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ABSTRACT

Multi-agent reinforcement learning is a particularly challenging problem. Cur-
rent methods have made progress on cooperative and competitive environments
with particle-based agents . Little
progress has been made on solutions that could operate in the real world with in-
teraction, dynamics, and humanoid navigation strategies. In this work, we make a
significant step in multi-agent models on simulated humanoid navigation by com-
bining Multi-Agent Reinforcement Learning with Hierarchical Reinforcement
Learning. Specifically, we develop a partial parameter sharing approach wherein
the lower level of the hierarchy is shared

. This drastically reduces the overall parameter space in the multi-agent
problem and introduces structure in the optimization problem.

We build on top of prior foundational work in learning
to learn low-level physical controllers

for multi-agent goal-directed collision avoidance. Surprisingly, our results show
that with this combination of methods, RL techniques can be used for finding
strong policies. A video of our results on a multi-agent pursuit environment can
be seen herd!]

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has been successful in solving complex planning tasks. Given
a sizeable computational budget DRL has displayed superhuman performance on many games (Mnih
et al., 2015} [Silver et al., 2017). However, less progress has been made on the Multi-Agent Rein-
forcement Learning (MARL) problem space, possibly due to the non-stationary optimization of
multiple changing policies, which is not easily overcome by collecting more data (OpenAl, [2018).
If the goal is to create agents that can operate in a dynamic multi-agent world, more stable methods
with novel forms of communication are needed. The trend to make progress on MARL has been
to simplify the optimization problem. For example, converting the multi-agent problem into a sin-
gle agent centralized model results in large gains in performance but can increase the number of
network parameters significantly and imposes a constraint on the generalization to the number of
agents (Lowe et al., 2017). By using recurrent policies, significant computational power, and con-
straints on the amount the policy is allowed to change between updates, it is possible to beat the best
humans at the multi-agent game of Dota (OpenAl, 2018)). While these methods have shown promise,
they require significant amounts of compute and have not yet displayed success in complex and dy-
namic multi-agent environments. While recent work has been successful in producing competitive
behaviour using asymmetric self-play, this work is limited to two agents (Bansal et al.| [2017).

In this work, we propose the integration of MARL with Hierarchical Reinforcement Learning (HRL)
to produce heterogeneous humanoid agents that can both navigate and interact in dynamic simula-
tion. Specifically, we propose a method to reduce the complexity in the MARL policy optimization
problem using a type of parameter sharing. While previous methods have focused on re-framing
the problem as a type of single-agent RL problem, we show that this does not scale. Our method
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preserves the essential features of heterogeneous agent behaviour without adding more network pa-
rameters (Lowe et al.,[2017)).

Given the shared sub-policy, the optimiza-
tion is simplified and allows learning complex multi-agent policies with significantly less data. This
method represents, to the best of our knowledge, the first method for heterogeneous multi-agent
physical character control for locomotion, navigation, and behaviour.

2 RELATED WORK

Simulated robot and physical character control is a rich area of research with many solutions and
approaches. Neural models focused on training neural networks by receiving joint or body sen-
sor feedback as input and producing appropriate joint angles as output (Geng et al., [2006; Kun &
Miller 111} {1996; Miller 111, {1994)). A biped character’s movement controller set can also be manually
composed using simple control strategies and feedback learning (Yin et al., 2007} [Faloutsos et al.,
2001). HRL has been proposed as a solution to handling many of the issues with current RL tech-
niques that have trouble with long horizons and weak signal. Many frameworks have been proposed
for HRL, but none seem to be the obvious choice for any particular problem (Sutton et al., [1999;
Dayan & Hintonl |1993} Dietterich,|1999). One difficulty in HRL design is finding a reasonable com-
munication representation to condition the lower level. Some methods pretrain the lower level on a
random distribution (Heess et al.,[2016; |Peng et al.| 2017; Merel et al.,|2018)) and others learn a more
constructive latent encoding (Nair et al., 2018} |[Eysenbach et al., [2019; |Gupta et al., [2018)). There
is also the present challenge of learning multiple levels of the hierarchy concurrently (Vezhnevets
et al.,[2017;Nachum et al., 2018} Levy et al.|[2017a)).

2.1 MULTI-AGENT DEEP REINFORCEMENT LEARNING

There are many types of multi-agent learning problems, including cooperative-competitive and with-
without communication (Bu et al., [2008; Tanl 1993} Panait & Luke, [2005). Recent work converts
the MARL problem to a single agent setting by using a single Q-function across all agents (Lowe
et al.,[2017). Additional work focuses on the problem of learning communication methods between
agents (Foerster et al.l 2016)). While progress is being made, MARL is notoriously tricky due to
the non-stationary optimization issue, even in the cooperative case (Claus & Boutilier] [1998)). In
this work, we apply a partial parameter sharing method assuming all agents share task-agnostic
locomotion and optimize similar goals (Gupta et al.| 2017).

