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ABSTRACT

Answering questions about a text frequently requires aggregating information
from multiple places in that text. End-to-end neural network models, the dom-
inant approach in the current literature, can theoretically learn how to distill and
manipulate representations of the text without explicit supervision about how to
do so. We investigate a canonical architecture for this task, the memory network,
and analyze how effective it really is in the context of three multi-hop reasoning
settings. In a simple synthetic setting, the path-finding task of the bAbI dataset
(Weston et al., 2015), the model fails to learn the correct reasoning without addi-
tional supervision of its attention mechanism. However, with this supervision, it
can perform well. On a real text dataset, WikiHop (Welbl et al., 2017), the mem-
ory network gives nearly state-of-the-art performance, but does so without using
its multi-hop capabilities. A tougher anonymized version of the WikiHop dataset
is qualitatively similar to bAbI: the model fails to perform well unless it has ad-
ditional supervision. We hypothesize that many “multi-hop” architectures do not
truly learn this reasoning as advertised, though they could learn this reasoning if
appropriately supervised.1

1 INTRODUCTION

Question answering from text is a key challenge problem for NLP that tests whether models can
extract information based on a query. Recent new datasets (Richardson et al., 2013; Hill et al., 2015;
Hermann et al., 2015; Rajpurkar et al., 2016) and new models (Seo et al., 2016; Shen et al., 2017; Yu
et al., 2018) have dramatically advanced the state-of-the-art in this area. However, some QA tasks,
such as SQuAD, only simple pattern matching to solve (Weissenborn et al., 2017). One thread
of recent work has emphasized multi-hop reasoning in particular (Kumar et al., 2016; Joshi et al.,
2017; Welbl et al., 2017), particularly work on memory networks (Weston et al., 2015; Sukhbaatar
et al., 2015; Kumar et al., 2016). Memory networks define a generic model class that attends to a
text passage using the question and a memory cell iteratively to gather information in the different
parts of the passage. Many existing reading comprehension models use memory net-like structures
and iterative attention over the document, showing improvement in a variety of tasks and settings
(Hermann et al., 2015; Peng et al., 2015; Sordoni et al., 2016; Dhingra et al., 2016; Shen et al., 2017;
Raison et al., 2018).

We tackle two main questions in this paper. First, are memory networks effective? Second, do they
behave as advertised (selecting a sequence of relevant passage excerpts through their computation)?
We examine the behavior of memory network-like models across three different tasks. These in-
clude one purely synthetic setting, the bAbI path-finding task (Weston et al., 2015), and two forms
of a more realistic multi-hop reasoning dataset constructed from Wikipedia (Welbl et al., 2017). In
each case, we apply memory networks to the problem, and can observe their performance and be-
havior. Exploiting the properties of these particular datasets, we can use heuristics capturing how
humans might solve this problem to derive a pseudogold “reasoning chain.” We then compare the
model’s reasoning chain with this pseudogold to see whether the model is following a similar chain
of reasoning.

Our results show that memory networks generally do not learn to do reasoning in the right way,
but can do well when using additional supervision to guide how they reason. On bAbI and in a

1Code and auxiliary supervision will be available on release.
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Gregorio di Cecco was an Italian painter 
of the Sienese School during the early 
Renaissance.
……
Florence is the capital city of the Italian 
region of Tuscany
……
The Sienese School of painting flourished 
in Siena, Italy between the 13th and 15th 
centuries and for a time rivaled Florence.
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Figure 1: Computation flow of our hierarchical memory network on an example from WikiHop
(Welbl et al., 2017). The question is encoded to produce a query q1, which produces sentence-
level attention α and word-level attention β for each sentence. This attention computes a passage
representationm1 from which we form the query q2 for the next step of inference.

“masked” form of the WikiHop task (where entities are anonymized), the memory network performs
badly when applied in the standard way. However, when we explicitly supervise the model with
pseudogold chains, the model can perform dramatically better with no other changes to its structure
or parameterization. On the standard WikHop dataset, our memory network model can achieve
nearly state-of-the-art performance, but we show that this is not due to multi-hop reasoning: it
barely outperforms a baseline that does not make use of the text at all, calling into question what is
being learned. However, additional supervision on the attention can still yield improvement, making
our final system close in performance to much more sophisticated state-of-the-art models.

