
Under review as a conference paper at ICLR 2020

SELFISH EMERGENT COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current literature in machine learning holds that unaligned, self-interested agents
do not learn to use an emergent communication channel. We introduce a new
sender-receiver game to study emergent communication for this spectrum of
partially-competitive scenarios and put special care into evaluation. We find that
communication can indeed emerge in partially-competitive scenarios, and we dis-
cover three things that are tied to improving it. First, that selfish communication is
proportional to cooperation, and it naturally occurs for situations that are more co-
operative than competitive. Second, that stability and performance are improved
by using LOLA (Foerster et al., 2018a), especially in more competitive scenarios.
And third, that discrete protocols lend themselves better to learning cooperative
communication than continuous ones.

1 INTRODUCTION

The principles involved in the evolution of effective communication are essential for artificial intel-
ligence research since they may lead to innovative communication methods for use by interacting AI
agents and multi-robot systems. AI agents need a common language to coordinate with one another
and to communicate successfully with humans (Wagner et al., 2003). The emergence of communi-
cation protocols between learning agents has seen a surge of interest in recent years, but most work
tends to study fully-cooperative agents that share a reward (Foerster et al., 2016; Havrylov & Titov,
2017; Lazaridou et al., 2016). Work on selfish agents, that separately optimise their own reward,
has been limited, with results suggesting that selfish agents do not learn to use a communication
channel effectively (Cao et al., 2018; Jaques et al., 2018). This has contributed to a perspective in
the field that emergent communication is a purely cooperative pursuit Lanctot et al. (2017). This is
in contrast to theoretical results in game theory that show it is possible to use an existing cheap-talk
communication channel effectively to resolve situations of partial conflict (Farrell & Rabin, 1996).
We aim to reconcile these different findings and establish the degree of cooperation necessary for
useful communication to emerge.

To study this problem in detail, we look at the simplest case of communication: a sender-receiver
game (Lewis, 1969). This is a game of incomplete information, wherein a sender obtains private
knowledge and communicates this to a receiver via a signal, or message. The receiver uses the
message to inform its action in the environment. Though messages are arbitrary, and initially mean-
ingless, the players can coordinate upon a conventional meaning for the signal (Skyrms, 2010).
While the classic game is fully cooperative, we introduce an arbitrary level of conflict between our
two players and investigate whether communication can emerge for each level of conflict. Contrary
to current literature in machine learning, we find evidence that communication emerges in compet-
itive scenarios—provided that the agents’ interests are at least partially aligned. We further find
that using LOLA (Foerster et al., 2018a)—an effective strategy for resolving social dilemmas—to
explicitly model opponent learning yields more effective communication protocols. Finally, we con-
sider the difference between continuous and discrete emergent communication and find that discrete
communication lends itself better to cooperative communication.
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2 RELATED WORK

2.1 FULLY COMPETITIVE/COOPERATIVE MARL

Multi-agent RL is used for many fully-competitive, zero-sum games (Silver et al., 2017; Vinyals
et al., 2019; OpenAI, 2018) with the objective of finding a single, best learned agent (or team) at
test time. In these games, a “best” agent is one that can outplay all opponents (Balduzzi et al.,
2018). We cannot evaluate its play by looking at the reward that agent achieves against a given
opponent because the reward received will be a function of the choice of opponent.1 In contrast,
MARL in fully cooperative games has usually been able to make the assumption that we get to
pick our team, and so can use self-play to try and achieve a maximal possible reward. (Foerster
et al., 2018b). In this way, fully-cooperative MARL compares the maximum performance between
learning algorithms and architectures by optimising the joint reward of the team.

2.2 GENERAL-SUM MARL

We investigate the space of partially competitive games known as general-sum games, where there
is some amount of common interest and some amount of conflict. In this case, care must be taken in
defining the “best” agent: it is not necessarily the agent that does as well or better than all opponents
because, to achieve the highest possible reward in a general-sum game, agents might have to coop-
erate to some extent (Leibo et al., 2017). For example, consider an agent playing iterated prisoner’s
dilemma. The agent that always defects will never have a reward worse than its opponent, but, when
playing against a tit-for-tat agent, it will also not achieve the total reward of an agent that is also
playing a tit-for-tat strategy.

