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Abstract. In this paper, we propose a probabilistic deep voxelwise
dilated residual network, referred as Bayesian VoxDRN, to segment the
whole heart from 3D MR images. Bayesian VoxDRN can predict voxel-
wise class labels with a measure of model uncertainty, which is achieved
by a dropout-based Monte Carlo sampling during testing to generate a
posterior distribution of the voxel class labels. Our method has three
compelling advantages. First, the dropout mechanism encourages the
model to learn a distribution of weights with better data-explanation
ability and prevents over-fitting. Second, focal loss and Dice loss are
well encapsulated into a complementary learning objective to segment
both hard and easy classes. Third, an iterative switch training strat-
egy is introduced to alternatively optimize a binary segmentation task
and a multi-class segmentation task for a further accuracy improvement.
Experiments on the MICCAI 2017 multi-modality whole heart segmenta-
tion challenge data corroborate the effectiveness of the proposed method.

1 Introduction

Whole heart segmentation from magnetic resonance (MR) imaging is a prereq-
uisite for many clinical applications including disease diagnosis, surgical plan-
ning and computer assisted interventions. Manually delineating all the sub-
structures (SS) of the whole heart from 3D MR images is labor-intensive,
tedious and subject to intra- and inter-observer variations. This has motivated
numerous research works on automated whole heart segmentation such as atlas-
based approaches [1,2], deformable model-based approaches [3], patch-based
approaches [2,4] and machine learning based approaches [5]. Although significant
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Fig. 1. The architecture of the proposed VoxDRN, consisting of BN layers, ReLU, and
dilated convolutional layers N (ConvN) with parameters (f , k × k × k, d), where f
is the number of channels, k × k × k is the filter size, and d is the dilation size. At
the output, we use DUC layer to generate voxel-level prediction. We also illustrate two
different types of VoxDRes modules: type-1 without stride downsampling and type-2
with downsampling stride of size 2.

progress has been achieved, automated whole heart segmentation remains to be
a challenging task due to large anatomical variations among different subjects,
ambiguous cardiac borders and similar or even identical intensity distributions
between adjacent tissues or SS of the heart.

Recently, with the advance of deep convolutional neural network (CNN)-
based techniques [6–10], many CNN-based approaches have been proposed as
well for automated whole heart segmentation with superior performance [2,11].
These methods basically follow a fully convolutional downsample-upsample path-
way and typically commit to a single prediction without estimating the model
uncertainty. Moreover, different SS of the heart vary greatly in volume size, e.g.,
the left atrium blood cavity and the pulmonary artery often have smaller vol-
ume size than others. This can cause learning bias towards the majority class and
poor generalization, i.e., the class-imbalance problem. To address such a concern,
class-balanced loss functions have been proposed such as weighted cross entropy
[2] and Dice loss [10].

This paper proposes a probabilistic deep voxelwise dilated residual network
(VoxDRN), referred as Bayesian VoxDRN, which is able to predict voxelwise
class labels with a measure of the model uncertainty. This involves following
key innovations: (1) we extend the dilated residual network (DRN) of [12], pre-
viously limited to 2D image segmentation, to 3D volumetric segmentation; (2)
inspired by the work of [13,14], we introduce novel architectures incorporat-
ing multiple dropout layers to estimate the model uncertainty, where units are
randomly inactivated during training to avoid over-fitting. At testing, the pos-
terior distribution of voxel labels is approximated by Monte Carlo sampling of
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multiple predictions with dropout; (3) we propose to combine focal loss with
Dice loss, aiming for a complementary learning to address the class imbalance
issue; and (4) we introduce an iterative switching training strategy to alterna-
tively optimize a binary segmentation task and a multi-class segmentation task
for a further accuracy improvement. We conduct ablation study to investigate
the effectiveness of each proposed component in our method.

2 Methods

We first present our 3D extension to the 2D DRN of [12], referred as VoxDRN.
Building on it, we then devise new architectures incorporating multiple dropout
layers for model uncertainty estimation.

