Abid & Zou (2019) introduced the Contrastive Variational Auto Encoder
(cVAE) for learning disentangled latent features. In particular, they consider the same latent variable
model setup as above. In addition, to further encourage the disentanglement between the latent factors
z and s, they add the following total correlation (TC) term to above objective in Eq. (3):

LTC = Ep(x)[DKL(q̄ ‖ qφ(z|x)qφ(s|x))],

where q̄ , qφ(z, s|xi) denotes the joint conditional probability of the latent features. The overall
objective for the cVAE framework is thus given by:

min
(θ,φ)

LcVAE , LVAE + λ · LTC, (4)
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where λ > 0 is a hyperparameter.

sRb-VAE. Recently, Ruiz et al. (2019) introduced the Symmetric Reference-based Variational Auto
Encoder (sRb-VAE) for learning the disentangled features (s, z). Utilizing the fact that minimizing
the loss LVAE in Eq. (3) is equivalent to minimizing the KL divergence over the joint distributions
DKL(qφ(x, z, s, c) ‖ pθ(x, z, s, c)), where c ∈ {0, 1} indicates if x is either from the background
or target dataset, the authors add an additional KL divergence term to make the overall objective
symmetric, i.e.,

min
(θ,φ)

LsRb-VAE , LVAE +DKL(pθ(x, z, s, c) ‖ qφ(x, z, s, c)). (5)

Note that the distribution qφ(x, z, s, c) is defined as qφ(x, z, s, c) , p(c)p(x|c)qφ(z|x)qφ(s|x)
where p(c = 0) = p(c = 1) = 1/2 and p(x|c = 1) = pt(x), and p(x|c = 0) = pb(x) denotes the
target and background distributions respectively. Similarly, pθ(x, z, s, c) , p(c)p(z, s|c)pθ(x|z, s),
where p(z, s|c = 1) = pt(z, s) and p(z, s|c = 0) = pb(z, s) denote the target and background
latent priors.

Shortcomings: Since both cVAE and sRb-VAE build upon the VAE framework, their losses involve
the same LVAE defined in Eq. (3). However, this VAE loss is not completely reflective of the
assumptions about the background latent prior pb(z, s) defined in Eq. (2). In particular, due to the
absence of the KL divergence term DKL(qφ(s|y) ‖ δ{s = 0}) in Eq. (3), the existing objective
LVAE does not enforce the salient latent feature s to be zero for the background dataset, which is
contrary to our modeling assumptions. Intuitively, by more strictly encouraging the salient latent
feature to be zero, we will prevent information from being encoded in this vector. In addition,
to encouraging disentanglement, both aforementioned approaches add new KL divergence based
losses to the standard objective. However these new divergence terms involve estimation of ratios of
densities which are quite hard to approximate. Hence they utilize the classical trick of discriminator
neural nets (Kim & Mnih, 2018). This makes the overall training procedure more complex since this
discriminator should approximate this ratio at each training step of the encoder parameters (θ,φ).
This also increases the number of trainable parameters together with an added difficulty of finding the
right discriminator architecture to estimate this ratio. In contrast, in this paper, we provide a simple
and principled approach to promote disentanglement that performs at least as good as both of these
methods on a variety of datasets (see Section 4). In addition, our architectural complexity is identical
to a classical VAE as opposed to the complex architectures of existing approaches.

3 APPROACH

In this section, we address the aforementioned shortcomings and present our novel approach towards
the desired goal of contrastive disentanglement. In particular, we introduce two novel loss terms
that are reflective of the structure inherent to the contrastive setting and that help attain disentangled
representations. Whereas the first loss term enforces the information about the common background
features to be encoded in z alone, the second loss term encourages the distribution of the common
factors to be the same across both the datasets. Figure 1 illustrates our approach. We now discuss
details about each of these loss terms below.

