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Abstract

We introduce a new generative model where samples are produced via Langevin
dynamics using gradients of the data distribution estimated with score matching.
Because gradients can be ill-defined and hard to estimate when the data resides on
low-dimensional manifolds, we perturb the data with different levels of Gaussian
noise, and jointly estimate the corresponding scores, i.e., the vector fields of
gradients of the perturbed data distribution for all noise levels. For sampling, we
propose an annealed Langevin dynamics where we use gradients corresponding to
gradually decreasing noise levels as the sampling process gets closer to the data
manifold. Our framework allows flexible model architectures, requires no sampling
during training or the use of adversarial methods, and provides a learning objective
that can be used for principled model comparisons. Our models produce samples
comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new
state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate
that our models learn effective representations via image inpainting experiments.

1 Introduction

Generative models have many applications in machine learning. To list a few, they have been
used to generate high-fidelity images [26, 6], synthesize realistic speech and music fragments [58],
improve the performance of semi-supervised learning [28, 10], detect adversarial examples and
other anomalous data [54], imitation learning [22], and explore promising states in reinforcement
learning [41]. Recent progress is mainly driven by two approaches: likelihood-based methods [17,
29, 11, 60] and generative adversarial networks (GAN [15]). The former uses log-likelihood (or a
suitable surrogate) as the training objective, while the latter uses adversarial training to minimize
f -divergences [40] or integral probability metrics [2, 55] between model and data distributions.

Although likelihood-based models and GANs have achieved great success, they have some intrinsic
limitations. For example, likelihood-based models either have to use specialized architectures to
build a normalized probability model (e.g., autoregressive models, flow models), or use surrogate
losses (e.g., the evidence lower bound used in variational auto-encoders [29], contrastive divergence
in energy-based models [21]) for training. GANs avoid some of the limitations of likelihood-based
models, but their training can be unstable due to the adversarial training procedure. In addition, the
GAN objective is not suitable for evaluating and comparing different GAN models. While other
objectives exist for generative modeling, such as noise contrastive estimation [19] and minimum
probability flow [50], these methods typically only work well for low-dimensional data.

In this paper, we explore a new principle for generative modeling based on estimating and sampling
from the (Stein) score [33] of the logarithmic data density, which is the gradient of the log-density
function at the input data point. This is a vector field pointing in the direction where the log data
density grows the most. We use a neural network trained with score matching [24] to learn this
vector field from data. We then produce samples using Langevin dynamics, which approximately
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works by gradually moving a random initial sample to high density regions along the (estimated)
vector field of scores. However, there are two main challenges with this approach. First, if the data
distribution is supported on a low dimensional manifold—as it is often assumed for many real world
datasets—the score will be undefined in the ambient space, and score matching will fail to provide a
consistent score estimator. Second, the scarcity of training data in low data density regions, e.g., far
from the manifold, hinders the accuracy of score estimation and slows down the mixing of Langevin
dynamics sampling. Since Langevin dynamics will often be initialized in low-density regions of the
data distribution, inaccurate score estimation in these regions will negatively affect the sampling
process. Moreover, mixing can be difficult because of the need of traversing low density regions to
transition between modes of the distribution.

To tackle these two challenges, we propose to perturb the data with random Gaussian noise of
various magnitudes. Adding random noise ensures the resulting distribution does not collapse to a
low dimensional manifold. Large noise levels will produce samples in low density regions of the
original (unperturbed) data distribution, thus improving score estimation. Crucially, we train a single
score network conditioned on the noise level and estimate the scores at all noise magnitudes. We
then propose an annealed version of Langevin dynamics, where we initially use scores corresponding
to the highest noise level, and gradually anneal down the noise level until it is small enough to be
indistinguishable from the original data distribution. Our sampling strategy is inspired by simulated
annealing [30, 37] which heuristically improves optimization for multimodal landscapes.