There exists few environments specifically created for MARL evaluation (Zheng et al.| 2018};|Suarez
et al., |2019). The focus of these environments is often a type of strategy learning and coopera-
tion (Tian et al., 2017; |Vinyals et al.,|2017). MARL is a growing area of research and, as such, will
need increasingly complex environments to evaluate algorithms. In this work, we are interested in
the overlapping problems of control and perception. To this end, we have created the first simulation
of its type that affords multiple physics-based control tasks with variable numbers of agents. Recent
work has begun to combine MARL and HRL but is limited to simple environments, uses additional
methods to stabilize the optimization, and includes communication (Tang et al., |2018; Han et al.,
2019)). This work focuses on a decentralized approach for interacting models that generalize across
scenarios, agent numbers, and tasks.

Our work represents a new paradigm in learning within the multi-agent navigation domain that
goes beyond simple navigation control strategies. We show compelling Al that learns navigation
and gameplay strategies with fully articulated physical characters. This is achieved through a novel
learning strategy that produces high-value policies for a complicated control problem.



Under review as a conference paper at ICLR 2020

3 POLICY REPRESENTATION AND LEARNING

In this section, we outline key details of the general Reinforcement Learning (RL) framework. RL
is formulated on the Markov Dynamic Process (MDP) framework: at every time step ¢, the world
(including the agent) exists in a state s; € S, wherein the agent is able to perform actions a; € A,
sampled from a policy 7(s¢, a;) which results in a new state s;; € S according to the transition
probability function T'(s¢41|at, s¢). Performing action a; in state s; produces a reward 7, from the
environment; the expected future discounted reward from executing a policy 7 is:

T
J(1) = Erg,...orz [Z 7] (1
t=0

where 7' is the maximum time horizon, and + is the discount factor, indicating the planning horizon
length. The agent’s goal is to optimize its policy, 7(-|0, ), by maximizing J (7). The policies in the
work are trained using the Proximal Policy Optimization (PPO) algorithm (Schulman et al., [2017).
The value function is trained using TD(\).

3.1 HIERARCHICAL REINFORCEMENT LEARNING

In HRL the original MDP is separated into different MDPs that should be easier to solve separately.
In practice, this is accomplished by learning two different policies in two different layers. The lower
level policy is trained first and is often conditioned on a latent variable or goal g. The lower level
policy 7'°(als, g) is constructed in a way to give it temporally correlated behaviour depending on the
g. After the lower level policy is trained, it is used to help solve the original MDP using a separate
policy 7 (g|s). This policy learns to provide goals to the lower policy to maximize rewards.

4  MULTI-AGENT REINFORCEMENT LEARNING

The extension to the MDP framework for MARL is a partially observable Markov game (Littman,
1994)). A Markov game has a collection of NV agents, each with its own set of actions Ag, ..., A and
partial observations Oy, . .., Oy of the full state space S. Each agent i has its own policy 7 (a|o;, 8;)
that models the probability of selecting an action. The environment transition function is a function
of the full state and each agent’s actions T'(S’|S, Ay, ..., Ax). Each agent i receives a reward r;
for taking a particular action a; given a partial observation o; and its objective is to maximize this
reward over time ZtT:O ytrt , where v is the discount factor and 7T is the time horizon. The policy
gradient can be computed for each agent as

Vo, J(7(:6;)) = / dy, (oi)/ Vo, log(m(a;|0,0;))Ar (04, a;) da; do; 2)
0; A

where dg = | S ZtT:o vtpo(0o) (00 — o | t,mo) dog is the discounted state distribution, po(0) repre-
sents the initial state distribution, and po(0g) (09 — 0| ¢, o) models the likelihood of reaching state
s by starting at state oy and following the policy 7 (a, 0|0;) for T steps (Silver et al.l 2014). Here
A (0, a) represents the advantage function estimator GAE()) (Schulman et al., 2016).

The challenge in MARL is that each agent learns separately, and this often results in a non-stationary
learning problem. Each agent is learning how to estimate the dynamics and advantage of an environ-
ment that is affected by other actively learning agents. Data collected and used for learning becomes
inaccurate after any learning update; thus, the problem is non-stationary.

