Under review as a conference paper at ICLR 2020

IS MY DEEP LEARNING MODEL LEARNING MORE
THAN I WANT IT TO?

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing deep learning approaches for learning visual features tend to extract more
information than what is required for the task at hand. From a privacy preserva-
tion perspective, the input visual information is not protected from the model,;
enabling the model to become more intelligent than it is trained to be. Existing
approaches for suppressing additional task learning assume the presence of ground
truth labels for the tasks to be suppressed during training time. In this research,
we propose a three-fold novel contribution: (i) a novel metric to measure the trust
score of a trained deep learning model, (ii) a model-agnostic solution framework
for trust score improvement by suppressing all the unwanted tasks, and (iii) a sim-
ulated benchmark dataset, PreserveTask, having five different fundamental image
classification tasks to study the generalization nature of models. In the first set
of experiments, we measure and improve the trust scores of five popular deep
learning models: VGG16, VGG19, Inception-v1l, MobileNet, and DenseNet and
demonstrate that Inception-v1 is having the lowest trust score. Additionally, we
show results of our framework on color-MNIST dataset and practical applications
of face attribute preservation in Diversity in Faces (DiF) and IMDB-Wiki dataset.

1 INTRODUCTION

The primary objective of artificial intelligence is to imitate human intelligence tabular rasa. Espe-
cially, with the advent of deep learning (DL), the models are striving to perform composite tasks
by learning complex relationships and patterns available in noisy, unstructured data (Ruder, 2017)).
With this sudden growth in the consumption of data by models, there has been a lot of study on the
privacy and security of the learnt model (Shokri & Shmatikov, 2015). Data governance and model
governance frameworks, control and protect sharing of data and model meta information between
two entities and also their social implications (Helbing),2019).

The premise of model privacy has majorly revolved around preserving the model content from hu-
man (man-in-the-middle) adversarial attacks (Abadi et al., 2016). However, the model itself could
learn all the private information from the data and become much more intelligent than the original
intent it was trained for. With the strive for model generalization, including techniques for transfer
learning and multi-task learning, the model is encouraged to learn more and more generic features
from the data that could be used for more than one task (Sggaard & Goldberg, 2016). Consider the
example described in Figure |1} where a classifier is trained to detect the shape of an object from
images. However, using the features extracted by the above classifier, the size and location of the
object in the image can also be predicted. Thus, a shape classifier is more intelligent than its ob-
jective of only predicting the shape of the object. While in certain applications, this is a required
property of classification models (such as in, transfer learning and domain adaptation), in most of
the privacy preserving applications, the data and its other visual attributes have to be kept private
from the model itself. As an additional real-world example, we train a DL. model to predict the gen-
der from a face image. However, the DL model learns most generic features from the face image,
enabling it to predict the age and the identity of the person. The input face image could be saved
securely from a human attacker, however, there is not much focus on securing from the model itself.

Additionally as shown in Figure [T] (a), the task of debiasing is to remove the the bias (color) in
learning a specific task (shape). This happens due to the high correlation between the color and
shapes in the input images. However, as shown in Figure[I](b), our task in model trust is to forcefully
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Figure 1: Visually distinguishing the concepts model debiasing and model trust (what we aim to do).
The fundamental research motivation in this work is to study if a learning model could be restricted
to perform only one or a specific group of tasks.

ensure that the model learns to perform only one or few selected tasks (shape) from the input images
and unlearn all other tasks (color, size, location). If multi-class classification tasks could be done
from the same image, the research question is, “How can we ensure that the model is learnt only for
one or a few tasks (called as, preserved tasks), and is strictly not learnt for the other tasks (called as,
suppressed tasks)?”. To pursue research on this problem, there are few evident challenges: (i) there
is a lack of a balanced and properly curated image dataset where multiple classification tasks could
be performed on the same image, (ii) the complete knowledge of both the preserved tasks and the
suppressed tasks should be known apriori, that is, we cannot suppress those tasks that we don’t have
information about, and (iii) presence of very few model agnostic studies to preserve and suppress
different task groups. In this research, we propose a novel framework to measure the trust score of
a trained DL model and a solution approach to improve the trust score during training. The major
research contributions are summarized as follows:

1. A simulated, class-balanced, multi-task dataset, PreserveTask with five tasks that could be
performed on each image: shape, size, color, location, and background color classification.