3.1 CORRECT VAE LOSS

To gain intuition for our approach, recall the central aim of contrastive disentanglement: (1) encode
information about the common features within both datasets in the common factor z alone; and
(2) encode salient features of interest, that are unique to the target samples, in just s. While this is
incorporated in the background and target latent priors, the classical VAE loss LVAE given in Eq. (3),
and used by Abid & Zou (2019); Ruiz et al. (2019), does not capitalize on this. To see this, note that
while the reconstruction error term Eqφ(z|y) log pθ(y|z, s = 0) enforces the decoder to reconstruct
the background image y from just z with s being zero, the KL divergence lossDKL(qφ(z|y) ‖ pb(z))
does not enforce the information about the background to be encoded in only z since it does not
penalize any leakage of the background features into the salient feature s. To address this issue in a
principled manner, we propose to add a new loss term that exploits the background latent prior from
Eq. (2) and that achieves our desired goal of disentangled representations.

We now derive our new loss mathematically. Denoting the respective negative log-likelihoods
of the background and target data as L(pθ(y)) , Epb(y)[− log pθ(y)] and L(pθ(x)) ,
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Ept(x)[− log pθ(x)], we obtain from the latent variable model setup in Section 2 that

L(pθ(x)) ≤ Ept(x)[DKL(qφ(z|x)qφ(s|x) ‖ pt(z)pt(s))− Eqφ(z|x)qφ(s|x) log pθ(x|z, s)],
and

L(pθ(y)) ≤ Ep(y)

[
DKL(qφ(z|y)qφ(s|y) ‖ pb(z)pb(s))− Eqφ(z|y)qφ(s|y) log pθ(y|z,0)

]
= Ep(y)[DKL(qφ(s|y) ‖ δ{s = 0})]

+ Ep(y)

[
DKL(qφ(z|y) ‖ pb(z))− Eqφ(z|y) log pθ(y|z,0)

]
= Epb(y)[1(0,0)((µφ,s(y),σφ,s(y)))]

+ Ep(y)

[
DKL(qφ(z|y) ‖ pb(z))− Eqφ(z|y) log pθ(y|z,0)

]
,

where the last equality follows from Lemma 1, and 1c(x) = 0 if x = c and∞ otherwise, for some
fixed constant c, and (µφ,s(y),σφ,s(y)) denotes the mean-variance output pair of the encoder for
salient feature s. Thus adding the bounds for both the target and background distributions, we obtain

L(pθ(x)) + L(pθ(y)) ≤ Epb(y)[1{(0,0)}((µφ(y),µσ(y)))] + LVAE , Lc + LVAE. (6)

We now define the upper bound in Eq. (6) as our new VAE loss, i.e.,

L
(ours)
VAE , Epb(y)[1{(0,0)}((µφ,s(y),σφ,s(y)))] + LVAE. (7)

Note that our indicator term above strictly enforces the salient feature s to be zero for the background
dataset. This directly reflects the problem structure of contrastive disentanglement. In particular,
this constrains the encoder to encode the background information in the common factor z alone,
encouraging contrastive disentanglement. We empirically validate this claim in Section 4.1 and
show that our new loss L(ours)

VAE outperforms the existing approaches on a variety of datasets and
benchmarks. Since the indicator loss is non-differentiable, for the sake of implementational ease, we
approximate it by a quadratic loss E[‖µφ,s(y)‖2 + ‖σφ,s(y)‖2]. In fact, this loss term is motivated
by the following fact (which follows from Lemma 2) that

W 2
2 (qφ(s|y), δ{s = 0}) = ‖µφ,s(y)‖2 + ‖σφ,s(y)‖2,

where W 2
2 (·, ·) denotes the second-order Wasserstein squared distance. Hence in view of the above

equation, our Wasserstein distance based quadratic regularizer acts a differentiable surrogate to the
non-differentiable KL divergence term (which is exactly the indicator term) in Eq. (7) above.