DRN. Dilated residual network [12] is a recently proposed method built on
residual connections and dilated convolutions. The rationale behind DRN is to
retain high spatial resolution and provide dense output to cover the input field
such that back-propagation can learn to preserve detailed information about
smaller and less salient objects. This is achieved by dilated convolutions which
allow for exponential increase in the receptive field of the network without loss
of spatial resolution. Building on the ResNet architecture of [6], Yu et al. [12]
devised DRN architecture using dilated convolutions. Additional adaptations
were used to eliminate gridding artifacts caused by dilated convolutions [12]
via (a) removing max pooling operation from ResNet architecture; (b) adding
2 dilated residual blocks at the end of the network with progressively lower
dilation; and (c) removing residual connections of the 2 newly added blocks.
DRN works in a fully-convolutional manner to generate pixel-level prediction
using bilinear interpolation of the output layer.

VoxDRN. We extend DRN to 3D by substituting 2D operators with 3D ones
to create a deep voxelwise dilated residual network (VoxDRN) architecture as
shown in Fig. 1. Our architecture consists of stacked voxelwise dilated resid-
ual (VoxDRes) modules. We introduce two different types of VoxDRes modules:
type-1 without stride downsampling and type-2 with downsampling stride of size
2 as shown in Fig. 1. In each VoxDRes module, the input feature xl and trans-
formed feature Fl(xl,Wl) are added together with skip connection, and hence
the information can be directly propagated to next layer in the forward and
backward passes. There are three type-2 VoxDRes modules with downsampling
stride of size 2, which reduce the resolution size of input volume by a factor of
8. We empirically find that such a resolution works well to preserve important
information about smaller and less salient objects. The last VoxDRes module
is followed by four convolutional layers with progressively reduced dilation to
eliminate gridding artifacts. Batch normalization (BN) layers are inserted inter-
mediately to accelerate the training process and improve the performance [15].
We use the rectified linear units (ReLU) as the activation function for non-linear
transformation [16].

In order to achieve volumetric dense prediction, we need to recover full res-
olution at output. Conventional method such as bilinear upsampling [12] is
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Fig. 2. The architecture of our Bayesian VoxDRN.

not attractive as the upsampling parameters are not learnable. Deconvolution
could be an alternative but, unfortunately, it can easily lead to “uneven over-
lap”, resulting in checkerboard artifacts. In this paper, we propose to use Dense
Upsampling Convolution (DUC) of [17] to get the voxel-level prediction at the
output where the final layer has Cr3 channels, r being the upsampling rate and
C being the number of classes. The DUC operation takes an input of shape
h × w × d × Cr3 and remaps voxels from different channels into different spa-
tial locations in the final output, producing a rh × rw × rd × C image, where
h, w, and d denote height, width and depth. The mapping is done in 3D with
O(F )i,j,k,c = F[i/r],[j/r],[k/r],r3·c+ mod (i,r)+r· mod (j,r)+r2· mod (k,r) where F is the
pre-mapped feature responses and O is the output image. DUC is equivalent to
a learned interpolation that can capture and recover fine-detailed information
with the advantages to avoid checkerboard artifacts of deconvolution.

Bayesian VoxDRN. Gal and Ghahramani [13] demonstrated that Bayesian
CNN offered better robustness to over-fitting on small data than traditional
approaches. Given our observed training data X and labels Y, Bayesian CNN
requires to find the posterior distribution p(W|X,Y) over the convolutional
weights, W. In general, this posterior distribution is not tractable. Gal and
Ghahramani [13] suggested to use variational dropout to tackle this problem for
neural networks. Inspired by the work of [13,14], we devise a new architecture
incorporating dropout layers as shown in Fig. 2, referred as Bayesian VoxDRN, to
enable estimation of the model uncertainty, where subsets of units are inactivated
with a dropout probability of 0.5 during training to avoid over-fitting. Applying
dropout after each convolution layer may slow down the learning process. This is
because the shallow layers of a CNN, which aims at extracting low-level features
such as edges can be better modeled with deterministic weights [14]. We insert
four dropout layers in the higher layers of VoxDRN to learn Bayesian weights on
higher level features such as shape and contextual information. At testing, we
sample the posterior distribution over the weights using dropout to obtain the
posterior distribution of softmax class probabilities. The final segmentation is
obtained by conducting majority voting on these samples. We use the variance
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to obtain model uncertainty for each class. In our experiments, following the
suggestion in [13,14], we used 10 samples in majority voting to have a better
accuracy and efficiency trade-off.