Our observations can be summarized as follows:

• In both synthetic and more realistic settings, memory networks fail to learn multi-hop rea-
soning from task supervision alone. This is true even though there exist settings of the
parameters that do fit the data, as we can see by their success when more heavily super-
vised.

• When the attention of memory networks is additionally supervised during training, they
can do well at text question answering. This supervision qualitatively changes the model’s
performance with respect to multi-hop reasoning.

• When memory networks and related models perform well on multi-hop reasoning tasks,
they may be doing so through other means and not actually performing multi-hop reason-
ing, as we see on the standard WikiHop setting.

2 MODEL

In this paper, we use a hierarchical version of the original memory network, shown in Figure 1.
Given a passage P containing n sentences and a query Q, we first map all the words in P and
Q to d-dimensional vectors by an embedding matrix E ∈ R|V |×D, where |V | is the size of vo-
cabulary. Next, we use word-level bidirectional GRUs (Chung et al., 2014) with hidden size h
to compute contextual representations of each token in the query and each token in the sentences
Si = w1, w2, ..., wm in P . We then have Si = hw1 ,h

w
2 , ...,h

w
m, Q = hq1,h

q
2, ...,h

q
k. We then use

another bidirectional GRU with the same hidden size h on the sentence level to form sentence-level
representations for the passage: P = hS1 ,h

S
2 , ...,h

S
n .

For a single layer reasoning model, we take the encoded query q1 = hqk and use it to compute
sentence-level attention α as well as word-level attention βi for each sentence i, which then are used
to compute our summarized passage representation (memory):

α = softmax(q1WαP ), βi = softmax(q1WβSi), m =
∑
i

αi

∑
j

βijh
w
j

 (1)
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QUERY: How do you go from the bathroom to the hallway?      

 S1 The bathroom is south of the bedroom.         S2 The garden is west of the bathroom.      S3 The bedroom is south of the hallway.                            

 S4 The office is north of the hallway.                      S5 The kitchen is east of the bedroom.       Answer: North North

Figure 2: An example from the Path Finding task (Weston et al., 2015). The bold sentences denote
the gold reasoning chain. The arrows illustrates the reasoning process.

The product of αiβj can be viewed as a hierarchical way of achieving a word-level attention which
normalizes over the passage. When using multiple steps of reasoning, shared GRU encoders are
used but different attention weight matrices Wα and Wβ are used for each step. At timestep t > 1,
the query qt is a combination of the memorym(t−1) of last time step and the original encoded query
q1, computed as:

qt = ReLU(Wt(q1 +m(t−1)), (2)

Then, based on Equation 1, we can compute the sentence-level attention α, word-level attention β,
and memory for each step.

We can either predict the answer from the last memory cell mtfinal or use a combination of multiple
memory cell values; this is a hyperparameter we vary for different datasets. We denote the model
proposed here as MemNet in the following sections.

3 ATTENTION SUPERVISION

With the attention weights α and β, our model exposes an explicit representation of what part of
the passage it consults at each timestep. Past work typically treats this as a purely latent variable to
be learned end-to-end. However, it can also be treated as a variable we can explicitly supervise (Liu
et al., 2016; Mi et al., 2016; Das et al., 2017). This allows us to “teach” the model the right mode of
reasoning at training time so it can generalize correctly at test time.

Suppose we want to supervise the reasoning chain at training time. We assume access to a series of
subjectively “correct” sentence-level attention targets α∗ = (α∗1, . . . ,α

∗
n) for the n steps of infer-

ence. We can encourage the model to attend to these targets at each step by supervising the attention
weight; this supervision can be accomplished by incorporating a loss term L = −

∑
t log(α

∗
t )

We train with this extra supervision for the first several epochs during training, remove it after the
model performance converges on the development set, then keep training only with the downstream
supervision. The model trained with extra supervision is denoted as “MemNet+Sup”.