Our approach has several desirable properties. First, our objective is tractable for almost all pa-
rameterizations of the score networks without the need of special constraints or architectures, and
can be optimized without adversarial training, MCMC sampling, or other approximations during
training. The objective can also be used to quantitatively compare different models on the same
dataset. Experimentally, we demonstrate the efficacy of our approach on MNIST, CelebA [34],
and CIFAR-10 [31]. We show that the samples look comparable to those generated from modern
likelihood-based models and GANs. On CIFAR-10, our model sets the new state-of-the-art inception
score of 8.87 for unconditional generative models, and achieves a competitive FID score of 25.32. We
show that the model learns meaningful representations of the data by image inpainting experiments.

2 Score-based generative modeling

Suppose our dataset consists of i.i.d. samples {xi ∈ RD}Ni=1 from an unknown data distribution
pdata(x). We define the score of a probability density p(x) to be ∇x log p(x). The score network
sθ : RD → RD is a neural network parameterized by θ, which will be trained to approximate the
score of pdata(x). The goal of generative modeling is to use the dataset to learn a model for generating
new samples from pdata(x). The framework of score-based generative modeling has two ingredients:
score matching and Langevin dynamics.

2.1 Score matching for score estimation

Score matching [24] is originally designed for learning non-normalized statistical models based on
i.i.d. samples from an unknown data distribution. Following [53], we repurpose it for score estimation.
Using score matching, we can directly train a score network sθ(x) to estimate∇x log pdata(x) without
training a model to estimate pdata(x) first. Different from the typical usage of score matching, we opt
not to use the gradient of an energy-based model as the score network to avoid extra computation due
to higher-order gradients. The objective minimizes 1

2Epdata [‖sθ(x)−∇x log pdata(x)‖22], which can
be shown equivalent to the following up to a constant

Epdata(x)

[
tr(∇xsθ(x)) +

1

2
‖sθ(x)‖22

]
, (1)

where ∇xsθ(x) denotes the Jacobian of sθ(x). As shown in [53], under some regularity conditions
the minimizer of Eq. (3) (denoted as sθ∗(x)) satisfies sθ∗(x) = ∇x log pdata(x) almost surely.
In practice, the expectation over pdata(x) in Eq. (1) can be quickly estimated using data samples.
However, score matching is not scalable to deep networks and high dimensional data [53] due to the
computation of tr(∇xsθ(x)). Below we discuss two popular methods for large scale score matching.

Denoising score matching Denoising score matching [61] is a variant of score matching that
completely circumvents tr(∇xsθ(x)). It first perturbs the data point x with a pre-specified noise
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distribution qσ(x̃ | x) and then employs score matching to estimate the score of the perturbed data
distribution qσ(x̃) ,

∫
qσ(x̃ | x)pdata(x)dx. The objective was proved equivalent to the following:

1

2
Eqσ(x̃|x)pdata(x)[‖sθ(x̃)−∇x̃ log qσ(x̃ | x)‖22]. (2)

As shown in [61], the optimal score network (denoted as sθ∗(x)) that minimizes Eq. (2) satisfies
sθ∗(x) = ∇x log qσ(x) almost surely. However, sθ∗(x) = ∇x log qσ(x) ≈ ∇x log pdata(x) is true
only when the noise is small enough such that qσ(x) ≈ pdata(x).

Sliced score matching Sliced score matching [53] uses random projections to approximate
tr(∇xsθ(x)) in score matching. The objective is

EpvEpdata

[
vᵀ∇xsθ(x)v +

1

2
‖sθ(x)‖22

]
, (3)

where pv is a simple distribution of random vectors, e.g., the multivariate standard normal. As shown
in [53], the term vᵀ∇xsθ(x)v can be efficiently computed by forward mode auto-differentiation.
Unlike denoising score matching which estimates the scores of perturbed data, sliced score matching
provides score estimation for the original unperturbed data distribution, but requires around four
times more computations due to the forward mode auto-differentiation.