3.2 WASSERSTEIN LOSS FOR DISTRIBUTIONAL SIMILARITY

In the above section, we discussed why the new loss L(ours)
VAE is able to achieve better disentangled

representations than current state-of-the-art approaches. In addition to obtaining a disentangled set of
latent features (z, s), an equally important and additional core goal of contrastive disentanglement
is that the distribution of the common factor z remain identical across both datasets. However,
experiments in Section 4.2 indicate that our proposed L(ours)

VAE loss as well as losses of existing
frameworks do not meet this criterion. While the assumption of the same latent prior for the common
factor across both datasets, i.e., pb(z) = pt(z), and sharing of the encoder architecture for both
datasets implicitly enforce this desired requirement, empirical evidence suggests that current losses do
not strictly enforce it. This motivates to define a new loss L(ours)

W2,VAE that addresses this distributional
mismatch via

L
(ours)
W2,VAE , L

(ours)
VAE + λz ·W 2

2 (q̂φ,t(z), q̂φ,b(z)), λz > 0, (8)

where q̂φ,t(z) = (1/B)
∑B
i=1 δ{z = z

(t)
i } denotes the empirical marginal distribution of the com-

mon factors z(t)
i for the target data, q̂φ,b(z) is defined similarly for the background data, B > 0 is

the batch size, and λz > 0 is a hyperparameter. Here W 2
2 (·, ·) denotes the second-order squared

Wasserstein distance, defined as

LW2
(φ) ,W 2

2 (q̂φ,t(z), q̂φ,b(z)) = inf
T∈Π([B],[B])

∑
i,j

TijCij , Cij = ‖z(t)
i − z

(b)
j ‖22, (9)

where [B] , {1, . . . , B}, Π([B], [B]) denotes all joint probability distributions on [B]× [B] whose
first and second marginals are both uniform distributions on [B], i.e., Π([B], [B]) = {T ∈ RB×B+ :

T1B = (1/B)1B , T
>1B = (1/B)1B}, and 1B is the vector of all ones with size B.
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Dataset Method
Target Clustering LW2

zx sx (Lower
(Lower is better) (Higher is better) is
CA(%) SS CA(%) SS better)

cVAE 12.59 0.18 89.02 0.46 8.91
sRb-VAE 64.94 0.40 65.14 0.43 12.34

Ours (Eq. (7)) 12.43 0.19 91.23 0.52 8.88L MNIST

Ours (Eq. (8)) 11.91 0.04 92.17 0.55 4.60
cVAE 26.61 0.27 26.89 0.28 9.04

sRb-VAE 22.60 0.16 23.42 0.16 38.12
Ours (Eq. (7)) 16.36 0.13 29.44 0.12 9.02NL MNIST

Ours (Eq. (8)) 17.56 0.19 32.37 0.16 4.69
cVAE 52.06 0.35 60.01 0.39 38.26

sRb-VAE 55.12 0.34 56.17 0.36 43.87
Ours (Eq. (7)) 51.53 0.31 59.97 0.38 35.51CelebA

Ours (Eq. (8)) 55.05 0.34 64.55 0.42 11.07
cVAE 19.02 0.17 17.75 0.15 35.76

sRb-VAE 18.31 0.15 19.85 0.15 41.34
Ours (Eq. (7)) 18.16 0.14 19.06 0.16 30.04Affectnet

Ours (Eq. (8)) 16.06 0.14 22.66 0.18 10.11

Table 1: Comparison of our methods to baselines cVAE (Eq. (4)) and sRb-VAE (Eq. (5)) evaluated
on metrics CA (clustering accuracy (%)) and SS (silhouette score). Lower CA and SS on z are
better, meaning that the common latent vectors are indistinguishable. Ideal CA using z are 10% on
L MNIST and NL MNIST, 50% on CelebA, and 11.11% on Affectnet. Lower LW2

is better, which
means that zx and zy are distributionally similar.

Intuitively, this Wasserstein loss term LW2 gauges similarity of the common factors of both datasets
and penalizes any distributional mismatch. This loss also ensures that the relevant target signal is
encoded solely in the salient latent feature s. Indeed, in Section 4.2 we empirically verify this claim
and establish that across a variety of datasets our new loss L(ours)

W2,VAE outpeforms existing approaches.