4 SYNTHETIC TASK: PATH-FINDING

To see how well our model learns multi-hop reasoning in a simple setting, we first conduct exper-
iments on the synthetic bAbI dataset (Sukhbaatar et al., 2015). The passages and questions in this
dataset are generated using templates, removing many complexities inherent in natural language.
The original memory network achieves fairly strong performance on most of the sub-tasks of bAbI,
but does poorly on the task of Path Finding (task 19). Figure 2 shows an example from this dataset.
Because examples are constructed synthetically with a completely random distribution, the model

1k examples 10k examples

MemNet from Sukhbaatar et al. (2015) 10.1% 19.2%

MemNet 17.4% 36.1%
MemNet+Sup 90.0% 100.0%

Table 1: The accuracy of MemNet on the task of Path Finding with 1k and 10k examples. Super-
vising the attention layers helps substantially. We also report the performance of the 2-hop memory
network in Sukhbaatar et al. (2015) for reference.
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Step 1 Step 2

> 0.5 > 0.8 AvgMax > 0.5 > 0.8 AvgMax
MemNet 11.1 7.8 0.88 42.8 30.0 0.76
MemNet+Sup 89.7 87.7 0.98 98.5 97.7 0.99

Table 2: Sentence-level attention weights placed on gold chains on both first and second step on the
bAbI development set. Models are trained on 1k examples. Here, “> a ” denotes the percentage
of samples which place more than an a-fraction of the weight on the gold sentence at that step.
AvgMax denotes the average maximum attention value over the whole development set. Statistics
on models trained on 10k examples look similar.

must consult multiple parts of the text in order to identify the correct path: there are no spurious
correlations or surface regularities it can use to achieve high performance.

Gold reasoning chains (the relevant sentences describing the path) are provided naturally with the
dataset, which provide a point of comparison for our model’s behavior. We focus on the Path Finding
task to test the limitations of our proposed model and see whether attention supervision helps.

Implementation Details Since the Path Finding task only requires a two-step reasoning, we fix
the number of MemNet hops to 2. The word embedding dimension is set to 100 and the GRU hidden
size is 128. We apply a dropout of rate 0.5 to both embedding layer and GRU output layer. Batch
size is set to 32 and we use Adam (Kingma & Ba, 2014) as the optimization method with an initial
learning rate 0.0001.

4.1 RESULTS

The results on Path Finding are shown in Table 1. MemNet trained on 1k examples performs poorly,
similar to results from the original memory network in previous work. However, once the gold
chains are provided, the performance improves significantly. Even in the larger 10k examples set-
ting, the memory network still fails to generalize, while extra supervision enables it to achieve
perfect accuracy.

We can probe our model further and compare its learned sentence-level attention values with the
gold reasoning chain to see whether the model’s attention aligns with a human’s. The statistics
are shown in Table 2. The average max weight tells us that the attention distribution is somewhat
peaked even for MemNet – but while the model always attends to something, it does not attend to the
gold chain. The MemNet model can fit the training set, but it does not generalize when only using
the downstream supervision. While the model may work better with more training data, requiring
more than 10k examples for a synthetic task suggests that the model will not scale to real natural
language data. By adding the extra supervision, we can see a big jump both in the performance and
the number of sentences with the correct attention. The attention supervision helps the model figure
out the right pattern of reasoning, which it can apply at test time.

Overall, we see that even in a simple synthetic setting, the MemNet fails to learn multi-hop rea-
soning. Critically, we see that this does not appear to be a failing of the model: it is within our
model’s capacity to learn to do the right thing, but not without additional supervision. This calls into
question whether memory networks are doing the right thing in more complex, real-world problems,
and whether we might be able to improve them in those settings as well, as we explore in the next
section.

5 WIKIHOP

WikiHop (Welbl et al., 2017) is a recently released reading comprehension dataset specially de-
signed for multi-hop reasoning over multiple documents. Disjoint pieces of text over multiple docu-
ments are required to answer the question. Each instance of the dataset contains several documents
d1, d2, ..., dn. Questions are posed as a query of a relation r followed by a head entity h, with the
task being to find the tail entity t from a set of entity candidates E.
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QUERY: place_of_birth Gregorio di Cecco

DOC 1
S1: Gregorio di Cecco was an Italian painter of the Sienese School
DOC 2
S2: The Sienese School of painting flourished in Siena, Italy ... rivaled Florence.
S3: The broader Tuscany region was home to a number of prolific painters.
DOC 3
S4: Florence is the capital city of the Italian region of Tuscany.

S1

Gregorio 
di Cecco

S2

S4 S3

Sienese 
School

same_doc

Tuscany

Italian
Flor

enc
e

Siena, ItalyANSWER: Siena, Italy

Figure 3: An example of graph search. A graph is formed based on entity relationships between
the document sentences. The bold path is the path from query to answer obtained by breadth-first
search.