2.2 Sampling with Langevin dynamics

Langevin dynamics can produce samples from a probability density p(x) using only the score function
∇x log p(x). Given a fixed step size ε > 0, and an initial value x̃0 ∼ π(x) with π being a prior
distribution, the Langevin method recursively computes the following

x̃t = x̃t−1 +
ε

2
∇x log p(x̃t−1) +

√
ε zt, (4)

where zt ∼ N (0, I). The distribution of x̃T equals p(x) when ε→ 0 and T →∞, in which case x̃T
becomes an exact sample from p(x) under some regularity conditions [62]. When ε > 0 and T <∞,
a Metropolis-Hastings update is needed to correct the error of Eq. (4), but it can often be ignored in
practice [9, 12, 39]. In this work, we assume this error is negligible when ε is small and T is large.

Note that sampling from Eq. (4) only requires the score function ∇x log p(x). Therefore, in order to
obtain samples from pdata(x), we can first train our score network such that sθ(x) ≈ ∇x log pdata(x)
and then approximately obtain samples with Langevin dynamics using sθ(x). This is the key idea of
our framework of score-based generative modeling.

3 Challenges of score-based generative modeling

In this section, we analyze more closely the idea of score-based generative modeling. We argue that
there are two major obstacles that prevent a naïve application of this idea.

3.1 The manifold hypothesis

Figure 1: Left: Sliced score matching (SSM) loss
w.r.t. iterations. No noise is added to data. Right:
Same but data are perturbed with N (0, 0.0001).

The manifold hypothesis states that data in the
real world tend to concentrate on low dimen-
sional manifolds embedded in a high dimen-
sional space (a.k.a., the ambient space). This
hypothesis empirically holds for many datasets,
and has become the foundation of manifold
learning [3, 47]. Under the manifold hypothesis,
score-based generative models will face two key
difficulties. First, since the score∇x log pdata(x)
is a gradient taken in the ambient space, it is un-
defined when x is confined to a low dimensional
manifold. Second, the score matching objective Eq. (1) provides a consistent score estimator only
when the support of the data distribution is the whole space (cf ., Theorem 2 in [24]), and will be
inconsistent when the data reside on a low-dimensional manifold.
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The negative effect of the manifold hypothesis on score estimation can be seen clearly from Fig. 1,
where we train a ResNet (details in Appendix B.1) to estimate the data score on CIFAR-10. For
fast training and faithful estimation of the data scores, we use the sliced score matching objective
(Eq. (3)). As Fig. 1 (left) shows, when trained on the original CIFAR-10 images, the sliced score
matching loss first decreases and then fluctuates irregularly. In contrast, if we perturb the data with a
small Gaussian noise (such that the perturbed data distribution has full support over RD), the loss
curve will converge (right panel). Note that the Gaussian noiseN (0, 0.0001) we impose is very small
for images with pixel values in the range [0, 1], and is almost indistinguishable to human eyes.

3.2 Low data density regions

The scarcity of data in low density regions can cause difficulties for both score estimation with score
matching and MCMC sampling with Langevin dynamics.

3.2.1 Inaccurate score estimation with score matching

Figure 2: Left: ∇x log pdata(x); Right: sθ(x).
The data density pdata(x) is encoded using an
orange colormap: darker color implies higher
density. Red rectangles highlight regions where
∇x log pdata(x) ≈ sθ(x).

In regions of low data density, score match-
ing may not have enough evidence to estimate
score functions accurately, due to the lack of
data samples. To see this, recall from Sec-
tion 2.1 that score matching minimizes the ex-
pected squared error of the score estimates, i.e.,
1
2Epdata [‖sθ(x)−∇x log pdata(x)‖22]. In prac-
tice, the expectation w.r.t. the data distribu-
tion is always estimated using i.i.d. samples
{xi}Ni=1

i.i.d.∼ pdata(x). Consider any region
R ⊂ RD such that pdata(R) ≈ 0. In most
cases {xi}Ni=1 ∩ R = ∅, and score matching
will not have sufficient data samples to estimate
∇x log pdata(x) accurately for x ∈ R.