This Wasserstein loss has two major advantages over the KL divergence loss terms used by previous
works: (1) both the loss as well as its gradients can be efficiently computed; and (2) this new loss
does not require any additional trainable parameters whereas estimation of the KL divergence often
requires a discriminator net, since its direct estimation from samples is hard to compute (Kim &
Mnih, 2018). To compute the gradients for LW2

, since the objective is linear in Eq. (9), it follows
from Danskin’s theorem (Danskin, 2012) that∇φLW2 =

∑
i,j T

∗
ij∇φCij , where T ∗ is the optimal

probability matrix in Eq. (9). We compute the optimal matrix T ∗ by using the Python Optimal
Transport library (Flamary & Courty, 2017) which uses an efficient linear programming solver from
Bonneel et al. (2011).

4 EXPERIMENTS

In this section, we empirically show that our novel losses L(ours)
VAE and L(ours)

W2,VAE, defined in Eq. (7) and
Eq. (8) respectively, perform better than the current state-of-the-art methods on a variety of datasets
as highlighted in Table 1. In particular, in Section 4.1, we validate through a set of qualitative and
quantitative benchmarks that the correct VAE loss L(ours)

VAE gives rise to a pair of disentangled latent
features as opposed to the existing approaches (also highlighted in Figure 5). Further, in Section 4.2,
we empirically establish that our L(ours)

W2,VAE loss constrains the target and background common factors
to have identical distributions, while the previous losses do not exhibit similar behavior. For the sake
of brevity, in this section, we refer to L(ours)

VAE as ‘Ours (Eq. (7))’ and L(ours)
W2,VAE as ‘Ours (Eq. (8))’.

Datasets

Linear and NonLinear Grassy MNIST. We construct 2 synthetic datasets with signal and back-
ground images linearly and non-linearly combined respectively. The Linear Grassy MNIST dataset
(L-MNIST) is constructed following Abid & Zou (2019). The background category {y(i)} consists
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L MNIST NL MNIST CelebA Affectnet
Figure 3: Datasets. Top and bottom rows represent the background and the target respectively.

−100 −75 −50 −25 0 25 50 75 100

−75

−50

−25

0

25

50

75

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

−100 −75 −50 −25 0 25 50 75 100

−75

−50

−25

0

25

50

75

100

−100 −75 −50 −25 0 25 50 75 100

−75

−50

−25

0

25

50

75

sRbVAE cVAE Ours (Eq. (7)) Ours (Eq. (8))
Figure 4: Unsupervised recovery of salient features on the Linear Grassy MNIST dataset. Teal circles
represent s component of grass. Other smaller clusters with multiple colors represent digits 0 to 9.

of randomly cropped 28 × 28 sized image patches from the grass category of ImageNet (Deng
et al., 2009). To construct the target set {x(i)} we choose images of digits from 0 to 9 from
the MNIST dataset (LeCun et al., 1998) and linearly combine them with random grass images
from the background. To construct the non-linear Grassy MNIST dataset (NL- MNIST), we use a
thresholding operation before superimposing the MNIST digits with background patches y(i), i.e.,
x(i)[u, v, c] = I[y(i)[u, v, c] > 0.3](ρy(i)[u, v, c] + (1 − ρ)t(i)[u, v]), where ρ = 0.5, t(i) denotes
the ith pixel of the MNIST digit image t , and I = 1 if y(i)[u, v, c] > 0.3 and 0 otherwise. Here u
and v denote the respective row and column pixel indices of the image and c is the channel index.
We observe NL-MNIST to be a very challenging dataset on which the state of the art methods perform
poorly. Clean class labels are available for evaluation, unlike other non-linear and challenging datasets
like the CelebA (Liu et al., 2018) and Affectnet (Ruiz et al., 2019) data, which can often have noisy
labels. Besides, we can control the non-linearity of this dataset by changing the threshold value. Even
though the target samples {x(i)} are generated using samples from y(i), we do not have access to
these pairs (x(i),y(i)) during training. In Figure 3 we show samples from both datasets.

CelebA. We create the target and the background sets using the CelebA dataset (Liu et al., 2018) as
described by Abid & Zou (2019). To form the target dataset, we use a subset of the CelebA (Liu et al.,
2018), namely, faces with caps and eyeglasses. The remaining categories are shuffled and samples
are randomly picked as background images.