2. A novel metric to measure the trustworthiness score of a trained DL model. The trust scores
of five popular DL models are measured and compared: VGG16, VGG19, Inception-vl,
MobileNet, and DenseNet. A generic model-agnostic solution framework to improve the
trust scores of DL models during training by preserving a few tasks and suppressing other
tasks on the same image.

3. Experimental analysis are performed for the proposed framework in comparison with other
existing approaches under different settings. Experimentally, we considered the model
with the least trust score, Inception-v1, and showed that the proposed framework aids in
improving the overall trust score [1_1

4. To demonstrate the practical applications and generalizability of the metric and the solu-
tion framework, we show additionally results in colored MNIST dataset and face attribute
preservation using two datasets: (i) Diversity in Faces (DiF) (Merler et al.) (ii) IMDB-
Wiki (Rothe et al., 2018).

2 LITERATURE REVIEW

There are broadly two different groups of work related to the research problem at hand: (i) k-
anonymity preservation and (ii) attribute suppression.

k-anonymity Preservation: The objective here is to preserve the anonymity of certain attributes
from being predicted by the model. To quote some earlier works, Boyle et al.| (2000), studied to
mask out potentially sensitive information from video feeds. In the last decade, face recognition

'The benchmark dataset along with the splits, baselines features, results, and the code are made available
here: https://github.com/dl-model-recommend/model-trust
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Figure 2: Landscape of the PreserveTask dataset describing the set of different possible tasks. Five
tasks could be performed on each image and each task has varying number of classes.

has become an important commercial applications and also an application that demanded discussion
regarding privacy preservation. Studies focused on extracting only the required meta information
from face images while not extracting the identity. This was a required step to make face as a
usable biometric. Studies such as |(Gross et al.| (2006), [Newton et al.| (2005), and Mirjalili et al.
(2018) focused on preserving the identity of the face image from the model by performing face
de-identification. Studies such as Mirjalili & Ross| (2017) and |Othman & Ross| (2014)) focused on
anonymizing the face gender information while models could extract the identity.

Attribute Suppression: The aim of this group of techniques is to explicitly suppress a few attributes
by perturbing the input data to the model. Studies such as|Rozsa et al.|(2016) and [Rozsa et al.|(2017)
test if the learnt models are robust and protected against adversarial attacks. (Chhabra et al.| (2018)
suggested using a constrained generative adversarial network (GAN) to perturb the input face image
and suppress the required attribute. The GANs will generate the attribute free face image of the
original face image. The closest related work to our approach, is the study by Jayaraman et al.
(2014) where the visual attributes are decorrelated using a negative gradient in the model. The
results demonstrate that the classification task could be performed by preserving specific attributes
in the image while suppressing the influence of the remaining.

Additionally, there is a good amount of research in bias mitigation while learning models (Zhao
et al.,[2017) (Kim et al., 2018) (Attenberg et al.,[2015) (L1 & Vasconcelos, |2019). The primary aim
is to debias the model learning from any kind of correlated attributes (Alvi et al., 2018) (Raff &
Sylvester, 2018) (Kim et al., |2019) (Wang et al., [2019), which is different from our aim of improv-
ing the model’s trust. The major gaps in the existing research works are: (i) most of the techniques
focus on data perturbation, that is, changing the input data from x to 2’ such that the suppressed
task information is not available in the data. There is not much focus on model perturbation with-
out altering the input data, (ii) most of the existing datasets have only binary attributes and hence
suppressing and preserving a few tasks does not actually translate to the classification complexity of
multi-class tasks, and (iii) there is a lack of a well curated benchmark dataset to evaluate the privacy
preserving capacity of DL models.

3 PRESERVETASK DATASET

Shared tasks performed on the same image carry some common attributes which are often extracted
by complex deep learning models. The objective of this is to untangle the shared tasks and enable
deep learning models to perform only one (or few) of those tasks. In order to evaluate the perfor-
mance of such a framework, the dataset should have the following properties:

o Should perform multiple tasks on the same image and each task should have varying num-
ber of classes, in order to study the relationship of complexity of classification tasks.
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Figure 3: (a) A deep learning model learning features suited for multiple tasks, more than the in-
tended shape classification task, (b) Existing approaches suppress other known tasks, such as size
classification by backpropagation of negative loss or gradient, (c) Proposed approach of suppressing
all possible n-class classification task by using random class labels.

e As this research area is nascent, the dataset should be noise-free and class balanced, to
avoid other complexities that could influence classification performance.

e Tasks should be designed in such a way that certain tasks, share common attributes and
features, while certain tasks should be independent of each other.