To demonstrate the negative effect of this, we
provide the result of a toy experiment (details in Appendix B.1) in Fig. 2 where we use sliced score
matching to estimate scores of a mixture of Gaussians pdata = 1

5N ((−5,−5), I) + 4
5N ((5, 5), I).

As the figure demonstrates, score estimation is only reliable in the immediate vicinity of the modes
of pdata, where the data density is high.

3.2.2 Slow mixing of Langevin dynamics

When two modes of the data distribution are separated by low density regions, Langevin dynamics
will not be able to correctly recover the relative weights of these two modes in reasonable time, and
therefore might not converge to the true distribution. Our analyses of this are largely inspired by [63],
which analyzed the same phenomenon in the context of density estimation with score matching.

Consider a mixture distribution pdata(x) = πp1(x)+(1−π)p2(x), where p1(x) and p2(x) are normal-
ized distributions with disjoint supports, and π ∈ (0, 1). In the support of p1(x), ∇x log pdata(x) =
∇x(log π+ log p1(x)) = ∇x log p1(x), and in the support of p2(x),∇x log pdata(x) = ∇x(log(1−
π) + log p2(x)) = ∇x log p2(x). In either case, the score ∇x log pdata(x) does not depend on π.
Since Langevin dynamics use∇x log pdata(x) to sample from pdata(x), the samples obtained will not
depend on π. In practice, this analysis also holds when different modes have approximately disjoint
supports—they may share the same support but be connected by regions of small data density. In this
case, Langevin dynamics can produce correct samples in theory, but may require a very small step
size and a very large number of steps to mix.

To verify this analysis, we test Langevin dynamics sampling for the same mixture of Gaussian used
in Section 3.2.1 and provide the results in Fig. 3. We use the ground truth scores when sampling
with Langevin dynamics. Comparing Fig. 3(b) with (a), it is obvious that the samples from Langevin
dynamics have incorrect relative density between the two modes, as predicted by our analysis.
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Figure 3: Samples from a mixture of Gaussian with different methods. (a) Exact sampling. (b)
Sampling using Langevin dynamics with the exact scores. (c) Sampling using annealed Langevin
dynamics with the exact scores. Clearly Langevin dynamics estimate the relative weights between
the two modes incorrectly, while annealed Langevin dynamics recover the relative weights faithfully.

4 Noise Conditional Score Networks: learning and inference

We observe that perturbing data with random Gaussian noise makes the data distribution more
amenable to score-based generative modeling. First, since the support of our Gaussian noise distri-
bution is the whole space, the perturbed data will not be confined to a low dimensional manifold,
which obviates difficulties from the manifold hypothesis and makes score estimation well-defined.
Second, large Gaussian noise has the effect of filling low density regions in the original unperturbed
data distribution; therefore score matching may get more training signal to improve score estimation.
Furthermore, by using multiple noise levels we can obtain a sequence of noise-perturbed distributions
that converge to the true data distribution. We can improve the mixing rate of Langevin dynamics
on multimodal distributions by leveraging these intermediate distributions in the spirit of simulated
annealing [30] and annealed importance sampling [37].

Built upon this intuition, we propose to improve score-based generative modeling by 1) perturbing
the data using various levels of noise; and 2) simultaneously estimating scores corresponding to all
noise levels by training a single conditional score network. After training, when using Langevin
dynamics to generate samples, we initially use scores corresponding to large noise, and gradually
anneal down the noise level. This helps smoothly transfer the benefits of large noise levels to low
noise levels where the perturbed data are almost indistinguishable from the original ones. In what
follows, we will elaborate more on the details of our method, including the architecture of our score
networks, the training objective, and the annealing schedule for Langevin dynamics.