Since the maximum expected reward may only be possible by cooperating, agents must learn how to
coordinate with each other. This can be done by training together or learning to understand opponent
intentions at test time by observing their actions. The latter allows for ad-hoc comparison of learned
agents at test time; the former requires comparing learning algorithms trained together. The latter
should then require a sequential/iterative game, so there is time to infer opponent intentions before
acting (Fujimoto & Kaneko, 2019). It may also require meta-learning or other modifications to un-
derstand and adapt to these intentions as it seems current self-play methods are insufficient to adapt
to ad-hoc play even against different versions of their own architecture (Bard et al., 2019). Work in
general-sum MARL has mostly worked on analysing learning algorithms’ ability to cooperate and
resolve social dilemmas (Foerster et al., 2018a; Letcher et al., 2019; Lerer & Peysakhovich, 2017)

2.3 EMERGENT COMMUNICATION

To date, investigations of emergent communication have remained mostly in the realm of fully-
cooperative games (Lazaridou et al., 2018; Das et al., 2019; Evtimova et al., 2017). For contin-
uous communication, Singh et al. (2018) claimed to learn in mixed cooperative-competitive sce-
narios. However, their setup uses parameter sharing between opponents; their “mixed” case is
non-competitive (and implicitly cooperative); their competitive game is actually two stages—one
fully cooperative and one fully competitive; and, their results in the competitive scenario are simply
to mask out all communication. Previous attempts to learn discrete emergent protocols by selfish
agents in competitive games have failed (Cao et al., 2018) unless additional, more complex learning
rules are adopted (Jaques et al., 2018). In the latter case, they compare learning algorithms trained
together as opposed to learned agents at test time to avoid a significant issue of comparing emer-
gent communication agents—i.e., different protocols. Since an emergent protocol only has meaning
between the agents that learned it together, comparing two learned agents at test time would require
that they infer each others’ protocols without training with them. This seems impossible, and it is
more reasonable to frame it as a meta-learning problem where agents can have a brief adaptation
period to synchronise their protocols. Meta-learning is beyond the scope of this paper, so we follow
Jaques et al. (2018) in comparing learning algorithms trained together. We also take a more prin-
cipled approach than previous work by guaranteeing no communication through the action space,

1For multi-agent RL, we must define the space of possible agents that we play against because our aim is
not merely to beat one opponent but all potential opponents—e.g., in non-transitive zero-sum games (Balduzzi
et al., 2019). Following the “AI agenda” of Shoham et al. (2003), we believe it is reasonable to consider a space
of learning agents similar to our own that are trained with gradient descent.
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using more rigorous, quantitative criteria for evaluating communication, and precisely setting the
levels of competitiveness. Notably, this work does not propose new architectures or learning rules
but aims to take a critical look at existing beliefs and draw important distinctions as Kottur et al.
(2017) did for natural language emergence.

2.4 SENDER-RECEIVER GAMES

Our experiments use the simple emergent-communication framework known as a sender-receiver
game (or “referential game” (Lazaridou et al., 2016)), which finds extensive use in economics (Riley,
2001) and philosophy (Lewis, 1969; Skyrms, 2010) among others. In the classic game, the sender
is given a target value to be communicated to the receiver via a message. The receiver receives
the sender’s message and must decode it to predict the target value. Both players are rewarded
according to the negative of the receiver’s prediction error. In this fully-cooperative setting, players
often coordinate a protocol to transfer information as effectively as possible (Skyrms, 2010). The
messages between the sender and the receiver can be categorised as “cheap talk”: messages are
costless, non-binding, non-verifiable and may affect the receiver’s beliefs (Farrell & Rabin, 1996).

Our work benefits greatly from Crawford & Sobel (1982) – a seminal work in classical game theory.
They study possible fixed communication equilibria under competition by giving the sender and
receiver different targets and creating a conflict of interest. They perform a static analysis and prove
the existence of a Nash equilibrium where the amount of information communicated is proportional
to the alignment between the players’ interests; however no informative equilibrium exists when
interest diverge too greatly. In contrast, we do not look for existence of an equilibrium but do a
dynamic analysis and show the feasibility of communication using standard learning rules in RL.
We do not explicitly aim for equilibria (Shoham et al., 2003) but look at the information transfer
of communication protocols in flux (and therefore out of equilibrium). This is more in line with
previous work in emergent communication (Jaques et al., 2018) as well as evolutionary signalling
(Skyrms, 2010).