AffectNet. We use this challenging dataset for disentanglement of facial expressions. To form the
background, we use faces with neutral expressions as described by Ruiz et al. (2019). The target
set is constructed with faces expressing some emotions, namely, happiness, sadness, surprise, fear,
disgust, anger and contempt. These expressions become the salient features.

Evaluation Metrics

Clustering Accuracy and Silhouette Score. To empirically evaluate that the learned salient features
sx of the target dataset correspond to the ground truth class labels, we use the silhouette score (SS)
and clustering accuracy as our metrics. For both the metrics, first we perform t-SNE (Maaten &
Hinton, 2008) on the target salient features to embed them in a two dimensional latent space and
cluster them using the standard k-means. The clustering accuracy computes the proportion of the
samples whose class labels align with the ground-truth labels. The SS metric gauges the similarity
between the clustering labels and the ground-truth class labels by comparing the intra-cluster distances
to inter-cluster distances. The SS score takes values between −1 to 1. The higher the score, the
stronger the correspondence between the cluster labels and the class labels. Furthermore, to verify
that the common factors zx of the target dataset don’t encode salient features, we cluster the common
factors using the same procedure as above and empirically validate whether the clustering accuracy
and the silhouette score are close to that of a random label assignment. For example, for Grassy
MNIST, allotment of random labels (MNIST digit values) would achieve 10% accuracy.

Wasserstein loss between common factors. We use the Wasserstein loss LW2
defined in Eq. (9)

to measure the similarity between the empirical distributions of the target common factors and the
background common factors respectively. The closer it is to zero, the larger the similarity.
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Figure 5: Disentanglement of different methods. Rows from top to bottom represent target images
x from the L-MNIST dataset, decoded images from passing (z, s), (z, 0), and (0, s) through the
decoder respectively. Note that the latent vector (z, s) is obtained after the forward pass of the target
image x through the encoder.
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Figure 6: (a) LW2

loss across training. Ours (Eq. (8)) optimizes over LW2
(red plot) and hence has a

very low LW2
value after 200 epochs. (b) Clustering accuracies over λz influencing LW2

for Linear
MNIST. λz = 1 achieves the best value across multiple trials.

Affectnet metric: Classification. In addition, we also use classification accuracy to gauge the
correspondence between the salient latent feature and the ground-truth class label. In particular, we
train a shallow classifier with the latent feature and the respective class label as the input-output
training samples and report the classification accuracy of this trained model.

4.1 CORRECT VAE LOSS

This section empirically demonstrates that our correct VAE loss L(ours)
VAE significantly improves

disentanglement over that of cVAE and sRb-VAE. Quantitatively, in Table 1, we conduct a thorough
comparison of our approach to prior work across all the aforementioned datasets. We observe that
the correct VAE loss is able to consistently obtain better disentangled features as reflected in the
clustering accuracies of both the salient features sx and the common features zx. Qualitatively, in
Figure 4, for the L-MNIST dataset, the salient features of the target and background samples, i.e., sx
and sy , are embedded in a two dimensional latent space using tSNE and then clustered using k-means.
Note that sy is expected to be close to zero, whereas sx is supposed to encode the information
about the MNIST digits. As shown in Figure 4, clusters obtained through our loss are well separated
compared to that of both cVAE and sRb-VAE. Indeed, we achieve a clustering accuracy of 91% on
the L-MNIST dataset over all the 10 digit classes, while cVAE and sRb-VAE attain accuracies of
89% and 65% respectively. Figure 5 further illustrates that the target common factors zx and the
salient factors sx, obtained with cVAE and sRb-VAE, contain information about the salient features
and the background features respectively. This is contrary to the goal of contrastive disentanglement.
Instead, our reconstructed samples show no leakage of information.
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L MNIST NL MNIST CelebA Affectnet
Figure 7: Reconstruction results with Ours (Eq. (8)). The rows from top represent the background
images from the dataset, reconstructed background, target images from the dataset, and reconstructed
target images respectively.

L MNIST CelebA
Figure 8: Interpolation results. Interpolating from s1 to s2 along the diagonal, keeping z1 fixed. Top
left: [z1, s1] decoded. Bottom Right [z1, s2] decoded.