4.1 Noise Conditional Score Networks

Let {σi}Li=1 be a positive geometric sequence that satisfies σ1

σ2
= · · · = σL−1

σL
> 1. Let qσ(x) ,∫

pdata(t)N (x | t, σ2I)dt denote the perturbed data distribution. We choose the noise levels {σi}Li=1
such that σ1 is large enough to mitigate the difficulties discussed in Section 3, and σL is small enough
to minimize the effect on data. We aim to train a conditional score network to jointly estimate the
scores of all perturbed data distributions, i.e., ∀σ ∈ {σi}Li=1 : sθ(x, σ) ≈ ∇x log qσ(x). Note that
sθ(x, σ) ∈ RD when x ∈ RD. We call sθ(x, σ) a Noise Conditional Score Network (NCSN).

Similar to likelihood-based generative models and GANs, the design of model architectures plays an
important role in generating high quality samples. In this work, we mostly focus on architectures
useful for image generation, and leave the architecture design for other domains as future work.
Since the output of our noise conditional score network sθ(x, σ) has the same shape as the input
image x, we draw inspiration from successful model architectures for dense prediction of images
(e.g., semantic segmentation). In the experiments, our model sθ(x, σ) combines the architecture
design of U-Net [46] with dilated/atrous convolution [64, 65, 8]—both of which have been proved
very successful in semantic segmentation. In addition, we adopt instance normalization in our score
network, inspired by its superior performance in some image generation tasks [57, 13, 23], and we
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use a modified version of conditional instance normalization [13] to provide conditioning on σi.
More details on our architecture can be found in Appendix A.

4.2 Learning NCSNs via score matching

Both sliced and denoising score matching can train NCSNs. We adopt denoising score matching as it
is slightly faster and naturally fits the task of estimating scores of noise-perturbed data distributions.
However, we emphasize that empirically sliced score matching can train NCSNs as well as denoising
score matching. We choose the noise distribution to be qσ(x̃ | x) = N (x̃ | x, σ2I); therefore
∇x̃ log qσ(x̃ | x) = −(x̃−x)/σ2. For a given σ, the denoising score matching objective (Eq. (2)) is

`(θ;σ) ,
1

2
Epdata(x)Ex̃∼N (x,σ2I)

[ ∥∥∥∥sθ(x̃, σ) + x̃− x

σ2

∥∥∥∥2
2

]
. (5)

Then, we combine Eq. (5) for all σ ∈ {σi}Li=1 to get one unified objective

L(θ; {σi}Li=1) ,
1

L

L∑
i=1

λ(σi)`(θ;σi), (6)

where λ(σi) > 0 is a coefficient function depending on σi. Assuming sθ(x, σ) has enough capacity,
sθ∗(x, σ) minimizes Eq. (6) if and only if sθ∗(x, σi) = ∇x log qσi(x) a.s. for all i ∈ {1, 2, · · · , L},
because Eq. (6) is a conical combination of L denoising score matching objectives.

There can be many possible choices of λ(·). Ideally, we hope that the values of λ(σi)`(θ;σi)
for all {σi}Li=1 are roughly of the same order of magnitude. Empirically, we observe that when
the score networks are trained to optimality, we approximately have ‖sθ(x, σ)‖2 ∝ 1/σ. This
inspires us to choose λ(σ) = σ2. Because under this choice, we have λ(σ)`(θ;σ) = σ2`(θ;σ) =
1
2E[‖σsθ(x̃, σ) +

x̃−x
σ ‖

2
2]. Since x̃−x

σ ∼ N (0, I) and ‖σsθ(x, σ)‖2 ∝ 1, we can easily conclude
that the order of magnitude of λ(σ)`(θ;σ) does not depend on σ.

We emphasize that our objective Eq. (6) requires no adversarial training, no surrogate losses, and no
sampling from the score network during training (e.g., unlike contrastive divergence). Also, it does
not require sθ(x, σ) to have special architectures in order to be tractable. In addition, when λ(·) and
{σi}Li=1 are fixed, it can be used to quantitatively compare different NCSNs.