3 THE CIRCULAR, BIASED SENDER-RECEIVER GAME

To investigate a range of competitive scenarios, we introduce a modified sender-receiver game with
a continuous-bias variable, b, that represents the agents’ conflict of interest, ranging from fully
cooperative to fully competitive. The two players—the Sender (S) and the Receiver (R)—have
corresponding targets (Ts and Tr), which are represented by angles on a circle that are b degrees
apart: Tr = (Ts + b) mod 360◦.

The game starts with the sender’s target being sampled uniformly from the circle Ts ∼
Uniform[0, 360). The sender is given its target as input and outputs a message, m = S(Ts), con-
sisting of a single, discrete token from a vocabulary m ∈ V . The receiver is given the message and
outputs a scalar action a = R(m). The goal of each agent is to make the receiver’s action as close
as possible to its own target value. After the receiver acts, both players get a loss between the action
and their respective targets, Li = L(a, Ti). By using an L1 loss between the angle of the target and
action Li

1(Ti, a) = min(|Ti−a|, 360◦−|Ti−a|), it is evident that a game with b = 0◦ is fully coop-
erative (Lr

1 = Ls
1) and a game with the maximum bias b = 180◦ is fully competitive or constant-sum

(a generalisation of zero-sum, see Appendix A.1 for proof). All values in-between, b ∈ (0◦, 180◦),
represent the spectrum of partially cooperative/competitive general-sum games. Figure 1a gives an
instance of this game; the game’s algorithm is given in Algorithm 1 in Appendix B. This can be seen
as the game from Crawford & Sobel (1982) modified to cover the range of cooperative/competitive
games.

3.1 TRAINING DETAILS

Both agents are implemented as MLPs with two hidden layers and ReLU (Nair & Hinton, 2010)
nonlinearities between all layers. The targets are sampled from the circle, the sender takes its tar-
get, Ts, as input and outputs a categorical distribution over a vocabulary from which we sample a
message—its output. The receiver takes the message as input and deterministically outputs its ac-
tion, a. Errors are calculated using the L1 loss on the circle. The sender estimates its loss using
the score function estimator (Fu, 2006)—also known as REINFORCE (Williams, 1992)—and has
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(a) The circular, biased sender-receiver game

Figure 1: Circular Biased Sender-Receiver Game has both agents given targets TR, TS that are b
apart and choose an action a to receive the L1 losses Lr

1, L
S
1

an added entropy regularisation term. Since the loss is differentiable with respect to the receiver, it
is trained directly with gradient descent, so we are training in the style of a stochastic computation
graph (Schulman et al., 2015).

We train for 30 epochs of 250 batches, with batch size 64, and set the circumference of our circle to
36 (so that a loss of 90◦ is an error of 9). Both agents are trained using Adam (Kingma & Ba, 2014).
To evaluate, we use a fixed test set of 100 equidistant points ∈ [0◦, 180◦] and take the argmax of
output distributions instead of sampling. We do all hyperparameter searches with Orı́on (Bouthillier
et al., 2019), using random search with a fixed budget of (100) searches. We perform a hyperparam-
eter search to over both agents’ learning rates, hidden layer sizes, the vocabulary size, and entropy
regularisation (when used). We always report results for given hyperparameters averaged over 5 ran-
dom seeds, and we average our metric for hyperparameter search over the last 10 epochs to capture
some level of stability as well as performance. All hyperparameter search spaces are available in the
config files of the code repository.

4 COMMUNICATION: COOPERATION OR MANIPULATION

4.1 EVALUATING INFORMATION TRANSFER

To evaluate the communication emerged with a cheap-talk channel, we can simply look to the sum of
agents’ L1 losses. Under non-communication (or uninformative communication), we know that the
receiver will just guess a point at random, and the average loss for both players is the expected value
of the loss—given that it is drawn uniformly Ex∼U(0,360)[L

s
1(Ts, x)] = 90◦ Therefore, any error

for either agent below 90◦ is evidence of information transfer (Lowe et al., 2019). Furthermore,
since there is no other action space for agents to communicate in, the information transfer must be
happening in the emergent communication space (Mordatch & Abbeel, 2017). Therefore, the lower
Lr
1 + Ls

1 is, the more informative the learned protocol is; and, the most informative protocol will
have the lowest loss mina∈(0,360) L

r
1 + Ls

1 = b. To show this comparison, we always plot the loss
under uninformative communication (90◦) and the loss for each agent if they were to both fairly split
the bias (b/2).

