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Abstract

We reproduced findings of the original paper that proposed an algorithm for mul-
titask learning by combining the successor representation with task evaluation
through non-parametric inference over various domains.

1 Introduction

Madarasz (2019) [7] introduces a framework that focuses on combining generalized abstractions
and transfer learning into reinforcement learning (RL) agents through successor representations
(SR) with memory-based approaches. They propose to formulate this learning system based on
neurobiologically grounded phenomena that parallel predictive representations, which have been
found in the amygdala and hippocampus [3, 6], along with observations clustering of experiences
into latent features [5]. Their work aims to balance these core ideas into compressed, SR maps that
efficiently process experiences within sequential decision making.

The proposed algorithm, Bayesian Successor Representation (BSR), was tested on several reward
changing domains where they showed that BSR outperforms previous methods such as single SR
(SSR), GPI (SFQL) [2], and an agent that knew the quadrant of the goal within the domain (KQ). In
this work1, we implemented SSR and BSR agents in tabular grid-world navigation tasks to reproduce
Fig. 2a and 2c from Madarasz (2019) [7] in Python (v3.7.5) with the support of simple_rl [1].

2 Methods

2.1 Single Successor Representation

Model A Markov Decision Process (MDP) can be formally represented as a tuple (S,A,R, T, γ),
where S is a set of states, A is the action space, R is the reward function, T is the transition
probabilities that describes state transition dynamics, and γ ∈ (0, 1] is the discount factor [8]. For the
specific transfer learning problem, where the reward function changes, we consider MDPs where the
reward locations are determined by some stochastic process. In the tabular setting, the proposed SSR
framework [4] computes SR maps M of expected discount sums over future state occupancies, where
the rewards are linear in the state representation φ(s) of state s ∈ S, given a policy π at discrete time
steps t (Eq. 1):

Mt(s, a, ·) = E

[ ∞∑
k=0

γk · φ (st+k+1)

∣∣∣∣st = s, at = a

]
(1)

1Code can be found in src at https://github.com/attraylor/reproducing_bsr
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Given the current reward weights w that satisfy φ (s′) for next state s′ ∈ S then the action-value
function Q(s, a) for current action a ∈ A(s) is represented as (Eq. 2):

Qt(s, a) =
∑
s′

Mt (s, a, s
′) ·ws′ (2)

Furthermore, the following Bellman updates can be applied (Eq. 3,4):

Mt+1 (st, at, ·)←Mt (st, at, ·) + α
(
φ (st+1) + γ ·Mt

(
st+1, a

∗
t+1, ·

)
−Mt (st, at, ·)

)
(3)

a∗t+1 = max
at+1

[Mt (st+1, at+1, ·) ·w] (4)

Implementation As SSR is one component of the more complex BSR algorithm, we first ensured
its reproduciblility. This code then served as a skeleton for implementing the BSR algorithm to isolate
any difficulty in BSR’s reproduction from issues in the SSR. Using the simple_rl framework, we
created a new successor map agent (agents/SuccessorMapAgentClass.py), which tracked both
the discounted visits of future states given a state-action as described (Eq. 1) and updated (Eq. 3,4) in
the paper. The agent also tracked the immediate reward received at each state, represented by the
vector w. For each experience transition and reward received from its actions, < s, a, r, s′ >, the
agent updated w as follows (Eq. 5):

w ← w + αw

[
r − φ(s′)Tw

]
φ(s′) (5)

More simply expressed, any reward only updated the state reward weight that the agent transitioned
into (Eq. 6):

ws′ ← ws′ + αw (r −ws′) (6)

Notably, as reward was deterministic (though reward location was not), the author’s use of αw = 1
for both SSR and BSR, upon reflection, is sensible. There is no need for the agent to average w
over long horizons as it is not learning average future reward (as in more classic TD frameworks),
but immediate reward experienced at a state. However, it does restrict the claims of the author to a
deterministic reward feedback environments, as this assumption is baked into the parameter selection.