Instead, we propose a decentralized method that does not need to learn a complex Q-
function and reduces the optimization challenges by using HRL.
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4.1 TASK-AGNOSTIC LOCOMOTION CONTROLLER (LC)

The LC, the lower-level policy in our design, is designed to learn a robust and diverse policy
m(ay|ot, g, 01°) based on a latent goal g; varaible. The footstep goals g1, = {po, D1, Oroot } in Fig-

ure consist of the agent root relative distances of the next two footsteps on the ground plane and
the desired facing direction at the first step’s end. This goal description is motivated by work that
shows people may plan steering decisions two foot placements ahead (Zaytsev et al][2015).

The LC learns to place its feet as accurately as it can to match these step goals using the reward
rrg = exp(—0.2||s?, . — gr||?). The better the LC learns this behaviour, the more responsive the

controller will be to provided goals.

4.2 MULTI-AGENT HIERARCHICAL REINFORCEMENT LEARNING

We construct a multi-agent learning structure that takes advantage of hierarchical design or Multi-
Agent Hierarchical Reinforcement Learning (MAHRL). Each agent has its own higher level policy
(Multi-Agent Navigation Controller (NC)) 7(g|o, 6%) and a shared task agnositic lower level policy
(LC) 7(alo, g, 0°). This method allows us to introduce more structure into the difficlut multi-agent
optimization problem. This change alters the underlying MDP, such that the policy is queried for a
new action every k timesteps. This also changes the MDP method by reducing the dimensoinality of
the action space to specifiying goals g while using the low-level policy to produce more temporally
consistent behaviour in the original action space. The low-level policy is used in a deterministic man-
ner to futher reduce variance introduced into the problem. We will use the notation 7 (a;|o;, 9?1, Gl")
to denote the policy induced by the pair of policies. While current research shows that it is challeng-
ing but possible to train a two-level hierarchy concurrently (Nachum et al.} 2018} [Levy et al.l[2017b),
we instead pretrain the lower level policy and leave it fixed and shared across all agents. This re-
duces the MARL problem from learning the details of locomotion via joint torques for each agent
to learning goal-based footstep plans for each agent.

The use of HRL is key to the method. When the challenge in MARL is dealing with what can be
large changes in the distribution of states visited by the agent, the use of a temporally correlated
structure given by the goal-conditioned LC significantly reduces the non-stationarity. Not only is
each agent sharing its network parameters with each other agent, but this portion has also been
carefully constructed to provide structured exploration for the task, thus greatly reducing the number
of network parameters that need to be learned. This is in contrast to centralized methods that take
a step away from the goal of solving the heterogeneous problem in a scalable way. We extend the
analysis of this work by combining the PPO algorithm in a MARL partial parameter sharing setting.
Details of the algorithm can be found in the supplementary material. The use of the LC controls the
way dp, (0;) can change for each agent making it easier for each agent to estimate other agents
potential changes in behaviour because the LC is already trained to produce a specific type of useful
behaviour that is a subset of the full space. We also create a version of MADDPG that uses the HRL
structure and show that it does not perform as well.

5 LEARNING HIERARCHICAL MULTI-AGENT NAVIGATION CONTROL

To solve the hierarchical learning problem, we train in a bottom-up fashion sharing the LC policy
among heterogenous NC policies. The levels of the hierarchy communicate through shared actions
and state in a feedback loop that is meant to reflect human locomotion. The NC’s objective is to
provide footstep placement goals a = g, for the LC as seen in the right hand side of Figure [T}
These footstep goals are produced as two-step plans. Each step is parameterized with its root-relative
placement, angle on the ground, centre of mass heading vector, and a time signature. The NCs are
queried for a new footstep action every 0.5 s. The NCs decides what action to take based on the
egocentric velocity field E in front of the agent, its pose S¢pq, and the NC goal g7, which together
form the NC state C = {E, Schar, gu }, seen in the left box of Figure

5.1 STATE SPACE

In several studies, it has been shown that optic flow, an inherently egocentric phenomenon of map-
ping velocities to regions of vision, is key to sighted locomotion (Bruggeman et al.,[2007; Warren Jr|
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Figure 1: An overview of the MAHRL approach. From left to right: the NC state includes the relative goal
position and distance, an egocentric velocity field capturing the relative velocity of obstacles and other agents,
and the physical character link positions and linear velocities; for each agent this state is input to a multi-layer
CNN, including two dense hidden layers, and outputs actions—the value function uses a similar network. These
high-level actions are in the form of two-step plans dictating future foot placements; the LC consumes these
footstep plans as g, which produces the angle-axis targets for joint PD controllers.