4.2 LW2 LOSS

In the earlier section, we empirically demonstrated that the correct VAE loss is able to obtain better
disentangled representations than the baselines. However, as highlighted in Figure 6, all these losses
do not enforce the distributions of the common factors across the target and background datasets to
be identical. This is illustrated by a high Wasserstein loss (also shown in Table 1). Instead, in the
presence of our new loss L(ours)

W2,VAE, we observe that the corresponding loss values reduce considerably.
This is highlighted in Figure 6 for the L-MNIST dataset and in Table 1 across all the datasets. In
addition, we also observe in Table 1 that encouraging the distribution of the common factors to
be identical across both datasets via L(ours)

W2,VAE further enhances the disentanglement between the
common and the salient features. This is shown via the higher clustering accuracies compared to
baselines. Intuitively, enforcing the common factors to have the same distribution implicitly constrains
the unique features of the target dataset to be encoded in the salient features alone. This phenomenon
is also illustrated in Figure 5. We found the hyperparameter choice λz = 1 to perform best across all
datasets. Figure 6 (right) shows the clustering accuracies of digits for L-MNIST as we vary λz .

Figure 7 shows some reconstruction results of the background and target images on different datasets,
obtained from the approach described in this section. Figure 8 shows the results obtained by
interpolating 2 classes of the target salient factors in 2 dimensions. This is performed on the L MNIST
and CelebA datasets.

5 RELATED WORK

Unsupervised contrastive analysis has been proposed very recently in work by Abid et al. (2017)
and Severson et al. (2018). Inspired by the principal component analysis (PCA), Abid et al. (2017)
describe ‘contrastive PCA’ (cPCA), a model which discovers low-dimensional structure that uniquely
characterizes a dataset compared to another. The approach linearly transforms latent representations

9



Under review as a conference paper at ICLR 2020

Happiness Sadness Surprise Fear Disgust Anger Contempt

DIP-VAE-II 0.548 0.245 0.401 0.389 0.268 0.391 0.463
sVAE 0.583 0.251 0.389 0.349 0.260 0.391 0.469

β-TCVAE 0.563 0.277 0.393 0.349 0.256 0.427 0.467
RbVAE 0.536 0.393 0.379 0.311 0.320 0.383 0.421
sRbVAE 0.587 0.405 0.387 0.327 0.344 0.425 0.483

Ours(Eq. (7)) 0.575 0.488 0.389 0.365 0.356 0.395 0.501
Ours(Eq. (8)) 0.579 0.491 0.401 0.374 0.358 0.398 0.506

Table 2: Affectnet (Ruiz et al., 2019). Per class classification accuracy on each class of emotions.

which are also linearly combined. To obtain more expressive transformations kernels have also
been investigated (Abid et al., 2017). Since linearity restricts expressiveness of the model, in more
recent work, Severson et al. (2018) introduce ‘contrastive latent variable models’ which permit to
non-linearly transform the latent representation. Importantly, contrastive latent variable models still
combine transformations linearly.

Disentangling of representations (Bengio et al., 2013) has also been investigated in the computer vision
community. Recently, a variety of approaches like β-VAE (Higgins et al., 2016), DIP-VAE (Kumar
et al., 2018), FactorVAE (Kim & Mnih, 2018) or β-TCVAE (Chen et al., 2018) have been discussed.
Generally those techniques operate on a single dataset with the goal to extract latent factors.

Also related is work on reference-based variational auto-encoders (Rb-VAEs) (Ruiz et al., 2018),
where reference-based disentangling is introduced. A model is carefully analyzed and the resulting
cost function is, augmented via a reverse KL-distribution to disentangle factors between two datasets.

In contrast, to the aforementioned methods we develop a model that disentangles factors without the
need for any heuristics. To this end we introduce two losses. The first loss encourages the encoded
background data representation to avoid any signal in the salient feature. The second loss encourages
the non-salient probability distributions to be identical for both the background and the target set.
Both losses combined help us accurately disentangle salient representations.