One difficulty encountered when reproducing SSR behavior was handling the corner case when
the action selected lead to a terminal, or goal, state. As Eq. 3 shows, the Bellman update of the
successor maps uses future discounted maps. To account for this, we assumed this term was dropped
for terminal states. Below, we assume T (st, at, sgoal) = 1.

Mt+1 (st, at, ·)←Mt (st, at, ·) + α (φ (st+1)−Mt (st, at, ·)) (7)

2.2 Bayesian Successor Representation

Model The proposed model uses multiple SR maps where an agent maintains a belief distribution
of weighted values ω over these maps and samples an SR map at every time step with respect to
ω. To transfer policies between environments where similar rewards are close in proximity, BSR
evaluates reward similarity using normalized, average convolved reward (CR) values vcr (st−f ).
For each SR map, a reward kernel is used to calculate vcr, delayed by window f to start the kernel
from time t, the curren time step. The CR values are defined in the original text as the current
rewards rdelay(s) = [rt−f , . . . , rt+f ], delayed by f at t, by the exponential discounted factors
Kγ = [γ−f , γ−f−1, . . . , 1 . . . , γf−1, γf ]T , all normalized (Eq. 8).

vcr (st−f ) =
rdelay ·Kγ∑

Kγ

(8)

Inference These CR values are utilized to perform inference over a distrubution G that is sampled
from a non-parametric Dirchlet process (DP) mixture model where α ∈ R+ and H is a base mixing
distribution (Eq. 9).

G ∼ Dir(α,H) (9)
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Each CR map is represented by the weights wCR
t sampled from G (Eq. 10).

wcr
t ∼ G (10)

These mixture components determine the likelihoods of the CR values denoted as Lcr(st) using each
CR map from a Gaussian distribution of linear basis φ(s) (Eq. 11).

Lcr(st) ∼ N
(
φ(s) ·wcr

t , σ
2
cr

)
(11)

A Sequential Monte Carlo (SMC) method is used, namely particle filtering, to handle this multi-task
RL setup with dynamically changing reward locations. The particle filer samples from a Chinese
Restaurant Process (CRP) of each particle for the i-th partition ci =

[
ci1, . . . , c

i
t

]
where mk is the

number of observations assigned to cluster k (Eq. 12):

Pr
(
cit = k

∣∣ci1:t−1) =
{

α
t−1+α if k is a new cluster
mk

t−1+α otherwise
(12)

The function of the particle filter is to tractably infer the appropriate context (i.e. successor map and
weights), given previous cluster proposals for the episode. The particle filter process allows the agent
to transfer learning to new goal locations by inferring its similarity to previously seen contexts, and
according to popularity of the context. It also allows the agent to account for uncertainty in its cluster
assignment earlier in the episode.

Implementation To implement the BSR algorithm, we extended the functioning SSR to track
multiple successor maps (agents/BayesianSRAgentClass.py). The map used for action selection
was determined probabilistically according to weights, ω.

The main flow of our reproduced code went as follows:

Algorithm 1 BSR Logic Flow (per episode)
1: procedure BSR(γ, k, f, ε, cws, αws, αsr, αcr, αw)
2: t← 0, initial state s← s0, ω ← 1/k
3: while t < episode length limit or s 6= terminal do
4: B Sample new context, i, according to ω
5: B Select successor map Mi according to sampled context
6: for all clusters do
7: B Add optimism bonus to each state w according to cws (αws)
8: B Add CR of state (wcr) to each state w (αws)
9: B ε-greedy exploration, using Mi ·wi, to get next state s′ and respective reward

10: for all clusters (αw) do
11: B Update reward weights w for s′ (Eq. 5)
12: B Update Mi successor map (Eq. 3 or 7) (αsr, γ)
13: if t ≥ f then
14: B Calculate CR for state visited at t− f , vcr(st−f ) (Eq. 8) (α, γ)
15: B Use a particle filter to infer cluster identity of st−f to update ω.
16: B Returns most likely cluster, i∗
17: B Use vcr(st−f ) to update CR of most likely cluster, wcr

i∗ (st−f )