2001). Additionally, the visual field directly impacts walking ability and locomotion stabil-
ity (Jansen et all, 2011)). Taken together, vision’s role in locomotion forms an egocentric velocity
field where perceived distance and movement play different roles in locomotion control
2005). This evidence has been used previously to define multi-agent navigation models, both
by constructing a discretized egocentric field (Kapadia et al.,[2009) and by learning the discretization

of an egocentric field (Long et al., 2017).

The NC uses as input an egocentric velocity field relative to the agent’s location and rotation. This
egocentric velocity field E is 32 x 32 samples over a space of 5x5 m, starting 0.5 m behind the agent
and extending 4.5 m in front, shown in the left hand side of Figure[I] The velocity field consists of
two image channels in the x and y directions of a square area directly in front of the agent, where
each sample is calculated as the velocity relative to the agent (Bruggeman et al., 2007, Warren Jr
2001). The current pose of the agent is included next, followed by the NC goal. The NC goal
g consists of two values, the agent relative direction and the distance to the current spatial goal
location.

5.2 SIMULATION ENVIRONMENT & TRAINING

We construct a collection of physics-based simulation tasks to evaluate the method. At initialization,
each agent is randomly rotated, and the initial velocities of the agent’s links are determined by a
selected motion capture clip using finite differences and rotated to align with the agent’s reference
frame. Goal locations are randomly generated in locations that are at least 1 m away from any obsta-
cle. Each agent is randomly placed in the scene such that it does not intersect with any other agent or
obstacle. The number and density of agents in the simulation vary depending on the task. For train-
ing, we found that starting with 3 agents in the environment is a good trade-off between computation
cost and the generalization ability of the resulting learned policy. Environment specifics are given
in Table[I] We consider the simulation and training environment to be, to the best of our knowledge,
another novel contribution. While some simulators exist that support physics-based simulation for
robots (Brockman et all, 2016}, [Tassa et al.| [2018)), few support more than one agent, with at most
2 which interact beyond physical simulation and actually solve their tasks with respect to each
other. Other libraries focus on supporting different kinds of MARL configurations for particle-based
agents (Lowe et al.l 2017). Our proposed approach represents the first physics-based simulation of
its kind that supports MARL.

The NC uses convolutional layers followed by dense layers. The particular network used is as fol-
lows: 16 convolutional filters of size 6 x 6 and stride 2 x 2, 16 convolutional filters of size 3 x 3
and stride 1 x 1, the structure is flattened and the character and goal features S.nq, g7 are concate-
nated, a dense layer of 256 units and a dense layer of 128 units are used at the end. The network
uses Rectified Linear Unit (ReLU) activations throughout except for after the last layer which uses a
tanh activation that outputs values between [—1, 1]. All network inputs are standardized with respect
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| Name [agent count[obstacle count| size | agent direction [obs location]
Pursuit 3 [0,10] 10 x 10 m random random
Soccer 4 0 10 x 10 m|towards centre + A (0,0.1)]  none
Mall 3,5 [0,10) [10x 10m random random
Bottleneck 3,5 4 10 X 20 m right +A/(0,0.15) around

Table 1: Scenarios and their main parameters.
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to all states observed so far. The rewards are scaled by a running variance. That is, the variance is
computed from a running computation during training that is updated after every data collection
step. The batch size used for PPO is 256, with a smaller batch size of 64 for the value function.
The policy learning-rate and value function learning-rate are 0.0001 and 0.001, respectively. The
value function is updated four times for every policy update. The NC also uses the Adam stochastic
gradient optimization method (Kingma & Ba, 2014) to train the Artificial Neural Network (ANN)

parameters.

6 RESULTS

In this section, we demonstrate the efficacy of MAHRL.

We separate our evaluation into four sections. We examine the performance of MAHRL in
terms of training, quantitative metrics, and learned policies. Then we examine the performance in
terms of computation cost and generalizability over the number of agents in the environment.
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Figure 4: Comparative study of the learning curves of MAHRL based on PPO (blue) and MAHRL using TD3
(red) in the Soccer scenario. The yellow and green agents are the same team, while the blue and red on the other
team.

6.1 LEARNING

We evaluate MAHRL in complex multi-agent environments by first examining the performance
of the reward function over training episodes. We show that MAHRL performs much better than
the basic PPO algorithm without any hierarchical structure in the 5-agent Mall in Figure[2a] After a
lengthy training session, the basic PPO is not able to even produce a standing behaviour. We find that
MAHRL performs well and is able to learn navigation behaviour after a short amount of training. We
find that the hierarchical design provides a significant improvement in this case. We also compare
to MADDPG in Figure P23 and find that, while it does better than PPO as it also uses the HRL
structure, it struggles to produce good coordinated behaviour. We believe this is related to the large
Q-network that needs to be learned for MADDPG. Qualitatively, throughout training, even with
the increased control complexity, our method is able to learn successful navigation strategies shown
in Figure [§] Each agent in the scenario quickly develops strong navigation behaviours that become
more conservative over time as agents value avoiding collisions. This can result in agents taking
longer paths in the environment.