There are some similar publicly available datasets in the literature. LFW (Learned-Miller et al.,
2016)), CelebA (Liu et al., 2015), IMDB-Wiki (Rothe et al., |2018)), AwA 2 (Lampert et al., |2009),
and CUB (Wah et al.l 2011) datasets have multiple binary classification tasks, while only one non-
binary classification task. It is challenging to study the influence of complexity of classification
tasks using these datasets and hence is not extendable to practical applications. CLEVR (Johnson
et al., |2017) dataset provides with four different tasks with variable number of classes. However,
each image contains multiple objects with different shape, color, and textures, allowing multiple
labels for each task. Task suppression in multi-label, multi-task classification setting provides a very
challenging experimental setting.

Inspired from the CLEVR dataset, we create a new PreserveTask dataset, which is a multi-task
dataset exclusively designed for the purpose of bench-marking models against preserving task pri-
vacy. The primary objective is to create easy-to-perform multi-task dataset, where the performance
of the individual tasks is high. As shown in Figure 2] PreserveTask dataset has five different classi-
fication tasks, as follows: (i) Shape Classification (5): circle, triangle, diamond, pentagon, hexagon,
(ii) Color Classification (7): violent, indigo, blue, green, yellow, orange, red, (iii) Size Classifica-
tion (3): small, medium, large, (iv) Location Classification (4): quadrant 1, quadrant 2, quadrant 3,
quadrant 4, (v) Background Color Classification (3): white, black, or colored.

These five tasks are chosen such that few tasks are highly correlated (size, shape), while few tasks
are ideally independent of each other (size, color). All the images are generated as 256 x 256
colored images. There are 5 (shapes) * 7 (color) * 3 (size) * 4 (location) * 3 (background color) =
1260 variations, with 50 images for training and 10 images for testing for each variation, generating
a total of 63,000 training and 12, 600 images. This ensures that there is a perfect class balance
across all tasks. It is to be noted that the task of suppression of unknown shared task is a fairly open
research problem. Hence, in order to set the benchmark of different frameworks, an easy, straight-
forward Preservelask dataset is created as a conscious decision without having much noise, such as
in DeepFashion (Liu et al.,|2016) dataset. As the problem area matures, further extensions of this
dataset could be generated and more real world natural objects could be added.

4 PROPOSED APPROACH

To understand the current scenario of shared task learning, consider any deep learning model as
shown in Figure [3] (a). Assume a deep learning model, say VGG19, is trained for predicting the
shape of objects in images. Ideally, the features f; obtained from the model should be good for
object shape prediction. However, it is observed that different size, color, location prediction clas-
sifiers could be trained on top of f; demonstrating that f; contains more information about the
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object than just its shape. While this is a required property in multi-task learning and in applica-
tions of domain adaptation, from a task privacy preservation perspective this should be controlled.
In literature, few technique variants exist to suppress the model from learning a few attributes or
tasks (Narayanaswamy et al) 2017). As shown in Figure 3] (b), if the model has to be suppressed
from learning the size of the objects, a negative loss or negative gradient is applied to enable features
f2 to not carry any information about the size of the object while retaining all the information about
the shape of the object. This comes with an assumption that the information about the tasks to be
suppressed are available during training time along with its ground truth class labels for the entire
training data.

In our proposed framework, we overcome this assumption and do not expect the suppression task
information to be available during model training time. Additionally, we provide a model agnostic
approach of suppressing task learning so that the framework could be directly applied to any deep
learning model. Let z € X be the input data and y$" € YV to 4™ € V() be the n different tasks
that could be performed on the image. We learn a model, g(f(z)) : X — Y (), where f(.) : X —
Z (), be the feature representation for the given task. Ideally, while only g(.) : Z() — Y1) should
be possible, we observe that g(.) : Z() — Y@ for i € (2,n) provides high classification accuracy
in most cases. To overcome this challenge, we generate random n-class labels in the gradient reversal
(GR) branch (Ganin & Lempitsky}, [2014)) in order to suppress any other n-class classification, as
shown in Figure |3|(c),. Multiple gradient reversal branches could be built for varying values of n to
suppress all possible other classification tasks. The DL model is trained by a custom loss function
as follows,

minByp, ()M (u8), f(9(2))) = (1 = ML (rand(R"), f(g(x)))] e9)

where L,, is the loss of the model branch trained for the task to be preserved. L’ is the sum of
individual losses (L;) which are to be maximized (task suppressed). A and (1 — \) are the weights
given for the minimization and maximization losses which can be chosen based on the amount of
sharing between the tasks. Additionally, each of the individual L; could be distinct loss functions in
the model, depending on the task performed. Thus, it can be observed that the proposed framework
is both DL model agnostic and loss function agnostic.