18: st+1 ← s′

19: if st+1 is terminal then
20: B Update wcr for all remaining visited states in episode
21: B Repeat lines 14-17, adjusting Kγ accordingly

While the author provided an extensive supplementary section of the particle filter theory, aspects of
the implementation remained unclear. After many different iterations, the pseudo-code in Algorithm
2 represents our best approximation of the implementation.
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Algorithm 2 Particle Filter
1: procedure FILTER(σcr)
2: for all rows (particle/history of observations) do
3: B Generate a new cluster, or "proposal" cp, according to CRP (Eq. 12)
4: for all unique clusters proposed in CRP do
5: B Calculate the likelihood of clusters (l) given the observed (Eq. 11)
6: B vcr(st−f ) ∼ N(wcr

j (st), σ
2
cr)

7: B Assign likelihood (lp) to each particle according to its proposed cluster cp

8: B Normalize to calculate cp (particle proposal) importance weights (w)
9: B wp for each particle, wp = lp∑

p′ l
p′

10: B Resample a new column for the particle matrix P from particle proposals (c) according to
their importance w

11: B Remove first (oldest) column of P
12: B ω(i) =

∑
p if cp=i w

p,∀i clusters
13: Return maxi(l

i), cluster with highest likelihood

At times the pseudo-code and supporting text had mismatches in notation and were hard to decipher.
As such, we made the following assumptions and changes to produce our code:

• As the value of k was not clearly defined, we assumed a value of 4 or 6 as written in the
Figure 2c of the original paper.

• For the convolved reward kernel, Kγ notation in pseudo-code and text had Kγ =
[γ−f , γ−f−1, . . . , 1, . . . , γf−1, γf ]. However, upon further inspection, elsewhere in the
text and in Figure 1c suggests that the kernel should be symmetric about the center. There-
fore, our current implementation uses Kγ = [γf , γf−1, . . . , 1, . . . , γf−1, γf ].

• For the convolved reward kernel, Kγ , we also assumed γ was the same as that used in the
discounting future successor maps (Eq. 3).

• At line 23 of the original pseudo-code, we assumed crt meant the calculated convolved
value (line 21), as the term was undefined otherwise.

• Line 16 has been modified from the pseudo-code of line 23 from the original text. While in
the original text, vcrst−f

says to update CR of current state (st) for current cluster, wcr
i (st),

from other sections of the text we inferred that vcrst−f
should update the CR of the state t− f

(center of filter) of the most likely cluster at time t− f .

• In order to properly implement the convolved reward, we had to keep a short history of recent
rewards and states visited. While this is similar to the memory buffer described, memory
buffers outlined in the text are kept separately for each cluster. However, the convolved
reward as described needs < r, s′ > independent of the chosen maps.

Implementation differences and challenges Part of the original implementation methods were
consciously not reproduced:

• We forewent annealing as described in the paper for all models. The only parameter annealed
for the models reproduced, as documented in the original paper, was αcr in the grid-world.
However, in Table S1 of the original work, the parameter was contradictorily reported as
fixed. We therefore forewent annealing for our simulations.

• For sake of time for replication, we forewent the use of memory buffers and replay in the
original paper. In the related work section of the original text, it is suggested that results are
not dependent on this feature.

It should be noted that, although the CRP is a non-parametric method for determining cluster labels,
by providing a maximum number of clusters it is a parametric method here, contradicting what is
written in the paper’s introduction. The method does allow the agent to reuse "forgotten" labels. This
had been an initial source of confusion during early stages of reproduction concerning k
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3 Experiments & Results

The supplementary material from Madarasz (2019) [7] provided algorithmic details along with
instructions on how to setup the domains and experiments.