MAHRL, is also applied to a Pursuit environment. In this environment, there is one agent (agent 0)
with the same navigation goal as in previous environments. As well, two additional agents (pursuer
0,1) that have the goal of reaching agent 0. This is accomplished by setting a high-level goal gy for
the pursuers to the location of agent 0. In Figure[3a] we show a comparative analysis of the learning
curves of MAHRL, MADDPG, and PPO. We note that qualitatively, the three agents all begin to
increase their average reward via their navigation objective, as learning progresses the pursuing
agents outperform agent 0, shown in Figure [3b] and as they get better agent 0 has an increasingly
difficult time reaching its own navigation targets. An example of this behaviour is shown in Figure[7]

Last MAHRL is applied to a 2-on-2 soccer simulation, Soccer shown in Figurc@ In this simulation,
there are two teams of 2 bipedal agents. The goal of the members of each team is to kick the ball
into the other team’s goal area (shown in green). The task is particularly challenging to learn as each
agent now has to learn with one cooperative agent and two adversarial agents. We find that MAHRL
works well at learning policies for agents to locate and kick the ball into the opposing team’s goal.
The learning curves for two different methods that use MAHRL are shown in Figure [fa] on based
on PPO and another based on TD3. Our results often produce imbalanced teams where one team
becomes much better at the game than the other. This can be seen in the accompanying video on the
website.

By extracting the gradients on the input features for the value
function in the learned model, we can examine some artifacts
of what is learned. Recall that for input, we include in the state
. - of the NC a simple model of an egocentric perceptual field— a
rectangular region in front of the agent. We show that our mod-

els learns two important aspects of navigation with respect to
this field. The magnitude of the velocity field gradients in our
(a) egofieldx  (b) ego fieldy learned model reveals that the learning process has developed
an egocentric velocity field attenuated with distance. This can be seen in Figure [5a] Interestingly,
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Figure 6: Comparative analysis of collisions counts across all baselines, MADDPG, MAHRL with and without
heterogeneous agents, and PPO in the pursuit/tag scenario. MAHRL outperforms both MADDPG and PPO. In
this game, the collisions are indicators of poor policies leading to negative collisions during pursuit and evasion.
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Figure 8: Rasterized images from the mall environment with humanoid agents navigating and avoiding each
other while seeking goals. A video for this example can be found here,

this field is biased toward the rightward direction (down in the figures). This bias supports reciprocal
collision avoidance in counter flows.

6.2 QUANTITATIVE COMPARISON

To evaluate learned navigation strategies quantitatively, we capture the mean number of collision
events overall agents for each episode in several instantiations of the Mall environment. We perform
this study over the state-of-the-art MADDPG method, MAHRL with and without Heterogeneous
agents, and PPO. The results are shown in Figure[6a] For each model, we perform 155 policy rollouts
over several random seeds. The basic PPO algorithm does not appear to learn anything. A Kruskal-
Wallis rank-sum test and post-hoc Conover’s test with both FDR and Holm corrections for ties show
the MAHRL methods significantly outperform others (p j 0.01).

To evaluate the pursuit and evade strategies quantitatively, we capture the mean number of collision
events overall agents for each episode in several instantiations of the game. We perform this study
over the MADDPG method, MAHRL, and PPO. The results can be seen in Figurelﬂ For each model,
we run 155 simulations over several random seeds. A Kruskal-Wallis rank-sum test and post-hoc
Conover’s test with both FDR and Holm corrections for ties show the MAHRL and MADDPG
methods significantly outperform PPO (p < 0.01). However, MAHRL is not significantly different
from MADDPG (p = 0.45), but the distribution is skewed lower than MADDPG with more zero
collision samples.

6.3 QUALITATIVE RESULTS

To evaluate the NC policies qualitatively, we show that agents learn to navigate arbitrary scenarios
while avoiding collisions with both obstacles and other agents. First, we show a rasterized version
of an example episode from the Pursuit environment in Figure [7] where agents learn to corner and
tackle. Then, we show that agents can successfully and continuously navigate complicated environ-
ments of forced interactions, as seen in Figure Da (Kapadia et all 2011). Finally, robust clogging
and trampling are shown in both low and high-density bottleneck egress scenarios, respectively Fig-

ure
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Figure 9: (a) Agents reaching series of targets in arbitrary environments (images in raster order). (b) Egress
scenarios with a group of (left) 5 and (right) 21 agents. The density of the second group results in a physics-

based bumping, pushing, and trampling.
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Figure 10: The performance of the method from two quantitative perspectives, (a) the computational perfor-
mance with respect to agent count and (b) the generalization performance with respect to average reward value.