4.2 INFORMATION TRANSFER VS COMMUNICATION

While we have found evidence of information transfer, does that necessarily mean our agents have
learned to communicate? For example, our hyperparameter search could find a minimal learning
rate for the sender, such that it is essentially static, and a normal configuration for the receiver.
The game would then become not one of learning a protocol between two agents, but rather just
a receiver learning the sender’s initial random mapping of targets to messages. The receiver could
then dominate the sender by always choosing a = Tr, which would yield Lr

1 + Ls
1 = b; namely,

the optimal sum of losses and, therefore, optimal information transfer. This situation is clearly
not what we are looking for, but it would be permissible, or potentially even encouraged, under
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an information-transfer objective (as measured by the sum of agents’ L1 losses). It is, therefore,
necessary to delineate the differences in communication; here, we can look to extant results in
signalling (Skyrms, 2010).

4.3 COOPERATION VS. MANIPULATION

One perspective on information transfer is that of manipulation of receivers by senders (Dawkins
& Krebs, 1978) or vice-versa (Hinde, 1981); this manifests as the domination of one agent over the
other. We note that these situations are modelled as cue-reading or sensory manipulation, respec-
tively, and are distinct from signalling—i.e., communication (Barrett & Skyrms, 2017). Accord-
ingly, communication requires both agents to receive a net benefit (Krebs & Dawkins, 1984), which
implies some degree of cooperation (Lewis, 1969). For the fully-cooperative case, previous metrics
of joint reward (Lowe et al., 2019), or even influence of communication (Jaques et al., 2018), are
sufficient to drive the hyperparameter search. But for competitive scenarios, neither of these can
distinguish between manipulation and cooperation (Skyrms & Barrett, 2018).

Since our focus is on the emergence of cooperative communication, we are looking for settings
where both agents perform better than either their fully-exploited losses (Ls

1 < b and Lr
1 < b) or

the loss under non-communication (Ls
1 < 90◦ and Lr

1 < 90◦). With this goal in mind, we choose
the sum of squared losses ((Ls

2)
2 + (Lr

2)
2) as our hyperparameter-search metric. We can view our

partially competitive scenario as having a common-interest loss (180◦− b), in which both agents are
fully cooperative, and a conflict-of-interest loss (b), in which both agents are fully competitive. The
sum of L1 losses optimises only for the common interest, whereas L2 prefers a more fair division of
the conflict-of-interest loss in addition to optimising common interest (see proof in Appendix A.2).
We use the L2 metric only on hyperparameter search and keep L1 as our game’s loss to maintain a
constant-sum game for the fully competitive case.

5 EMERGING COOPERATIVE SELFISH COMMUNICATION

5.1 COMMUNICATION IS PROPORTIONAL TO COOPERATION

We use six equidistant values of b ∈ [0, 30◦, 60◦, 90◦, 120◦, 150◦] and for each one, we do a hyper-
parameter search to find the lowest achievable L2

s+L
2
r . We do not usually test b = 180◦ because the

game is constant-sum and therefore trivially Ls
1 + Lr

1 = 180◦, but for completeness you can see the
results of a hyperparameter search with b = 180◦ in Appendix C Figure 16. We report our results
in Figure 2 and find that agents do learn to cooperatively communicate without any special learning
rules contrary to current literature. We can see that the performance decreases proportionately to the
bias, meaning the sender is less informative with messages, forcing the receiver to be less accurate
in its own guesses. This matches the theoretical results of Crawford & Sobel (1982); information
transfer with communication is inversely proportional to the conflict of interest. Plots for each b are
in shown in Appendix C Figure 6. For the curve, we still plot the L1 losses to maintain consistency
and to make clearer the comparison to the no-communication baseline and the optimal information
transfer (common interest maximisation).