3.1 Excluded experiments

For the grid-world experiment, the GPI and KQ methods was not implemented. For the puddle-world
experiment, GPI-4, GPI-6, nor the equal weights (EW) methods were implemented. Additionally,
since the results from the original work for BSR of 6 clusters were almost equivalent to BSR of 4
clusters (where the exploration offset of a constant plus wcr had a greater outcome), we only ran
experiments with BSR of 4 clusters with only an exploration offset of a constant plus wcr. The
proposed improvements to a navigation task in a continuous state-maze was not implemented. Lastly,
the work done in the neural data analysis of hippocampal flickering during navigation and splitter
cells was not reproduced.

3.2 Hyper-parameter setup

BSR For our simulations, we used the reported best performing parameters. Below, we provide the
parameter, description, line in this pseudo-code, value, and page in original paper where the value
was reported. For the grid-world experiment, we have the following parameters in Table 1:

Table 1: Grid-world parameters for BSR.

Parameter Description pseudo-code Value Page

k Max number of clusters 4 16
cws Optimism offset Alg 1.7 1 15
αws Optimism offset (w) learning rate Alg 1.7,1.8 0.01 15
ε ε-greedy Alg 1.9 0 4
αw Reward weight (w) learning rate Alg 1.11 1 15
αsr Successor map (M ) learning rate Alg 1.12 0.005 16
γ Discount factor: SR maps & CR Kernel Alg 1.12,1.14 0.99 16
f Filter delay Alg 1.13 3 15
αcr CR learning rate Alg 1.16 0.15 15
α CRP concentration Alg 2.3 2 14
σcr Std. Deviation of CR distr. Alg 2.5 1.6 15

For the puddle-world experiment, we have the following change in parameters in Table 2 for different
number of maximum clusters:

Table 2: Puddle-world parameters for BSR.

Parameter Description pseudo-code Value Page

k Max number of clusters 4 16
ε ε-greedy Alg 1.9 0.05 16
αsr Successor map (M ) learning rate Alg 1.12 0.05 16

k Max number of clusters 6 16
ε ε-greedy Alg 1.9 0.1 16
αsr Successor map (M ) learning rate Alg 1.12 0.05 16

SSR It was assumed that other parameters for SSR not reported were the same value as for BSR
(eg. γ = 0.99). The only change in parameters noted are reported in Tables 3, 4.

For grid-world experiments:
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Table 3: Grid-world parameters for SSR.

Parameter Description Value Page

ε ε-greedy 0.1 16
αsr Successor map (M ) learning rate 0.001 16

For puddle-world experiments (with constant offset/optimism bonus):

Table 4: Puddle-world parameters for SSR.

Parameter Description Value Page

ε ε-greedy 0.25 16
αsr Successor map (M ) learning rate 0.005 16

We assumed, like BSR, cws = 1 and αws = 0.01 for the offset.

Q-learner Since we added a Q-learning agent to the mix, it’s parameters in Table 5 are by default
from simple_rl.

Table 5: Parameters for Q-learner.

Parameter Description Value

ε ε-greedy 0.1
α Learning rate 0.1
γ Discount factor 0.99

3.3 Included experiments

In order to perform the original experiments, the simple_rl framework needed to be extended as
follows:

• A domain class that was able to construct both grid-world and puddle-world domains
(domains/RC_GridWorldMDPClass).
• SSR and BSR agents described previously.
• Procedures to run agents on a changing MDP (RC_run_experiments.py).
• Procedures to build and run the experiments (reproduction.py).

Figure 1: Grid-world domain.

Grid-world The grid-world experiment was performed on a 8× 8 maze with a changing goal, of a
reward of 10, and initial start state every 20 episodes with fixed wall locations (Fig. 1) for a total
of 4500 episodes. Each episode terminates when the goal has been reached or after 75 steps. Each
instance of this experiment ran for 10 times where the results from the instances were averaged. Refer
to the Hyper-parameter setup section for extra parameter details.
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Figure 2: Grid-world experiment. (a) Original work (b) Reproduction

Our work took advantage of the simple_rl’s provided output of cumulative reward graphs to analyze
our reproduction. While this metric does differ from that of the original (Fig. 2a), where the author
compares performance of models by cumulative steps, we argue that these are comparable metrics,
even if not perfectly matched. Presumably, an agent with lower cumulative reward also has higher
cumulative steps; as it is not reaching as many rewards, its episode and step length should be higher.
We settled with the approximation of the metric in order to focus on attempts to faithfully reconstruct
the nuances of the BSR.