6.4 COMPUTATION AND GENERALIZATION

The deep integration of physical character control and
distributed multi-agent navigation comes with a cost di-
rectly dependent on the number of active agents. In this
section, we show two results in the same experiment, the
computational costs of increasing the number of agents
and the model generalization to more difficult scenar-
ios. For two scenarios, mall and bottleneck, the num-
ber of agents is increased, and we record the average
reward and computation time from the simulation. The
agent-computation curve in Figure [I0[a) indicates a lin-
ear trend in computational cost. While at agents counts
in the 20s the simulation is not real-time, the most com-
putationally expensive part is not the learning system but
the physics simulation. Computationally efficient articu-
lated body simulation is an active area of research
[2015)). For accurate and stable simulation, we use a
physics time-step of 0.0005 s.

To evaluate the learned policy’s ability to generalize with
group size, we vary the number of agents for select tasks

Figure 7: Rasterized overlays from the pur-
suit environment, where the pursuer agents
(red) learn to work together to corner and
tackle the navigating agent (blue). A video
for this example can be found |here|

after a homogeneous policy has been trained. The longer the policy can maintain a high average
reward, the better the generalization. In addition, the average reward for two different types of policy
training styles is compared. The first method trains on a single task at a time; the second method uses
multi-task learning in hopes that a more generalizable task-independent structure is acquired. The
multi-task method, often preferring to optimize easier tasks, does not appear to learn more robust
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policies compared to the scenario-space based method (Kapadia et al. 2011). All generalization
results can be seen in Figure [T0(b). However, generalization remains a known and open issue of
DRL methods (Zhang et al., 2018)

7 CONCLUSION

In this paper, we present a novel method where, for the first time, multi-agent navigation and physi-
cal character control are integrated. Multiple heterogeneous interacting agents can experience phys-
ical interactions, handle physical perturbations, and produce robust physical phenomena like falling
and slipping. To achieve this, we developed an integrated model of MARL and HRL with partial
parameter sharing. The evaluation of this approach shows how valuable it is for addressing the
non-stationary learning problem of MARL in complex multi-agent scenarios.

While our method produces promising results, the work is limited by the fixed LC partial parame-
ter sharing. There is room for research in the area of training the LC and NC concurrently. For the
NC, we introduced a set of reward functions to encourage human-like behaviour while navigating
with other agents. The literature motivates these rewards, but balancing them is its own challenge.
In the future, it may be beneficial to use additional data-driven imitation terms to encourage human-
like paths. Finally, considerable effort was made to create combined locomotion, navigation, and
behaviour controller that is robust to the number of agents in the simulation. However, robust gen-
eralization remains an open problem.
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8 SUPPLEMENTARY MATERIAL

8.1 LocoMOTION CONTROLLER
8.1.1 REWARD

We found that a combination of imitation and end effector rewards leads to a robust and reactive
motion. The goal is to reward joint angle targets which result in mimicking source motions. The
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combination of these competing rewards leads to a complex balancing problem of many objectives—
trading off imitation behaviour for footstep matching.

8.1.2 IMITATION

The imitation method is predicated on time indexed 0.5 s long reference motions ¢;(t) created from
motion capture data and augmented with footstep parameterized labels. The difference between
the agent and the desired pose to imitate is computed as the weighted difference between the time
indexed pose and the agent rz,, = exp(—0.5>_. |[s%,,.,, — ' (t)]|?). The motion database contains 7 s
of segmented motion that coarsely covers the space of possible footstep positions and the motions
necessary to realize those footsteps. The accuracy and diversity of the Low-Level Controller (LLC)’s
motion can be increased or made more robust with additional motion if desired, including stylized,
disordered, running, and more.

However, if the agent matches these footstep goals too well, the smoothness of the motion will
degrade. A balance is struck between learning robust footstep placement strategies and perfect
mimicry—the reference motions and foot placements guide naturalness and should not be over-fitted.