4.1 TRUST SCORE

PreserveTask will be used as the benchmark dataset against which the trust score of any trained DL
model could be extracted. The trained DL model is evaluated against different tasks in the Preserve-
Task and the entire confusion matrix of performance accuracy is obtained (5 x 5 corresponding to
the five tasks). The behavior of an ideal DL model, would provide 100% accuracy on the leading
diagonal i.e., the tasks it was trained for, while providing, random classification accuracies for other
tasks. The confusion matrix for such an ideal DL model is shown in Figure ] For example in the
first row, the DL model was trained to learn and predict the color of the object. Hence, color predic-
tion performance should be 1 (denoting, 100% accuracy), while other tasks should provide random
1/n accuracy, where n is the number of classes.

Let the ideal performance matrix be denoted as M and the obtained performance matrix for a given
trained DL model be 7'. By intuition, the matrix 7" that does not deviate much from the ideal matrix
M should have a higher trust score. The trust score is mathematically computed as follows,

S(IM-T|-W)

Trust S =
rust Score S

2

where, W = 4 x Z5 - 15 provides the weight corresponding to each task pair, I is an identity matrix
and 15 is a ones matrix, each of dimensionality 5 x 5. Since for each preserving task, there are four
suppressing tasks, the deviation of the preserving task from the ideal matrix is scaled by a factor of
four to normalize the computation.

Note that if the diagonal elements perform poorly, the concern is on the performance of the model.
On the contrary, if the non-diagonal elements has a higher performance, the concern is on the trust
of a model from a privacy preservation perspective. The proposed metric implements this notion to
compute the trustworthiness of a trained DL model. The trust score is bounded between [0,1]. By
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Figure 4: (Left) The accuracy matrix demonstrating the behavior of an ideal trusted DL model.
The leading diagonal shows perfect classification while the rest of the values are random classifi-
cation. (Right) The accuracy matrix detailing the shared task performance of Inception-v1 on the
Preservelask dataset.
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Figure 5: (Left) Trust scores obtained for various DL models. It can be observed that, of the five
models, the Inception-v1l and MobileNet has the least and highest trust score, respectively. (Right)
Trust scores obtained after various suppression techniques for Inception-v1. It can be observed that
using random labels for unknown tasks, we could improve the trustworthiness.

empirical analysis, we observe that a trust score above 0.9 is highly desirable, a trust score between
0.8 and 0.9 is practically acceptable, and any score below 0.8 is considered poor. The trust score of
the ideal matrix is 1, while the trust score of a 15 (all task classification performance is 100%) is
0.6259. To understand the sensitivity of the proposed metric, let us assume that in the ideal matrix,
any one non-diagonal element is changed to 1 which results in a trust score of 0.98125. Thus, any
reduction of (1 - 0.98125) = 0.0175 in the trust score corresponds to one additional unwanted task
being learnt by the classifier.

5 EXPERIMENTAL RESULTS

In this section, we show the experimental results and perform analysis of the proposed framework.
Initially, we measure the trustworthiness of the existing models. We then experimentally demon-
strate suppression of different tasks in various experimental settings. All the experiments are per-
formed using the Preservelask dataset. For additional results and detailed comparison with other
techniques, please refer to the appendix.