4.3 NCSN inference via annealed Langevin dynamics

Algorithm 1 Annealed Langevin dynamics.

Require: {σi}Li=1, ε, T .
1: Initialize x̃0

2: for i← 1 to L do
3: αi ← ε · σ2

i /σ
2
L . αi is the step size.

4: for t← 1 to T do
5: Draw zt ∼ N (0, I)

6: x̃t ← x̃t−1 +
αi
2
sθ(x̃t−1, σi) +

√
αi zt

7: end for
8: x̃0 ← x̃T
9: end for

return x̃T

After the NCSN sθ(x, σ) is trained, we propose
a sampling approach—annealed Langevin dy-
namics (Alg. 1)—to produced samples, inspired
by simulated annealing [30] and annealed im-
portance sampling [37]. As shown in Alg. 1, we
start annealed Langevin dynamics by initializing
the samples from some fixed prior distribution,
e.g., uniform noise. Then, we run Langevin dy-
namics to sample from qσ1

(x) with step size
α1. Next, we run Langevin dynamics to sample
from qσ2

(x), starting from the final samples of
the previous simulation and using a reduced step
size α2. We continue in this fashion, using the fi-
nal samples of Langevin dynamics for qσi−1(x)
as the initial samples of Langevin dynamic for
qσi(x), and tuning down the step size αi gradually with αi = ε · σ2

i /σ
2
L. Finally, we run Langevin

dynamics to sample from qσL(x), which is close to pdata(x) when σL ≈ 0.

Since the distributions {qσi}Li=1 are all perturbed by Gaussian noise, their supports span the whole
space and their scores are well-defined, avoiding difficulties from the manifold hypothesis. When
σ1 is sufficiently large, the low density regions of qσ1(x) become small and the modes become less
isolated. As discussed previously, this can make score estimation more accurate, and the mixing of
Langevin dynamics faster. We can therefore assume that Langevin dynamics produce good samples
for qσ1

(x). These samples are likely to come from high density regions of qσ1
(x), which means
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Model Inception FID

CIFAR-10 Unconditional
PixelCNN [59] 4.60 65.93
PixelIQN [42] 5.29 49.46
EBM [12] 6.02 40.58
WGAN-GP [18] 7.86± .07 36.4
MoLM [45] 7.90± .10 18.9
SNGAN [36] 8.22± .05 21.7
ProgressiveGAN [25] 8.80± .05 -
NCSN (Ours) 8.87± .12 25.32

CIFAR-10 Conditional
EBM [12] 8.30 37.9
SNGAN [36] 8.60± .08 25.5
BigGAN [6] 9.22 14.73

Table 1: Inception and FID scores for CIFAR-10
Figure 4: Intermediate samples of annealed
Langevin dynamics.

they are also likely to reside in the high density regions of qσ2(x), given that qσ1(x) and qσ2(x) only
slightly differ from each other. As score estimation and Langevin dynamics perform better in high
density regions, samples from qσ1

(x) will serve as good initial samples for Langevin dynamics of
qσ2

(x). Similarly, qσi−1
(x) provides good initial samples for qσi(x), and finally we obtain samples

of good quality from qσL(x).

There could be many possible ways of tuning αi according to σi in Alg. 1. Our choice is αi ∝ σ2
i .

The motivation is to fix the magnitude of the “signal-to-noise” ratio αisθ(x,σi)
2
√
αi z in Langevin dynam-

ics. Note that E[‖αisθ(x,σi)2
√
αi z ‖

2
2] ≈ E[αi‖sθ(x,σi)‖

2
2

4 ] ∝ 1
4E[‖σisθ(x, σi)‖

2
2]. Recall that empirically

we found ‖sθ(x, σ)‖2 ∝ 1/σ when the score network is trained close to optimal, in which case
E[‖σisθ(x;σi)‖22] ∝ 1. Therefore ‖αisθ(x,σi)2

√
αi z ‖2 ∝

1
4E[‖σisθ(x, σi)‖

2
2] ∝

1
4 does not depend on σi.