8.1.3 END EFFECTOR

An additional reward is given to encourage the policy to match the end-effector positions in the imi-
tation motion 7. = exp(—0.15 ", [|s%,.. — ¢¢(¢)||?). Reward is also given for how well the agent
matches the imitated motion’s Centre of Mass (COM) 71,com = exp(—0.2 > |[sso™. — gom(¢)]|?)

char

8.1.4 TORQUE PENALTY

To smooth the actions generated from the control policy, a reward for maximizing the above rewards
with minimal torque cost is used 71 = exp(—O..Q > i.’T(Sthﬂ)): These torques are normalized by
specified torque limits that keep the agent from displaying unrealistic strength.

8.2 TRAINING & SIMULATION ENVIRONMENT

The LLC state includes the proprioceptive-like joint information. In particular, the components of
Schar consist of the COM relative distances and velocities of each links as well as the rotation and
angular velocities of each link as shown in Figure [[(d). The trained policy actions are in the form
of angle-axis targets for per-joint Proportional Derivative (PD) controllers. In this way, the action
is used to set the desired position of each joint of the agent. This can be seen in Figure [T{e). The
method is also able to learn policies for agents of different types. In Figure || we additionally show
the method using a full humanoid LLC character.

The agent is simulated with the physics-based rigid body simulation environment Bullet Bullet
(2015). The policy is trained in an on-policy fashion. At the beginning of each episode a goal gy, is
sampled from the simulation and updated every 0.5 s. Episodes end when either a time limit 7 is
reached or the agent falls. Between training rounds 4096 transition tuples are collected by simulating
episodes in parallel. After enough tuples have been collected 16 minibatch updates are performed
with a batch size of 256. The value function is updated 64 with a minibatch size of 64. For the policy
and value function. The policy and value function are both modeled using a ANN with 2 hidden lay-
ers of size 512 and 256. The network uses ReLU activations through except for after the last layer
where a fanh activation that outputs values between [—1, 1] is used. The Adam stochastic gradient
optimization method is used to train the ANN parameters Kingma & Ba/(2014)). The learning rates
for the policy and value function are 0.0001 and 0.001 respectively. Details related to the learning
algorithm can be found in the supplementary material.

Many previous methods have created robust controllers via imitation. These methods were not in-
tended to be used in crowds or dynamic environments with potentially random disturbances from
other interacting agents in the simulation. Given that we intend to use this agent in a physical multi-
agent simulation where the agent may bump into other agents or obstacles when trained in a crowded
setting, we apply additional methods to simulate pushes that may be encountered. That is, random
pushes between 50 — 150 N are applied every 3 — 5 s for a duration of 0.1 — 0.3 s to increase the
robustness of the controller. Similarly, the motions in the motion database start from the same facing
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direction. To make the agent more robust to distributed crowd scenarios, the agent’s initial facing
direction is randomized during training.

8.2.1 NC REWARD

Navigation combines the desire to move towards goals, while avoiding collisions with other objects,
in an energy efficient way. The methods purpose is to implicitly learn low effort local turning be-
haviour while avoiding collisions without the need to explicitly describe its operation. To elicit this
behaviour, a combination of reward signals are used. Primarily, a dense reward is used to encourage
the agent to walk in the direction of its current goal.

THad = eXP(*(miH(Q (utar * Ucom) - vcom))Q) (4)

where v..,, is the agent’s velocity and uz;r is a normalized vector in the direction of the goal. For
this work, a desired speed of V.o, = 1.0m/s is used.

A directional reward is not enough to encourage the agent to proactively reach its goal. To reinforce
the importance of goal reaching behaviour, a large reward 7,4 for reaching the goal is added—being
within v/2 m. In this work, the value 74,4, = 20 is used and comes from horizon = 1/(1 — v) and
the maximum reward the agent can otherwise receive is max(rq) = 1, a reward that will be more
important than travelling to the goal should be at least horizon * max(rq). This reward greatly
increases the goal reaching behaviour. However, it can have the unintended effect of making the
agent seek its goal aggressively, by trampling other agents. To reduce this behaviour, a repulsive
cost was added when the agent is within /3 m other agents

raa(a) = Y —(re+ (I —dist(a,a’)) (5)

a’€{A—a}

where A is the set of agents in the simulation, and dist(a,a’) computes the Euclidean distance
between the COM of agents a and a’. We empirically found r, = 2.5 and [ = 3.0 work well for
defining a distance dependent penalty in this case. This is intended to roughly approximate the power
law of pedestrian interactions (Karamouzas et al.,2014)). A similar repulsive cost is applied between
the agent a and obstacles OB in the scene rgy(a) = ) ,cop —2.5 for each obstacle within 1m of
a. The high reward for reaching the goal makes the agent very single-minded. The obstacle penalty
is introduced to prevent the agents from using obstacles as affordances to regain balance.