In the original graph (Fig. 2a), BSR demonstrated lower cumulative steps in comparison to baselines,
including SSR. In our reproduction (Fig. 2b), we see a divergence from this pattern. Interestingly,
SSR shows the best performance in the grid-world domain, followed by our best-performing imple-
mentation of BSR. Prior attempts at implementing BSR resulted in either chance or below-chance
performance of the model. This implementation as described above, notably outperforms, for various
episodes, a standard Q-learning model (though one that is not tuned to the domain). These curves do
converge in later episode number. We saw that this performance benefit of BSR did not hold in the
puddle domain.

Furthermore, while Q-learning and SSR appear to have relatively linear performance curves, BSR
appears to learn quickly and then decelerates. This may point to potential implementation reproduction
issues on the inference step of the algorithm, despite careful inspection of the provided supplementary
materials and pseudo-code.

Figure 3: Puddle-world domain.

Puddle-world The puddle-world experiment inherits the almost equivalent setup as the grid-world
experiment except that there are added puddles, of a penalty of -1, that fill the opposite 4× 4 quadrant
of the goal location (where the puddles are not terminal) and that the goal, puddle, and initial start
states change every 30 episodes (Fig. 3).

We tested the reported best model versions in the original (Fig. 4a): BSR-4 with constant + wcr

offset and SSR with a constant offset. While it appears in Fig. 4a that SSR with an offset of constant
+ wcr outperforms SSR with a constant offset, Table S2 and supporting text of the original work
assert SSR with a constant offset is the outperforming model.
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Figure 4: Puddle-world experiment. (a) Original work (b) Reproduction (BSR-4 with a constant +
wcr offset and SSR with a constant offset)

Again, we took advantage of simple_rl’s provided output of cumulative reward graphs to analyze our
reproduction. We equate the cumulative returns in the original figure (Fig. 4a) to the last episode
in the cumulative return curves (Fig. 4b). We see that BSR-4 initially outperforms SSR-offset but
by the final episode cumulative returns had converged. Again noting the slowing of the BSR-4
curve, discrepency between Fig. 4a and 4b may be due to difficulty in the re-implementing the BSR
inference step. This was despite iteratively building up from the SSR code and careful review of the
supplementary material and pseudo-code.

Curiously, despite implementation differences and relative performance differences between curves,
the models in the reproduction appear to have overall higher cumulative rewards. It is not immediately
obvious where this difference arises, especially since our reproduction, if anything, should perform
worse without the addition of memory buffers and replay. Finally, of particular note is Q-learning’s
dominant performance despite changing puddle and goal locations. While not in the original figure, it
provides another baseline that should have been outperformed by BSR given the original figure.

4 Conclusion

We analyzed the reproducibility of the methods within the work "Better transfer learning with inferred
successor maps" Madarasz (2019) [7]. There were several incongruities between the text of the paper,
the supplementary material, and the pseudo-code. We resolved these based on our interpretation.
This lack of clarity may have led to a failure to replicate the results BSR for both grid-world and
puddle-world experiments in Madarasz (2019) [7]. Furthermore, the Q-learning baseline without a
hyperparameter search was comparable to or exceed the performance of the BSR algorithm.

Overall, we were unable to satisfactorily reproduce the findings solely from the provided supplemen-
tary materials and pseudocode. We do not suggest that this derives from an inability to replicate.
Rather, the clarity issues and inconsistencies in the text during this reproduction process had been a
major factor. We look forward to maintaining a dialogue with the authors of the original work about
the differences between our implementations.
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