Canonical correlation analysis (CCA) (Hotelling, 1936) and its probabilistic counterpart
(PCCA) (Bach & Jordan, 2005) also operate on at least two sets of data. However, both require the
datasets to be paired. This is also true for the non-linear extensions, e.g., the one based on Gaussian
processes (Damianou et al., 2016).

Dimensionality reductions techniques like t-SNE (Maaten & Hinton, 2008) and multi-dimensional
scaling (MDS) (Cox & Cox, 2000) are related in that they recover non-linear data projections. Yet,
they are designed to explore one dataset at a time. Consequently, for a contrastive analysis, those
approaches are applied on each dataset separately and a manual comparison is subsequently required
to uncover similarities and differences.

Statistical test, e.g., two-sample t-test, Fisher’s discriminant analysis, Wilcoxon signed-rank test,
Mann-Whitney U-test, identify differences between two datasets given features. Albeit uncovering
feature differences, none of those approaches are developed to find differentiating features.

6 CONCLUSION

In this paper we present two principled losses for variational autoencoder based models which
address contrastive disentanglement, i.e., extracting the salient features that enhance one dataset
(target) compared to another (background). Our first loss explicitly discourages expression of salient
features for the background data and is derived from classical variational principles. The second loss
encourages background features to be identical for both target and background data. In extensive
experiments on a variety of datasets we showed the benefits of the two introduced losses.
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A APPENDIX

Lemma 1. Let P = N (s;µ,σ2) be a Gaussian distribution with mean µ and diagonal covariance
σ2, and Q = δ{s = 0} be a Dirac distribution centred at zero. Then

DKL(P ‖ Q) = 1(0,0)((µ,σ)),

where 1(0,0)((µ,σ)) = 0, if (µ,σ) = (0,0), and∞ otherwise.

Proof. By definition, we know thatDKL(P ‖ Q) = EP [log P (s)
Q(s) ] if P � Q and∞ otherwise. Since

P is a Gaussian and Q is a Dirac, we have that P � Q if and only if (µ,σ) = (0,0). Hence the
claim follows.

Lemma 2. Let P = N (s;µ,σ2) be a Gaussian distribution with mean µ and diagonal covariance
σ2, and Q = δ{s = 0} be a Dirac distribution centred at zero. Then

W 2
2 (P,Q) = ‖µ‖2 + ‖σ‖2.

Proof. Note that W 2
2 (P,Q) is defined as

W 2
2 (P,Q) = inf

PX,Y :PX=P,PY =Q
E‖X − Y ‖2,

where the infimum is over all joint probability distributions PX,Y such that X has the marginal P ,
whereas Y follows Q. Since P is a Gaussian distribution, which is absolutely continuous with respect
to Lebesgue measure in Rd, it follows from Theorem 2.12 of Villani (2003) that

W 2
2 (P,Q) = inf

T :T#P=Q
EX∼P ‖X − T (X)‖2,

where T#P = Q denotes that the pushforward of probability measure P under the map T : Rd → Rd
is Q. Or equivalently, T (X) ∼ Q whenever X ∼ P . Since Q is a Dirac mass at zero, it follows
that the only such feasible transport map is given by T (x) = 0,∀x ∈ Rd. Hence, W 2

2 (P,Q) =
EX∼P ‖X‖2 = ‖µ‖2 + ‖σ‖2.

A.1 DATASET DESCRIPTION

Linear and NonLinear Grassy MNIST

For the background dataset {y(j)}, we randomly crop 28× 28 sized image patches from the grass
category of the ImageNet dataset (Deng et al., 2009). We use a total of 4986 grass patches to construct
this dataset. We construct the target dataset {x(i)} in the following way: We choose 4986 samples
for each digit from 0 to 9 using the MNIST dataset. We use 4986 samples because it corresponds to
the lowest number of occurrences for a digit (digit 4). Each of these digits are then superimposed
on random grass images from the background dataset. The superimposition is a linear operation
described by

x(i) = ρy(i) + (1− ρ)t(i), (10)

where t(i) is a random MNIST image and ρ = 0.5. Even though the samples {x(i)} are generated
from y(i) according to Eq. (10), we do not have access to these pairs (x(i), y(i)) during training.