We find that our results are basically unchanged between the different hyperparameter metrics; a
relatively fair and useful protocol is learned by the agents, but this deteriorates in more competitive
scenarios. This is clear when comparing the stability and relative efficacy of protocols in b =
30◦, 60◦, shown in Figures 2b, 2c, and that of b = 90◦ shown in Figure 2d. We can understand this
through the lens of honest communication, which can be taken advantage of in highly competitive
scenarios. If, for example, the sender communicates, with complete honesty, its own coordinates,
then the receiver can take advantage of this and choose its location exactly so that Lr = 0 and
Ls = b. Comparing this situation to non-communication (Lr = Ls = 90◦), it is clear that even
fully-exploited communication is a strictly dominant strategy for b < 90◦ (i.e, when the game is
more cooperative than competitive).

5.2 IMPROVING COMPETITIVE COMMUNICATION WITH LOLA-DICE

For more competitive cases, fully-exploitable communication is no longer dominant, and active
communication now requires both agents to cautiously cooperate. To achieve this cooperation, we
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(a) Best hyperparameters found for each bias b (b) bias b = 30◦

(c) bias b = 60◦ (d) bias b = 90◦

Figure 2: All results are shown in Figure 2a we plot the lowest Lr
1 + Ls

1 test loss found with a
hyperparameter search for b ∈ [0, 30◦, 60◦, 90◦, 120◦, 150◦], demonstrating that informative com-
munication (below the dashed line) is indeed learned by selfish agents. Note that performance even
in the fully cooperative b = 0 is not optimal because of the bottleneck of discrete communication.
For b ∈ [30◦, 60◦, 90◦] we show the training curve of the best hyperparameters found in 2b,2c,2d.
We plot the test loss over training epochs and showing the mean and standard deviation over 5 seeds,
finding that for b < 90◦ we find stable and relatively fair communication is naturally learned

propose using LOLA (Foerster et al., 2018a)—a learning rule, resembling theory-of-mind, that al-
lows us to backpropogate through n steps of the opponent’s learning. LOLA was able to emerge
cooperative behaviour in an iterated prisoner’s dilemma, so it is a prime candidate for resolving
our game in a similar situation. We experiment with LOLA in three configurations—LOLA on the
sender, LOLA on the receiver, LOLA on both—and do a similar hyperparameter search, with the
added search space of the LOLA learning rate. Per the improvements made by Foerster et al. (2019),
we replace the receiver’s score function estimate with the DiCE estimator, and we backpropogate
through exact copies of opponents as opposed to using opponent modelling. We show our results in
Figure 3a with extended plots in Figures 8, 9, 10 in Appendix C.

We find that LOLA on the sender is ineffective, but LOLA on the receiver and on both agents
does indeed lead to better performance. This implies that emerging communication in competitive
scenarios necessitates cooperation and that this cooperation can be found through explicit opponent
modelling. Furthermore, comparing the curves of basic agents (Figure 2d) with those of LOLA
agents (Figure 3c) shows that gains in performance are not from one agent dominating the other,
but from both agents improving and increasing stability. We also look at the performance of n-step
LOLA, which backpropogates through n > 1 steps of opponent learning. Figure 3b demonstrates
that 2-step LOLA slightly outperforms 1-step LOLA, but 3-step LOLA does not provide any increase
over 2-step. We see from Figure 3d that the increase comes mostly from stability of learning and
slight improvement on the part of the sender.
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(a) Comparing the original setup, LOLA on the sender,
LOLA on the receiver, and LOLA on both (b) Comparing 1, 2, and 3-step LOLA on both agents

(c) 1-step LOLA on Sender and Receiver for b = 90◦ (d) 2-step LOLA on Sender and Receiver for b = 90◦

Figure 3: LOLA improves learning to communicate and it is especially visible at b = 90◦ where our
original setup does very poorly. 3b shows that higher step LOLA improves slightly further but not
past 2-step. Best feasible communication protocols found for b = 90◦ using 1-step (3c) and 2-step
LOLA (3d) on both agents demonstrates that the gains in performance over the basic setup shown
in Figure 2d are not just from one agent doing better (though the sender is doing better) but both
agents improving in performance and stability. Shaded area is standard deviation over 5 seeds