Many RL simulation environments use a flag to indicate the episode or simulation end. This indicates
that either the agent has reach its time limit or the agent has entered into an unrecoverable area of
the state space, such as a fall. With multiple agents, the likelihood of a fall is high. It is not clear
what to do when there are multiple agents being simulated. Terminating early, when one agent has
fallen, is sub-optimal for other agents doing well, and waiting for every agent to fall wastes compute
resources while most agents are collecting unhelpful data. We chose to reset the simulation when
more than half the agents have fallen. However, fallen agents continue to act and need to be heavily
penalized, so they receive a fixed reward of —5 which represents the largest penalty in our system.

The NC’s final reward function is a combination of the task rewards and behavioural costs:
-5 if fallen
ri(a) = { ! (6)

rgd +rae(a) + rgp(a) otherwise.

8.3 LEARNING DETAILS

The modification to this algorithm for the MARL method is to change line 7 — 8 to execute an action
for each agent in the simulation in parallel.

The Inputs are standardized wrt to all states seen so far. The rewards are divided by the variance.
The variance is computed from a running computation during training that is updated after every
data collection step. The advantage is batch normed.

Hyper Parameter Exploration Parameter exploration is a key process in acheiving the best re-
sults for DRL methods. In this work we explored different network architectures, policy variances,
annealing the variance, learning rates and activation types. The results with the best performance are
reported in the paper.
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Algorithm 1 Goal-Based Learning Algorithm

1: Randomly initialize model parameters 6, and 0,
2: while not done do
33 forie{0,...N}do
4: Ti < {}
5: fort € {0,..., T} do
6: ay < 7(+|s¢, 0r)
7 S¢41, Tt ¢ execute a; in environment
8: Tit << St, A, Tt >
9: St < Sg+1
10: end for
11:  end for
12:  Update value function V(-) parameters 6,, using {79, ..., 7N}
13:  Update policy parameters 0, using {9, ..., 7~}

14: end while
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Figure 11: Hyperparameter exploration learning curves for the LC training.

8.4 RESULTS DETAILS
8.4.1 LC HYPERPARAMETER EXPLORATION

The LC hyperparameter exploration learning curves in Figure[TT]illustrate the process of finding op-
timal training parameters. It was found that annealing the policy variance over time did not increase
the learning efficiency. As well, the best settings for the policy variance and kl_threshold are 0.2 and
0.25 respectively.

8.4.2 MULTI-AGENT NAVIGATION UNIT TASKS

In this section, we show several multi-agent navigation tasks and their qualitative performance us-
ing our method. These are rendered as birds-eye views of scenarios with each agents trajectory over
time rendered. Each agents goal is rendered as a red point within a red circle and the shortest linear
path to that from the agent’s current position is rendered as a red line. We show that agent’s learn to
navigate towards arbitrary goals repeatedly hitting its mark with each new goal in Figure[I2] Predic-
tive reciprocal collision avoidance is important in multi-agent navigation and lends naturalness to
qualitative results. We show our method learns high value reipcrocal collision avoidane strategies,
and we overlay the sample points for the velocity state space to illustrate how this is acheived in
Figure[I3] We show that this generalizes to the introduction of obstacles in both Figure[T4] &[13]
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Figure 12: The agent moves towards and reaches goals repeatedly (top-left to bottom-right). The learned model
produces smooth goal seeking trajectories show in in blue.

(@) (b) (©)

Figure 13: Three examples demonstrating reciprocal collision avoidance. The size and position of the egocen-
tric state sampling field relative of the agent is shown in (a).

Figure 14: Reciprocal collision avoidance with obstacles. Each agent’s initial position is the target location of
the other agent.
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() (b) (©)

Figure 15: An agent reaching goals in arbitrary complex environments. The red circle indicates the final goal.

8.5 ADDITIONAL DISCUSSION

8.5.1 LC AGILITY

While often in the crowd simulation literature it is common to have agents that can turn on point or
produce holonomic motions, this is unrealistic for articulated agents. Interestingly, the agent learned
stopping and in-place turning behaviour which was not contained in the imitation data the LC was
trained on, indicating the system can generate behaviours beyond its design. However, the agents
in this work do not make unrealistic sharp turns. This is in part related to the NC being able to
avoid falls, however there are many other factors: The LC motion capture data, g;, selection during
LC training and that the LC was not trained with other agents. Progress in any of these areas can
improve the responsiveness of the LC and is left for future work.

While the LC is goal driven, this goal is only based on foot placement, a fully interactive agent can
have many other types of short term goals, including where to put one’s hands to manipulate items
in the environment, like doors.
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