To demonstrate the efficacy of our annealed Langevin dynamics, we provide a toy example where the
goal is to sample from a mixture of Gaussian with two well-separated modes using only scores. We
apply Alg. 1 to sample from the mixture of Gausssian used in Section 3.2. In the experiment, we
choose {σi}Li=1 to be a geometric progression, with L = 10, σ1 = 10 and σ10 = 0.1. The results are
provided in Fig. 3. Comparing Fig. 3 (b) against (c), annealed Langevin dynamics correctly recover
the relative weights between the two modes whereas standard Langevin dynamics fail.

5 Experiments

In this section, we demonstrate that our NCSNs are able to produce high quality image samples on
several commonly used image datasets. In addition, we show that our models learn reasonable image
representations by image inpainting experiments.

Setup We use MNIST, CelebA [34], and CIFAR-10 [31] datasets in our experiments. For CelebA,
the images are first center-cropped to 140× 140 and then resized to 32× 32. All images are rescaled
so that pixel values are in [0, 1]. We choose L = 10 different standard deviations such that {σi}Li=1 is
a geometric sequence with σ1 = 1 and σ10 = 0.01. Note that Gaussian noise of σ = 0.01 is almost
indistinguishable to human eyes for image data. When using annealed Langevin dynamics for image
generation, we choose T = 100 and ε = 2× 10−5, and use uniform noise as our initial samples. We
found the results are robust w.r.t. the choice of T , and ε between 5× 10−6 and 5× 10−5 generally
works fine. We provide additional details on model architecture and settings in Appendix A and B.

Image generation In Fig. 5, we show uncurated samples from annealed Langevin dynamics for
MNIST, CelebA and CIFAR-10. As shown by the samples, our generated images have higher or
comparable quality to those from modern likelihood-based models and GANs. To intuit the procedure
of annealed Langevin dynamics, we provide intermediate samples in Fig. 4, where each row shows
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(a) MNIST (b) CelebA (c) CIFAR-10

Figure 5: Uncurated samples on MNIST, CelebA, and CIFAR-10 datasets.

Figure 6: Image inpainting on CelebA (left) and CIFAR-10 (right). The leftmost column of each
figure shows the occluded images, while the rightmost column shows the original images.

how samples evolve from pure random noise to high quality images. More samples from our approach
can be found in Appendix C. We also show the nearest neighbors of generated images in the training
dataset in Appendix C.2, in order to demonstrate that our model is not simply memorizing training
images. To show it is important to learn a conditional score network jointly for many noise levels and
use annealed Langevin dynamics, we compare against a baseline approach where we only consider
one noise level {σ1 = 0.01} and use the vanilla Langevin dynamics sampling method. Although this
small added noise helps circumvent the difficulty of the manifold hypothesis (as shown by Fig. 1,
things will completely fail if no noise is added), it is not large enough to provide information on
scores in regions of low data density. As a result, this baseline fails to generate reasonable images, as
shown by samples in Appendix C.1.

For quantitative evaluation, we report inception [48] and FID [20] scores on CIFAR-10 in Tab. 1. As
an unconditional model, we achieve the state-of-the-art inception score of 8.87, which is even better
than most reported values for class-conditional generative models. Our FID score 25.32 on CIFAR-10
is also comparable to top existing models, such as SNGAN [36]. We omit scores on MNIST and
CelebA as the scores on these two datasets are not widely reported, and different preprocessing (such
as the center crop size of CelebA) can lead to numbers not directly comparable.