5.3 DISCRETE VS CONTINUOUS COMMUNICATION

Another axis to consider is whether discrete or continuous communication lends itself better to
learning with selfish agents. To compare, we make the sender’s message a real-valued scalar and ap-
propriately change its output distribution to be a Gaussian, for which it learns the mean and variance
(concretely described in Algorithms 2 in Appendix B). We, again, run hyperparameter searches, and
we consider training our baseline training with a REINFORCE Sender and deterministic receiver
as well as training both agents with 1-step LOLA. Our results in Figure 4a suggest that the learned
protocols for continuous communication are all highly informative and near optimal. However, in
all cases, the receiver is learning to manipulate the sender, and there is little evidence of cooperative
communication. Indeed, we found no cases of both agents having a net benefit (Lr, Ls < 90◦)
in any of the hyperparameter runs for continuous REINFORCE-deterministic agents past b = 90◦,
and we only two cases of net benefit for LOLA-1 agents. Comparing this to discrete communica-
tion with the same LOLA-1 agents in Figure 4f, we can clearly see that they have a preference for
more cooperative behaviour. Thus, we find that discrete messages are an important component in
emerging cooperative self-interested communication.

6 CONCLUSION

First and foremost, we show evidence against the current notion that selfish agents do not learn
to communicate, and we hope our findings encourage more research into communication under
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(a) Comparing discrete and continu-
ous communication (b) Continuous Game for b = 90◦ (c) Continuous Game for b = 120◦

(d) Ls vs. Lr for all 100 searches for b = 30◦ (e) Ls vs. Lr for all 100 searches for b = 60◦

(f) Ls vs. Lr for all 100 searches for b = 90◦ (g) Ls vs. Lr for all 100 searches for b = 120◦

Figure 4: The comparison between discrete and continuous communication for both the
REINFORCE-deterministic setup as well as 1-step LOLA agents is shown in Figure 4a. We see
that though overall continuous communication can achieve highest information transfer, the gains
in performance seem to mostly from manipulation of the sender by the receiver. Two examples are
shown for REINFORCE agents in Figures 4b,4c. To find a trend, we plot all 100 hyperparame-
ter runs for b ∈ [3, 6, 9, 12] between continuous and discrete communication using 1-step LOLA
agents in Figures 4d,4e,4f,4g. We find that manipulation is the common result in continuous com-
munication though individual cooperative points can sometimes be found. In general, continuous
communication does not lend itself to cooperative communication

competition. We have shown three important properties of communication. First, a game being
more cooperative than competitive is sufficient to naturally emerge communication. Second, we’ve
clarified the distinction between information transfer, communication, and manipulation, provid-
ing motivation for a better quantitative metric to measure emergent communication in competitive
environments. Next, we’ve found that LOLA improves effective selfish communication and, using
our metric, we find it does so by improving both agents’ performance and stability. Finally, we’ve
shown that using a discrete communication channel encourages the learning of cooperative commu-
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nication in contrast to the continuous communication channel setting, where we find little evidence
of cooperation.

In fully-cooperative emergent communication, both agents fully trust each other, so cooperatively
learning a protocol is mutually beneficial. In competitive MARL, the task is using an existing
protocol (or action space) to compete with each other. However, selfish emergent communication
combines these two since the inherent competitiveness of using the protocol to win is tempered by
the inherent cooperativeness of learning it; without somewhat agreeing to meanings, agents cannot
use those meanings to compete (Searcy & Nowicki, 2005; Skyrms & Barrett, 2018). Thus, the agents
must both learn a protocol and use that protocol simultaneously. In this way, even while competing,
selfish agents emerging a communication protocol must learn to cooperate.
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A PROOFS

A.1 PROOF OF FULLY COOPERATIVE/FULLY COMPETITIVE GAME

For b = 0, Ts = Tr so trivially Ls = Lr and the game is fully cooperative.

For b = 180◦, Tr = Ts + 180 mod 360◦ we provide a visual demonstration in Figure 5 that the
sum is always Ls + Lr = 180◦ and therefore the game is constant-sum and fully competitive. We
can also think of this as moving the actions distance d towards one agent’s target means moving it
distance d away from the other agent’s target.