5.1 PSEUDOGOLD CHAIN EXTRACTION

Unlike bAbI, a gold reasoning chain is not provided in WikiHop. However, we can derive a pseudo-
gold chain based on heuristic reasoning. We first concatenate all the documents, and run the Stanford
Named Entity Recognition system (Finkel et al., 2005) to identify all entities in the documents. We
then construct a graph over the sentences of the documents as shown in Figure 3. Each sentence si
is represented as a node i in the graph. If sentence i and sentence j contain the same entity, we add
an edge between node i and j. Also, since sentences in the same document d are likely to be linked
through coreference or bridging anaphora, or at least relevant to the same entity, we add an edge
between all pairs of sentence within the same document.

We then do a search over the constructed graph to get a pseudogold reasoning chain. Specifically,
we first find the sentences containing the head entity in the query, then do a breadth-first search to
find the answer. This process returns some shortest path, which we take as the reasoning chain.
More sophisticated strategies are possible, including treating the choice of correct path as a latent
variable, but we found that this simple approach returns some sensible path in most cases, likely due
to how it mirrors the process used to construct the dataset.

By conducting the graph search, we found that most of pseudogold chain needs two (47%) or three
(25%) steps’ reasoning, indicating that multi-hop reasoning is truly necessary. Only 2% and 10%
examples need one and more than three steps’ reasoning respectively. We are not able to find the
pseudogold chain for the remaining examples because the NER system fails to recognize some
entities in the document.

5.2 IMPLEMENTATION DETAILS

We fix the number of reasoning steps to 3. When supervising examples with pseudogold chains
of length less than 3, we duplicate the final attention target for the remaining steps. When no
pseudogold chain can be found, we do not supervised that example. When the pseudogold chain is
longer than 3 entries, we set the first and last steps of the supervision and add all other sentences
as possible intermediate targets for the second step. We combine the memory cell computed in the
second and third step and do a dot product with each option to get the probabilities over options.

We only keep the most frequent 50k words as our vocabulary, and map all the other tokens to unk.
The word embedding is initialized with 100-dimensional pre-trained Glove embedding (Pennington
et al., 2014). We use a hidden size of 128 for GRU, and apply a dropout of rate 0.5 to both the
embedding layer and the GRU output layer. All the attention weights used are initialized using
Glorot initialization (Glorot & Bengio, 2010). The batch size is set to 24, and we use Adam (Kingma
& Ba, 2014) as the optimization method with a initial learning rate 0.0001.

5.3 RESULTS

Our model’s performance on WikiHop is shown in Table 3. We compare against several state-of-the-
art systems, including the coreference-aware system of Dhingra et al. (2018), the deep co-encoding
model of Raison et al. (2018), and two models that use entity graph structure at test time (Song
et al., 2018; Raison et al., 2018). Our basic MemNet already achieves strong performance on this
dataset, but supervising the attention (MemNet+Sup) improves performance by around 1%, outper-
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Standard Masked

Method Dev Test Dev Test

Majority-cand (Welbl et al., 2017) − 38.8 − 12.0
BiDAF (Welbl et al., 2017) − 42.9 − 54.5
Coref-GRU (Dhingra et al., 2018) 56.0 59.3 − −
Facebook Jenga (Raison et al., 2018) − 65.3 − −
MHQA-GRN (Song et al., 2018) 62.8 65.4 − −
Entity-GCN (De Cao et al., 2018) 64.8 67.6 70.5 −
NoText 59.7 − − −
MemNet 61.8 − 14.2 −
MemNet+Sup 62.7 66.9 48.7 −

Table 3: The performance of different models on development and test set. Our simple memory-
network based model outperforms recent prior work and nearly equals the performance of the Entity-
GCN (De Cao et al., 2018).

forming all prior systems except that of Raison et al. (2018). In particular, our model outperforms
several other models with more sophisticated test-time preprocessing such as coreference resolution
(Dhingra et al., 2018), apparently indicating that the memory network can learn to compensate for
this.

There is another explanation for the strong performance on this task, which is that the model actually
does something much more straightforward than it appears. We implement one additional “no text”
baseline: we encode the query and the options using a bi-GRU and do a dot product between them
to get the probabilities over options, making no reference to the document text. This baseline to our
knowledge is unexplored in prior work, yet achieves 59.7% performance on development set.