Image inpainting In Fig. 6, we demonstrate that our score networks learn generalizable and
semantically meaningful image representations that allow it to produce diverse image inpaintings.
Note that some previous models such as PixelCNN can only impute images in the raster scan order.
In contrast, our method can naturally handle images with occlusions of arbitrary shapes by a simple
modification of the annealed Langevin dynamics procedure (details in Appendix B.3). We provide
more image inpainting results in Appendix C.5.
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6 Related work

Our approach has some similarities with methods that learn the transition operator of a Markov chain
for sample generation [4, 51, 5, 16, 52]. For example, generative stochastic networks (GSN [4, 1])
use denoising autoencoders to train a Markov chain whose equilibrium distribution matches the
data distribution. Similarly, our method trains the score function used in Langevin dynamics to
sample from the data distribution. However, GSN often starts the chain very close to a training
data point, and therefore requires the chain to transition quickly between different modes. In
contrast, our annealed Langevin dynamics are initialized from unstructured noise. Nonequilibrium
Thermodynamics (NET [51]) used a prescribed diffusion process to slowly transform data into
random noise, and then learned to reverse this procedure by training an inverse diffusion. However,
NET is not very scalable because it requires the diffusion process to have very small steps, and needs
to simulate chains with thousands of steps at training time.

Previous approaches such as Infusion Training (IT [5]) and Variational Walkback (VW [16]) also
employed different noise levels/temperatures for training transition operators of a Markov chain.
Both IT and VW (as well as NET) train their models by maximizing the evidence lower bound of
a suitable marginal likelihood. In practice, they tend to produce blurry image samples, similar to
variational autoencoders. In contrast, our objective is based on score matching instead of likelihood,
and we can produce images comparable to GANs.

There are several structural differences that further distinguish our approach from previous methods
discussed above. First, we do not need to sample from a Markov chain during training. In contrast,
the walkback procedure of GSNs needs multiple runs of the chain to generate “negative samples”.
Other methods including NET, IT, and VW also need to simulate a Markov chain for every input to
compute the training loss. This difference makes our approach more efficient and scalable for training
deep models. Secondly, our training and sampling methods are decoupled from each other. For
score estimation, both sliced and denoising score matching can be used. For sampling, any method
based on scores is applicable, including Langevin dynamics and (potentially) Hamiltonian Monte
Carlo [38]. Our framework allows arbitrary combinations of score estimators and (gradient-based)
sampling approaches, whereas most previous methods tie the model to a specific Markov chain.
Finally, our approach can be used to train energy-based models (EBM) by using the gradient of an
energy-based model as the score model. In contrast, it is unclear how previous methods that learn
transition operators of Markov chains can be directly used for training EBMs.

Score matching was originally proposed for learning EBMs. However, many existing methods
based on score matching are either not scalable [24] or fail to produce samples of comparable
quality to VAEs or GANs [27, 49]. To obtain better performance on training deep energy-based
models, some recent works have resorted to contrastive divergence [21], and propose to sample with
Langevin dynamics for both training and testing [12, 39]. However, unlike our approach, contrastive
divergence uses the computationally expensive procedure of Langevin dynamics as an inner loop
during training. The idea of combining annealing with denoising score matching has also been
investigated in previous work under different contexts. In [14, 7, 66], different annealing schedules
on the noise for training denoising autoencoders are proposed. However, their work is on learning
representations for improving the performance of classification, instead of generative modeling.
The method of denoising score matching can also be derived from the perspective of Bayes least
squares [43, 44], using techniques of Stein’s Unbiased Risk Estimator [35, 56].

7 Conclusion

We propose the framework of score-based generative modeling where we first estimate gradients of
data densities via score matching, and then generate samples via Langevin dynamics. We analyze
several challenges faced by a naïve application of this approach, and propose to tackle them by
training Noise Conditional Score Networks (NCSN) and sampling with annealed Langevin dynamics.
Our approach requires no adversarial training, no MCMC sampling during training, and no special
model architectures. Experimentally, we show that our approach can generate high quality images
that were previously only produced by the best likelihood-based models and GANs. We achieve the
new state-of-the-art inception score on CIFAR-10, and an FID score comparable to SNGANs.
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