0 ≤ Tr, Ts, a ≤ 360◦. Assume without loss of generality Ts < Tr so Tr = Ts + 180◦ and
Ts ≤ 180◦ ≤ Tr ≤ 360◦

Ls + Lr = L1(Ts, a) + L1(Tr, a)

= min(|Ts − a|, 360◦ − |Ts − a|) + min(|Tr − a|, 360◦ − |Tr − a|)
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Figure 5: The game with maximal bias 180◦ showing the sum of L1 losses Lr + Ls = 180◦

case 1: |Ts − a| < 360◦ − |Ts − a|

min(|Ts − a|, 360◦ − |Ts − a|) = |Ts − a|
|Ts − a| < 180◦

subcase a: Ts >= a

|Ts − a| = Ts − a
∵ Tr = Ts + 180◦

Tr ≥ a+ 180◦

∴ min(|Tr − a|, 360◦ − |Tr − a|) = 360− (Tr − a)
Ls + Lr = Ts − a+ 360◦ − (Tr − a)

= Ts − a+ 360◦ − Ts − 180◦ + a

= 180

subcase b: Ts < a

|Ts − a| = a− Ts
a− Ts < 180◦

a < Ts + 180◦

a < Tr

∴ |Tr − a| = Tr − a
∵ Tr = Ts + 180◦

Tr < a+ 180◦

Tr − a < 180◦

2(Tr − a) < 360◦

Tr − a < 360◦ − (Tr − a)
∴ min(|Tr − a|, 360◦ − |Tr − a|) = Tr − a

∴ Ls + Lr = (a− Ts) + (Tr − a)
= Tr − Ts
= 180◦

We can extend the proof by symmetry (on the circle) for |Ts − a| ≥ 360◦ − |Ts − a|, so the sum of
losses Lr + Ls always equals 180◦ so the game is constant-sum and therefore fully competitive.
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A.2 PROOF OF L2 FAIRNESS

Assume without loss of generality Ts < Tr, we are minimizing the sum of L2 losses

min
a
Ls + Lr = min

a
(Ts − a)2 + (Tr − a)2

= min
a

(Ts − a)2 + (Ts + b− a)2

let Ts = x

= min
a

(x− a)2 + (x+ b− a)2

= min
a
x2 − 2ax+ a2 + x2 + 2bx+ b2 − 2ax− 2ab+ a2

= min
a

2(x− 2ax+ a2 + bx− ab+ b2/4) + b2/2

= min
a

2(x− a+ b/2)2 + b2/2

a = x+ b/2

Sum of L2 losses is minimized when the action is Ts+ b/2 or halfway between both agents’ targets.

B ALGORITHMS

Algorithm 1 Circular Biased Sender-Receiver Game

procedure TRAINING BATCH(b)
Ts ∼ Uniform(0, 360)
Tr ← Ts + b
m ∼ Categorical(S(Ts))
a← R(m)
Ls ← L1(Ts, a) = min(|Ts − a|, 360− |Ts − a|)
Lr ← L1(Tr, a) = min(|Tr − a|, 360− |Tr − a|)
R is updated with SGD
S is updated with REINFORCE or DiCE

Algorithm 2 Continuous Circular Biased Sender-Receiver Game

procedure TRAINING BATCH(b)
Ts ∼ Uniform(0, 360)
Tr ← Ts + b
µ, σ ← S(Ts)
m ∼ Gaussian(µ, σ)
a← R(m)
Ls ← L1(Ts, a) = min(|Ts − a|, 360− |Ts − a|)
Lr ← L1(Tr, a) = min(|Tr − a|, 360− |Tr − a|)
R is updated with SGD
S is updated with REINFORCE or DiCE

C PLOTS
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 6: REINFORCE Sender, Deterministic Receiver, L1 hyperparameter search

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 7: REINFORCE Sender, Deterministic Receiver, L2 hyperparameter search. Note these are
identical to Figure 6 except for b = 150◦
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 8: DiCE Sender, LOLA-1 Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 9: LOLA-1 Sender, Deterministic Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 10: LOLA-1 Sender, LOLA-1 Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 11: LOLA-2 Sender, LOLA-2 Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 12: LOLA-3 Sender, LOLA-3 Receiver

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 13: LOLA-4 Sender, LOLA-4 Receiver
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(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 14: Gaussian Sender. Deterministic Receiver playing the continuous game

(a) bias b = 0◦ (b) bias b = 30◦ (c) bias b = 60◦

(d) bias b = 90◦ (e) bias b = 120◦ (f) bias b = 150◦

Figure 15: Gaussian LOLA Sender. LOLA Receiver playing the continuous game

Figure 16: REINFORCE Sender vs Deterministic Receiver errors for all hyperparameter runs with
b = 180/degree shows that agents are mostly fair in the fully competitive constant-sum game
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