5.1 HOW TRUSTWORTHY ARE EXISTING MODELS?

Consider a popular deep learning model, Inception-v1 (Szegedy et al.| 2016) consisting of 22 com-
putational layers. The model was trained from scratch using the PreserveTask for the task of shape
classification, providing 99.98%. In order to study, if this deep learning model learnt additional
visual attributes, as well, the last flatten layer’s output (4096 x 1) were extracted. Four different
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unknown tasks in (c), (d). Comparative results between a baseline negative loss function and the
proposed GR layer based suppression is also shown. All results are computed for the Inception-v1
model.

two-hidden layer neural network classifiers (512, 100) were trainedﬂusing the extracted features to
predict size, color, location, and background color of the objects. The prediction accuracies were
97.29%, 51.25%, 99.98%, 92.05%, respectively for the four tasks. It can be observed that the perfor-
mance of size, location, and background prediction are really high proving that the features obtained
from Inception v1 model has features corresponding to these tasks as well. Also, it can be observed
that the color prediction performance is very low, as shape and color prediction are inherently inde-
pendent tasks. The similar experiment is repeated for training the Inception vl model on one task
and using the learnt feature to predict the performance of other tasks, and the results are shown in
Figure[d] Ideally, only the diagonal elements of this confusion matrix should have higher accuracies
(red in color) while the rest of the prediction should have lower accuracies (green in color). Accord-
ingly, the trust score of the trained Inception-v1l model (proposed in section 4.1) was found to be
0.7530, which is very poor.

In order to further demonstrate that this additional intelligence is not a property of just Inception-v1
model, similar experiments are performed using four other popular deep learning models: VGGI16,
VGG19, MobileNet, and DenseNet. The trust scores of all the DL models are shown in Figure @
It can be observed that out of these five models, Inception-v1l and DenseNet has the lowest trust
score while MobileNet has the highest trust score. While one could argue that the Inception-v1
model learns highly generic features supporting multi-task and transfer learning, from a privacy
preservation perspective, the model is found to have a poor trust score. This leads to the open
question, “Do models always needs to be additionally intelligent, and if not, how to suppress them?”

5.2 How TO SUPPRESS KNOWN TASKS?

In this section, we perform experiments to suppress the tasks that are known apriori during training,
that is, the ground truth labels of the suppression task is available. For simplicity, in demonstrating
the experimental results, we assume that one task is to be preserved and one task is to be suppressed,
using the Inception-vl model. This experimental setting is similar to the approach explained in
Figure 3] (b). The gradient reversal (GR) layer unlearns the suppressed task, while learning the pre-
served task. In order to compare the performance of GR, we also use a customized negative loss
function which minimizes the loss obtained for the preserved task while maximizing the loss ob-
tained for the suppressed task, weighted by a constant factor. The features eventually extracted from
the flatten layer has to show similar performance on the preserved task while reduced performance
on the suppressed task.

Figure [](a) and (b) demonstrates the results obtained for Inception-v1 using negative loss function
and the proposed GR layer. While the leading diagonal elements showed the same performance, in
comparison with Figure[] it can be observed that prediction results of the suppressed tasks reduced
in most of the cases. For example, while preserving the object shape prediction, suppressing the
background color prediction performance dropped from 92.05% to 44.35%. This indicates that the
extracted features no longer contain information about the background color of the image. The

2with default scikit-learn parameters
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Figure 7: Comparison of color prediction performance with and without using the different task
suppression mechanisms. It can be observed that using random labels reduces the performance of
color prediction irrespective of whether the preserved task was shape or size prediction.

corresponding trust scores are shown in Figure[3] It can be observed that suppressing known tasks
using GR layer improves the trust of the baseline model from 0.7530 to 0.8563.

5.3 How TO SUPPRESS UNKNOWN TASKS?

The results obtained in the previous section made the assumption that the ground truth labels of
the suppression task have to be available while training the Inception-vl model. In an attempt to
break that assumption, the experimental setting discussed in Figure 3] (c) is performed. Instead of
the actual ground truth labels of a particular task, randomly generated n-class labels are used during
every mini-batch. Thus, for the same mini-batch training in the next epoch, a different set of random
class labels are generated to be maximized. This ensures that the model does not memorize a single
suppression task, but, learns to suppress all possible n-class classification tasks.

Figure[6] (c) and (d) demonstrates the results obtained by using random class labels. In comparison
with Figure [4] it can be observed that using random class performs well in certain settings. For
example, while trying to preserve the shape features and suppressing the prediction capacity of
background color, the original model’s prediction performance of 92.05% reduced to 87.06% by
using the actual labels of background color, while further reduced to 33.37% while using random
3-class labels. It is further highlighted in Figure [/| where color prediction is chosen as the task to
be suppressed, while shape and size are independently being preserved. It can be observed that
the proposed framework of using random labels, reduces the performance of color prediction from
51.25% to 26.83% when using actual labels and 17.94% when using random labels, when shape
prediction was the preserved task. A similar performance reduction from 35.59% to 14.29% is
observed when size prediction was the preserved task.