To construct the non-linear dataset, we use a thresholding operation before superimposing the MNIST
digits on y(i), i.e.

x(i)[u, v, c] = I[y(i)[u, v, c] > 0.3](ρy(i)[u, v, c] + (1− ρ)t(i)[u, v]) (11)

where t(i) is a random MNIST image, ρ = 0.5, I denotes the indicator function, u, v denote the row
and column pixel indices of the image and c is the channel number.

CelebA
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We form the target and the background sets using the CelebA dataset (Liu et al., 2018) as described
by Abid & Zou (2019). To form the target dataset, we use a subset of the CelebA (Liu et al., 2018),
namely, faces with caps and eyeglasses. For each class, we take 5000 samples. The remaining
categories are shuffled and 10, 000 samples are randomly picked as background images. Each image
from the target and background is cropped into 64× 64 patches.

AffectNet

Use this challenging dataset for disentanglement of facial expressions. Background: faces with
neutral expressions. Target: Faces with other expressions, namely happy, sad, surprised, fearful,
disgust, angry and contemptuous. Labels only for qualtitative evaluation. (collected from affectnet
cite, adria cite) Aligned and cropped (cite adria). 96× 96

A.2 SOME RECONSTRUCTION AND INTERPOLATION RESULTS

Figure 9 shows the reconstructed results across the different datasets. From top, the rows represent
background images, reconstructed background, target images and reconstructed target respectively.
Figure 10 shows results by interpolating salient features of target across 2 dimensions. The common
factors are kept constant

A.3 ARCHITECTURAL CHOICES

We use a 6 layer architecture for our model to test it on the Linear and Non-Linear Grassy MNIST
dataset. The encoder consists of 5 convolutional layers and 1 fully connected layer. LeakyReLU acti-
vation function is used as the non-linearity and channel normalization is used after each convolutional
layers. The decoder consists of 1 fully connected and 5 transposed convolutional layers. We use
the LeakyReLU activation for the initial layers and the sigmoid function for the last layer. We use a
batch size of 128, a learning rate of 10−3 and Adam optimizer (Kingma & Ba, 2014). We performed
all the experiments using an 16 dimensional latent space to capture the grass and a 8 dimensional
space to capture digits, i.e., zb ∈ R8, zt ∈ R4. The weight on the KLD term in the VAE loss is β = 2
(Higgins et al., 2017).

We adopt a 8 layer architecture for our model to be consistent with (Abid & Zou, 2019) for evaluation
on CelebA dataset. We performed all the experiments using an 16 dimensional latent space to capture
the background faces and a 6 dimensional space to capture target variations, namely eyeglasses or
caps.

For Affectnet, we use a 8 layer architecture for our model to be consistent with (Ruiz et al., 2019).
We tale equal number of target images (5000) per class performed all the experiments using an 32
dimensional latent space to capture the background faces and a 32 dimensional space to capture target
variations, namely eyeglasses or caps.

A.4 ADDITIONAL EXPERIMENTS

We have performed additional experiments with varied sample sizes and found that our methods still
consistently outperform the existing approach from Ruiz et al. (2019) across a variety of sample
sizes. Figure 11 shows the results of this experiment. The experimental details are as follows: In
our experiments, we found that Ruiz et al. (2019) performs the best among all the other baselines
as seen from Table 1 of our paper, hence we consider Ruiz et al. (2019) to be our baseline. With
regards to varied sample sizes, for the target dataset containing MNIST linearly superimposed on
grass (L-MNIST), we chose the number of samples from each digit class to be 1000, 2500 and 4986.
Similarly, for the background dataset of just grass images, the total number of samples are 4986,
2500 and 1000 respectively.

13



Under review as a conference paper at ICLR 2020

(a)

(b)

(c)

(d)

Figure 9: Reconstruction results across different datasets. (a) L MNIST, (b) NL MNIST, (c) CelebA,
(d) Affectnet
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(a)

Figure 10: 2D Interpolation on L MNIST
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Figure 11: Clustering Accuracy(%) versus sample sizes for cVAE (Ruiz et al., 2019) and for our
approach (Eqn 8)
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