Hybrid Loss. We propose to combine weighted focal loss [18] with Dice loss
[10] to solve class imbalance problem. The weighted focal loss is calculated as
LwFL =

∑
c∈C −αc(1−pc)λlog(pc), where |X| and |Xc| are the frequency of all

classes and that of class c, respectively; αc = 1 − |Xc|
|X| is designed to adaptively

balance the importance of large and small SS of the heart; pc is the probabil-
ity of class c and (1 − pc)λ is the scaling factor to reduce the relative loss for
well-classified examples such that we can put more focus on hard, misclassi-
fied examples. Focal loss often guides networks to preserve complex boundary
details but could bring certain amount of noise, while Dice loss tends to gen-
erate smoother segmentation. Therefore, we propose to combine these two loss
functions with equal weights for a complementary learning.

Iterative Switch Training. We propose a progressive learning strategy to
train our Bayesian VoxDRN. The rationale and intuition behind such a strat-
egy are that we would like to first separate foreground from background, and
then further segment the foreground into a number of SS of the heart. By doing
this, our network is alternatively trained to solve a simpler problem at each step
than the original one. To achieve this, as shown in Fig. 2, the Bayesian VoxDRN
is modified to have two branches after the last convolution layer: each branch,
equipped with its own loss and operated only on images coming from the cor-
responding dataset, is responsible for estimating the segmentation map therein.
During training, we alternatively optimize our network by using binary loss and
multi-class loss supervised by binary labels and multi-class labels, respectively.
Please note that at any moment of the training, only one branch is trained. More
specifically, at each training epoch, we first train the binary branch to learn to
separate the foreground from the background. We then train the multi-class
branch to put the attention of our model to segment foreground into a few SS
of the heart. While at testing, we are only interested in the output from the
multi-class branch.

Implementation Details. The proposed method was implemented with
Python using TensorFlow framework and trained on a workstation with a
3.6 GHz Intel i7 CPU and a GTX1080 Ti graphics card with 11 GB GPU mem-
ory. The network was trained using Adam optimizer with mini-batch size of 1.
In total, we trained our network for 5’000 epochs. All weights were randomly ini-
tialized. We set initial momentum value to 0.9 and initial learning rate to 0.001.
Randomly cropped 96×96×64 sub-volumes serve as input to train our network.
We adopted sliding window and overlap-tiling stitching strategies to generate
predictions for the whole volume, and removed small isolated connected compo-
nents in the final labeling results.
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3 Experiments and Results

Data and Pre-processing. We conducted extensive experiments to evaluate
our method on the 2017 MM-WHS challenge MR dataset [1,4]1. There are in
total 20 3D MR images for training and another 40 scans for testing. The training
dataset contains annotations for seven SS of the heart including blood cavity for
the left ventricle (LV), the right ventricle (RV), the left atrium (LA) and the right
atrium (RA) as well as the myocardium of the LV (Myo), the ascending aorta
(AA) and the pulmonary artery (PA). We resampled all the training data to
isotropic resolution and normalized each image as zero mean and unit variance.
Data augmentation was used to enlarge the training samples by rotating each
image with a random angle in the range of [−30◦, 30◦] around z axis.

Comparison with Other Methods. The quantitative comparison between
our method and other approaches from the participating teams is shown in
Table 1. According to the rules of the challenge, methods were ranked based on
Dice score on the whole heart segmentation, not on each individual substructure.
Although most of the methods are based on CNNs, Heinrich et al. [2] achieved
impressive results using discrete nonlinear registration and fast non-local fusion.

Table 1. Comparison (Dice score) with different approaches on MM-WHS 2017 MR
dataset. The best result for each category is highlighted with bold font.

Methods LV Myo RV LA RA AA PA Whole heart

Our method 0.914 0.811 0.880 0.856 0.873 0.857 0.794 0.871

Heinrich et al. [2] 0.918 0.781 0.871 0.886 0.873 0.878 0.804 0.870

Payer et al. [2] 0.916 0.778 0.868 0.855 0.881 0.838 0.731 0.863

Mortazi et al. [2] 0.871 0.747 0.830 0.811 0.759 0.839 0.715 0.818

Galisot et al. [2] 0.897 0.763 0.819 0.765 0.808 0.708 0.685 0.817

Yang et al. [2] 0.836 0.721 0.805 0.742 0.832 0.821 0.697 0.797

Wang et al. [2] 0.855 0.728 0.760 0.832 0.782 0.771 0.578 0.792

Yu et al. [2] 0.750 0.658 0.750 0.826 0.859 0.809 0.726 0.783

Liao et al. [2] 0.702 0.623 0.680 0.676 0.654 0.599 0.470 0.670

Table 2. Ablation study results [x 100%].