We conclude that using random labels for task suppression produces a comparable trust score to
using known labels while producing better results than the baseline trust score of a DL model.

6 CASE STUDY ON CHALLENGING PRACTICAL DATASETS

Colored MNIST Dataset: We introduced two additional tasks of foreground and background color
prediction tasks into the MNIST dataset. As shown in Figure 8] colored MNIST images are created
by randomly assigning one of the 10 possible foreground colors and one of the different 10 possible
background colors. Similar assignment is performed in both training and test dataset, to maintain the
standard experimental protocol. MobileNet model was trained from scratch to obtained a baseline
trust score of 0.756. After using our framework for task suppression with random labels and gradient
reversal based training on the suppression branch, we observed that the MobileNet models trust
scores increased to 0.824. In Figure|§| (middle), the TSNE plot shows that when the model is learnt
only for shapes, the features for ‘red” and ‘cyan‘ colored images are still separable. However, after
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Figure 8: (Left) Sample images from the colored MNIST dataset. (Right) TSNE plot of the feature
distribution of 392 images (class 0, foreground color: red and cyan) before and after suppressing the
color prediction task.

suppressing the color prediction task using the proposed framework, the features ‘red’ and ‘cyan*
colored images are scattered and no longer separable, as shown in Figure 8] (right).

Diversity in Faces (DiF) Dataset: In DiF dataset (Merler et al.), we considered the tasks of gender
(two class) and pose (three class) classification. The aim is learn (preserve) only one of these while
suppressing the other. Since, the dataset was highly skewed for different classes, we considered a
subset of 39296 images with equal class balancﬁﬂ We trained Inception-v1l model on this dataset
from scratch and obtained a trust score of 0.7497. Using our framework for task suppression with
GR layer and known class labels, the trust score of the model increased to 0.8606. Additionally,
with random unknown class labels, we observed that the model’s trust scores increased to 0.9069.

IMDB-Wiki Dataset: In IMDB-Wiki dataset [2018), we considered the tasks of gender
(two class) and age (ten class) classification. The cropped face images of the Wiki dataset are used to
train the DenseNet model (the second least trusted model according to our trust scores). The trained
model provided a baseline trust score of 0.7846. After using our framework for task suppression
and known class labels, the trust score of DenseNet model increased to 0.7883. Also, with random
unknown class labels, we observed that the model’s trust scores increased to 0.7860.

Thus, our framework for measuring and improving a DL model’s trust has lots of practical appli-
cations. A face recognition system or a face image based gender recognition system can now be
deployed with an additional trust on the model’s intelligence level.

7 CONCLUSION AND FUTURE RESEARCH

In this research, we showcased a model-agnostic framework for measuring and improving the trust-
worthiness of a model from a privacy preservation perspective. The proposed framework did not as-
sume the need for the suppression task labels during train time, while, similar performance could be
obtained by training using random classification boundaries. A novel simulated benchmark dataset
called Preservelask was created to methodically evaluate and analyze a DL model’s capability in
suppressing shared task learning. This dataset opens up further research opportunities in this im-
portant and practically necessary research domain. Experimentally, it was shown that popular DL
models such as VGG16, VGG19, Inception-v1, DenseNet, and MobileNet show poor trust scores
and tend to be more intelligent than they were trained for. Also, we show a practical case study
of our proposed approach in face attribute classification using: (i) Diversity in Faces (DiF) and
(i) IMDB-Wiki datasets. We would like to extend this work by studying the effect of multi-label
classification tasks during suppression.
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A APPENDIX

This supplementary material contains all the detailed hyper-parameters used by different models
that we trained, to aid in reproducing the results that we showed in the research paper. Additionally,
we provide more detailed analysis and visualizations of the results, that could not be included in the
paper due to space constraints.

A.1 BASELINE DEEP LEARNING MODELS

Five different baseline deep learning models were used in the experiments: Inception-vl, VGGI6,
VGG19, DenseNet, and MobileNet. The different parameters and the training process used in these
experiments are shown below:

e The data is z-normalized to have a zero mean and unit standard deviation, before being
provided to the models for training.

e The standard architectures of Inception-vl, VGG16, VGG19, DenseNet, and MobileNet
are borrowed from the default implementations in the Keras library.

e The deep learning models were trained with categorical cross-entropy and Adam optimizer
with parameters as learning rate = 0.0001 and amsgrad set as False.