We conclude that this task is actually possible to solve reasonably well without using the document
at all. Our MemNet model therefore may not really be relying on multi-hop reasoning to attain its
high performance. We correct this problem with the dataset using the masked version, as we discuss
in the next section.

5.4 MASKED WIKIHOP

From the high performance of the NoText model, we see that the model can pick up on correlations
between questions and options in a way that does not require multi-hop reasoning over the text. We
can use an alternative form of the dataset described in (Welbl et al., 2017) that removes the model’s
ability to capture these correlations. The dataset is masked as follows: each answer is replaced with
a special indexed mask token mask1, . . ., maskn, and its occurrences in the text are replaced as well.
Now, the model must use multiple hops to find the answer: the NoText baseline cannot do better
than random chance (around 11%).

Table 3 shows the performance of the masked system. In this setting, the basic memory network
fails to learn generalizable reasoning, just as in the case of bAbI. We will quantify the behavior of
its attention in the next section. With supervision, however, our model can achieve 48.7% accuracy,
which at least reflects some ability to answer questions better than the baseline methods. Capturing
the correct reasoning is therefore in model capacity, but supervision is necessary to learn it in the
context of this model.

6 ATTENTION BEHAVIOR

We have observed in the previous section that additional supervision is critical for the model to
learn in the masked setting and can still lead to performance improvements in the unmasked setting,
despite that setting being somewhat easy. To understanding the attention mechanism’s behavior,
we conduct two additional experiments. First, as we do for bAbI in section 4.1, we compute the
fraction of attention on the pseudogold sentences. Second, we compute the model’s accuracy with
examples stratified by the attention weight placed on the third (final) step of the pseudogold chain,
which always contains the answer. The results are shown in Table 4 and Table 5. From the tables
we have some general observations: (1) Adding attention supervision causes the model’s attention
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1st step gold weight

≤0.1 >0.1 >0.5 >0.8 AvgMax

MemNet 87.4 12.8 3.9 2.9 0.41
MemNet+Sup 16.3 83.7 79.8 75.1 0.93
MemNet Masked 95.2 4.8 3.4 3.1 0.42
MemNet Masked+Sup 12.7 87.3 77.9 70.0 0.85

3rd step gold weight

≤0.1 >0.1 >0.5 >0.8 AvgMax

MemNet 77.3 22.7 5.4 5.4 0.18
MemNet+Sup 47.6 52.4 20.0 10.4 0.41
MemNet Masked 65.5 34.5 6.1 6.1 0.16
MemNet Masked+Sup 61.1 38.9 21.1 13.3 0.56

Table 4: Percentages of samples with attention above or below the given threshold. AvgMax denotes
the average of the max weight over sentence of the whole development set.

Model accuracy regarding 3rd step gold weight

≤0.1 >0.1 >0.5 >0.8

MemNet 58.0 74.3 75.8 75.8
MemNet+Sup 52.2 71.2 80.9 81.4
MemNet Masked 12.5 23.1 31.1 31.1
MemNet Masked + Sup 35.3 69.6 83.3 82.1

Table 5: Accuracy of models with attention weight above or below the given threshold. Here we
only pick the the attention weight on the third step as an illustration since it has similar behaviors on
all three steps.

distribution to become dramatically more peaked, and also much more concentrated on the correct
chain. (2) Attending to the right place with higher weights yields consistently better performance.
Beyond this, we observe a few key phenomena.

MemNet does not match the pseudogold reasoning From the average max values in table 4,
we see that the attention distribution of MemNet is much flatter than it is in bAbI, and most of the
attention weight on the pseudo gold path is less than 0.1 for all of the three steps. However, MemNet
can still achieve an accuracy of 58.0% even these examples with less than 0.1 attention mass on the
third step of the pseudogold chain. The fact that performance is independent of attention identifying
the right sentence indicates that rather than learning the right reasoning pattern, MemNet is likely
learning lexical overlap between the query, option, and the document.

Correct reasoning is hard to learn Comparing MemNet+Sup and MemNet Masked+Sup, we
observe a correlation between attention concentrated on the pseudogold and strong model perfor-
mance. In fact, the masked model can achieve performance comparable to the unmasked model on
examples for which its attention is very confident about the correct answer. The difference is primar-
ily the fact that the model’s attention is not “correct” as frequently in the masked setting. However,
when the model is not confident, MemNet+Sup performs much better, indicating that these samples
are being answered by some kind of lexical matching.