Methods Dice Jaccard Specificity Recall

WH SS WH SS WH SS WH SS

HighRes3DNet [19] 88.17 ± 0.25 80.42 ± 0.29 79.21 ± 0.63 68.85 ± 0.48 93.96 ± 0.02 87.54 ± 0.20 83.37 ± 0.65 76.63 ± 0.58
3D U-net [9] 88.33 ± 0.35 81.67 ± 0.36 79.59 ± 0.84 70.91 ± 0.62 94.17 ± 0.02 89.04 ± 0.12 83.79 ± 0.91 78.16 ± 0.78
Bayesian VoxDRN+Dice 89.38 ± 0.09 82.58 ± 0.30 80.94 ± 0.25 71.25 ± 0.61 92.97 ± 0.06 85.84 ± 0.30 87.18 ± 0.42 81.13 ± 0.45
Bayesian VoxDRN+Hybrid 90.15 ± 0.10 83.12 ± 0.26 82.23 ± 0.29 72.27 ± 0.49 91.81 ± 0.08 85.53 ± 0.21 88.91 ± 0.43 82.92 ± 0.34
Our method 90.83 ± 0.06 84.39 ± 0.19 83.30 ± 0.19 73.75 ± 0.42 91.99 ± 0.06 85.62 ± 0.17 89.93 ± 0.28 89.93 ± 0.28

1 One can find details about the MICCAI 2017 MM-WHS challenge at: http://www.
sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/.
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The other non-CNN approach was introduced by Galisot et al. [2], which was
based on local probabilistic atlases and a posterior correction.

Ablation Analysis. In order to evaluate the effectiveness of different com-
ponents in the proposed method, we performed a set of ablation experiments.
Because the ground truth of the testing dataset is held out by the organizers
and the challenge organizers only allow resubmission of substantially different
methods, we conducted experiments via a standard 2-fold cross-validation study
on the training dataset. We also implemented two other state-of-the-art 3D CNN
approaches, 3D U-net [9] and HighRes3DNet [19], for comparison. We compared
these two methods with following variants of the proposed method: (1) Bayesian
VoxDRN trained with Dice loss (Bayesian VoxDRN+Dice); (2) Bayesian Vox-
DRN trained with our hybrid loss but without using the iterative switch training
strategy (Bayesian VoxDRN+Hybrid); and (3) Bayesian VoxDRN trained with
our hybrid loss using the iterative switch training strategy (Our method). We
evaluated these methods using Dice, Jaccard, specificity and recall for the whole
heart (WH) segmentation as well as for segmentation of all SS. The quantitative
comparison can be found in Table 2. As observed, our method and its variants
achieved better performance than the other two methods under limited training
data. Moreover, each component in our method helped to improve the perfor-
mance. Qualitative results are shown in Fig. 3, where we (A) visually compared
the results obtained by different methods; (B) visualized the uncertainty map;
and (C) depicted the relationship between the segmentation accuracy and the
uncertainty threshold. From Fig. 3(B), one can see that the model is uncertain
at object boundaries and with difficult and ambiguous SS.

Fig. 3. Qualitative results. (A) qualitative comparison of different methods. Red circles
highlight the major differences among various methods; (B) visualization of uncertainty,
where the brighter the color, the higher the uncertainty; and (C) the relationship
between the segmentation accuracy and the uncertainty threshold. The shaded area
represents the standard errors.
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4 Conclusion

In this study, we proposed the Bayesian VoxDRN, a probabilistic deep voxelwise
dilated residual network with a measure of the model uncertainty, for automatic
whole heart segmentation from 3D MR images. The proposed Bayesian Vox-
DRN models uncertainty by incorporating variational dropouts for an approx-
imated Bayesian inference. In addition, it works well in imbalanced dataset by
using both focal loss and Dice loss. Finally, a further improvement on perfor-
mance is achieved by employing an iterative switch training strategy to train the
Bayesian VoxDRN. Comprehensive experiments on an open challenge dataset
demonstrated the efficacy of our method in dealing with whole heart segmen-
tation under limited training data. Our network architecture shows promising
generalization and can be potentially extended to other applications.
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