A.2 CLASSIFIER MODELS

For all the experiments, a two hidden layer neural network is used as a classifier. This is to maintain
consistency of the same classifier across all the experiments.

e The architecture is Dense (512) — Dropout (0.5) — Dense (100) — Dropout (0.3) —
Dense (num_of _classes)

e Each of the Dense layer has a Re LU activation function.

e categorical cross-entropy is used as the loss function with Adam as the optimizer, having
parameter values as learning rate = 0.0001 and amsgrad set as False.

e 20% of the data is used as validation data and the model is trained for 100 epochs with
early stopping.

e Batch size of 32 was used to make the computation faster and the experiments were run
using 1 x K80 GPU.

B EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we are including additional analysis, visualizations, and charts of the results pre-
sented in the main paper. In order to aid better comparison, we include the charts and results pre-
sented in the main paper also here, so that the supplementary could be read in an independent
manner.

B.1 HOW TRUSTWORTHY ARE EXISTING MODELS?
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Figure 9: Trust scores obtained for various DL models. It can be observed that, of the five models,
the Inception-v1 and DenseNet has the least trust score while MobileNet has the highest.
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Figure 10: The performance matrix heat-map detailing the shared task performance of Inception-v1
model on the PreserveTlask dataset.

B.2 HoOw TO SUPPRESS TASKS?
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Figure 11: The performance matrix heat-map detailing the shared task performance of DenseNet
model on the PreserveTlask dataset.
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Figure 12: The performance matrix heat-map detailing the shared task performance of MobileNet
model on the Preservelask dataset.

C CASE STUDY: FACE ATTRIBUTE PRESERVATION
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Figure 13: The performance matrix heat-map detailing the shared task performance of VGG-16
model on the Preservelask dataset.
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Figure 14: The performance matrix heat-map detailing the shared task performance of VGG-19
model on the Preservelask dataset.
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Figure 15: Trust scores obtained after various suppression techniques. It can be observed that even

using random labels for unknown tasks, we could improve the trustworthiness of the Inception-v1
model on the Preservelask dataset.
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Figure 16: The performance matrix heat-map, after suppressing a known task using negative loss,
detailing the shared task performance of Inception-vl model on the PreserveTask dataset.
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Figure 17: The performance matrix heat-map, after suppressing a known task using GR layer, de-
tailing the shared task performance of Inception-vl model on the PreserveTask dataset.
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Figure 18: The performance matrix heat-map, after suppressing a unknown task using negative loss,
detailing the shared task performance of Inception-v1 model on the PreserveTask dataset.
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Figure 19: The performance matrix heat-map, after suppressing a unknown task using GR layer,
detailing the shared task performance of Inception-v1 model on the PreserveTask dataset.
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Figure 20: Trust scores obtained in the Diversity in Faces (DiF) dataset after various suppression
techniques. It can be observed that even using random labels for unknown tasks, we could improve
the trustworthiness of the Inception-v1 model.
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Figure 21: The performance matrix heat-map detailing the shared task performance of Inception-v1
model on the Diversity in Faces (DiF) dataset.
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Figure 22: The performance matrix heat-map obtained after suppressing the known tasks, detailing
the shared task performance of Inception-vl model on the Diversity in Faces (DiF) dataset.

Unknown task with GR layer

0.90

0.7203 0.75

Gender

0.60

Preserved Task

0.45
0.4899

Pose

0.30

Gender
Suppressed Task

Figure 23: The performance matrix heat-map obtained after suppressing the unknown tasks, detail-
ing the shared task performance of Inception-v1 model on the Diversity in Faces (DiF) dataset.
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Figure 24: Trust scores obtained in the WIKI face dataset after various suppression techniques. It can
be observed that even using random labels for unknown tasks, we could improve the trustworthiness
of the Inception-v1 model.
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Figure 25: The performance matrix heat-map detailing the shared task performance of DenseNet
model on the Wiki face dataset.
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Figure 26: The performance matrix heat-map obtained after suppressing the known tasks, detailing
the shared task performance of DenseNet model on the Wiki face dataset.
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Figure 27: The performance matrix heat-map obtained after suppressing the unknown tasks, detail-
ing the shared task performance of DenseNet model on the Wiki face dataset.
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