7 ERROR ANALYSIS

Our results have generally established that it is difficult for MemNet to learn the correct reasoning
directly from the data with no additional supervision. However, even our best model, MemNet+Sup,
still makes a substantial number of errors. We randomly pick 50 examples with wrong predictions
and roughly identify a few major categories of errors. The first category is attention split (40%)
(top of Table 6). If the current sentence contains too many entities or some common entities like
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Category Attended Sentences

Attention
Split

Query: award received by WGBH (ID: dev 660)
Step 1: The WGBH Educational Foundation, ...is a nonprofit organization (0.11)

WGBH is a public radio station located in Boston ... (0.53)
Step 2,3: The WGBH Educational Foundation, ...is a nonprofit organization (0.29)

It won a Peabody Award in 2007 ... (0.12)
Predict: Nonprofit organization Answer: Peabody Award

Wrong
Tail
Entity

Query: located in the administrative territorial USS Bowfin (ID: dev 1049)
Step 1: USS Bowfin ( SS / AGSS - 287 ) , a Balao - class submarine ... (0.99)
Step 2: She has been open to public tours ,..., and Park in Pearl Harbor. (0.64)
Step 3: Pearl Harbor is a harbor on the island of Oahu, Hawaii, west of Honolulu. (0.26)
Predict: Hawaii Answer: Honolulu

Table 6: Some representative examples from two error categories. Here, we picked up the sentence
with the highest attention weight at each step. ID denotes the actual example ID in the development
set of WikiHop. The number at the end of each sentence denotes the aggregate attention weight for
the sentence.

country names, the model tends to split its attention weight over all “successor” sentences containing
such entities. Another major source of errors is wrong tail entity (30%) (second in Table 6). In
this case, the model’s attention follows the pseudogold chain, but the final sentence contains several
entities, e.g., a country and a city, and the model fails to choose the right one which fits the query. In
both of these cases, attention is behaving as expected, but the model is simply not powerful enough
to do the correct reasoning. There may be difficult ambiguity in the natural language or, particularly
to handle attention split, the model may need a greater ability to plan and do global reasoning. The
remaining errors are largely due to wrong attention (12%), where the model simply attends to the
wrong sentences for unknown reasons, or other (18%), which include cases where unknown words
have confused the model or the selected answer seems unrelated to the attention.

8 RELATED WORK

Memory networks (Weston et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2016) define a generic
model class to deal with multi-hop reasoning over sentences, paragraphs and passages. Such models
use the question and the memory cell iteratively to gather information from different parts of the
passage to answer the query. A large number of models (Peng et al., 2015; Hermann et al., 2015;
Hill et al., 2015; Sordoni et al., 2016; Dhingra et al., 2016; Shen et al., 2017; Hu et al., 2017),
regardless of whether they appear to need multi-hop reasoning or not, have incorporated the memory
and multi-hop computation into their works, showing improvement in a variety of tasks and settings.

Attention mechanisms have been widely used across many NLP tasks such as machine transla-
tion (Bahdanau et al., 2015), question answering (Seo et al., 2016), and summarization (See et al.,
2017). Past work typically treats this as a purely latent variable to be learned end-to-end. However, a
line of work in machine translation finds gains from supervising attention (Liu et al., 2016; Mi et al.,
2016). In visual question answering, past work has also focused on understanding and exploiting
how the attention aligns with what humans do (Das et al., 2017; Qiao et al., 2017).

Beyond bAbI and WikiHop, other reading comprehension datasets like McTest (Richardson et al.,
2013), CNN/Daily Mail (Hermann et al., 2015), SQuAD (Rajpurkar et al., 2016), RACE (Lai et al.,
2017), TriviaQA (Joshi et al., 2017) contain questions related to multi-hop reasoning, but do not
focus on it explicitly.

9 CONCLUSION

In this paper, we explore how the memory network behaves on the task of multi-hop reasoning.
Experimental results on bAbI and WikiHop show that additional supervision beyond the downstream
answers to the questions is needed to learn generalizable multi-hop reasoning. However, when
incorporating this supervision, our memory network model can learn to do this and achieves strong
results on the WikiHop dataset.
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