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ABSTRACT

Inspired by the success of self attention mechanism and Transformer architecture
in sequence transduction and image generation applications, we propose novel self
attention-based architectures to improve the performance of adversarial latent code-
based schemes in text generation. Adversarial latent code-based text generation
has recently gained a lot of attention due to its promising results. In this paper,
we take a step to fortify the architectures used in these setups, specifically AAE
and ARAE. We benchmark two latent code-based methods (AAE and ARAE)
designed based on adversarial setups. In our experiments, the Google sentence
compression dataset is utilized to compare our method with these methods using
various objective and subjective measures. The experiments demonstrate the
proposed (self) attention-based models outperform the state-of-the-art in adversarial
code-based text generation.

1 INTRODUCTION

Text generation is of particular interest in many natural language processing (NLP) applications such
as dialogue systems, machine translation, image captioning and text summarization. Recent deep
learning-based approaches to this problem can be categorized into three classes: auto-regressive or
maximum likelihood estimation (MLE)-based, generative adversarial network (GAN)-based and
reinforcement learning (RL)-based approaches.

MLE-based methods (such as|Sutskever et al.|(2014)) model the text (language) as an auto-regressive
process, commonly using RNNs. RNNs compactly represent the samples history in the form of
recurrent states. In these models, text is generated by predicting next token (character, word, etc)
based on the previously generated ones (Graves}, [2013)).

One of the main challenges involved with auto-regressive methods is exposure bias (Bengio et al.,
2015). This problem arises due to discrepancy between the training and generation phases. In
fact, ground-truth samples from the past are used in training, while past generated ones are used in
generation. A number of solutions have been proposed to address this problem by modifying the
training procedure including scheduled sampling (Bengio et al., | 2015), Gibbs sampling (Su et al.,
2018)), and Professor forcing (Lamb et al., 2016)).

Over the past few years, researchers have extensively used GANs (Goodfellow et al., [2014)) as a
powerful generative model for text (Yu et al.,|2017; Che et al., 2017), inspired by the great success in
the field of image generation. GANs are believed to be capable of solving the exposure bias problem
in text generation raised from using MLE. The reason is that they solved a similar issue of blurry
image generation in MLE-based variational autoencoders (VAEs). It is belived that the discriminator
is able to guide the text generator, through their training exchange, how to generate samples similar
to real (training) data. However, there are other challenges involved in GAN-based text generation.

A few of these challenges in text generation are inherent to GANs themselves, such as mode collapse
and training instability. The mode collapse problem happens when the adversarially trained generator
does not produce diverse texts. These issues can be mitigated by using well-known techniques such as
feature matching (Zhang et al.,|2017), and entropy regularization (Shi et al.,2018)). Another challenge
is due to the discrete nature of text, which causes the generator sampling to be non-differentiable
over the categorical distribution of the words.
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In this paper, we take advantage of Transformer self-attention mechanism (Vaswani et al., 2017)
and incorporate it in two state-of-the-art adversarial latent code-based schemes proposed for text
generation. More specifically:

e We incorporate the Transformer structure in the design of encoder and decoder blocks of
AAE (Makhzani et al.,|2015a) and ARAE (Kim et al.| 2017a) setups for text generation.

e Blocks closely inspired from the Transformer’s encoder layers, incorporating self-attention
and element-wise fully-connected layers in a residual configuration and with positional
encodings, are used along with spectral normalization to propose a novel GAN (both
generator and discriminator) structure for AAE and ARAE setups.

e The performance improvement obtained from the proposed architectures is demonstrated
via objective and subjective measures used in extensive experiments.

2 RELATED WORK

2.1 SPECTRAL NORMALIZATION

Spectral normalization (Miyato et al., 2018)) is a weight normalization method proposed to stabilize
the training of GANs. The authors show that the Lipshitz norm of a neural networks can be bounded
by normalizing the spectral norm of layer weight matrices. As opposed to local regularizations used
in WGAN-GP, etc., the network-wide spectral regularization stabilizes the GAN training, produces
more diverse outputs and results in higher inception scores. We use spectral normalization in our
adversarial setups for the same reasons.

2.2 ATTENTION MODELS

In sequence modeling literature, attention was initially proposed by |Bahdanau et al.| (2014). It
recognizes the fixed-length latent representation of the input sequence as the main performance
bottleneck in the seq-to-seq models and proposed using soft-attention in the decoder. Using attention,
the decoder can also attend to any desired token in the input sequence besides consuming the
compressed representation resulting at the end of encoding operation.

Self-attention was initially proposed for language inference in|Parikh et al.|(2016). The authors
named it as "intra-attention" and showed that their structure can be an effective alternative for LSTMs
in the task of natural language inference (Bowman et al.| |2015), at the time achieving state of the art
performance with much fewer parameters as well as requiring a training time an order of magnitude
shorter. Self-attention structures have since been used to set the state of the art in a number of
different tasks (Vaswani et al., 2017; Dehghani et al., 2018} |Yu et al., [2018}; [Radford et al.; |Al-Rfou
et al.,|2018)). They drastically reduce the path length between any two sequence inputs, making the
learning of long term dependencies much easier (Vaswani et al., | 2017)). They are considerably easier
to parallelize, reducing the number of operations that are required to be sequential.

Recently, Zhang et al.| (2018) applied self attention along with spectral normalization to the task of
image generation using GANSs. It showed by visualization that using attention, the generator can
attend to far neighborhoods of any shape rather than close-by fixed-shape ones at each level in a
hierarchical generation. The authors claim that applying spectral normalization to generator as well as
discriminator helps training dynamics (stability). Similarly, we also adopt self attention and spectral
normalization in our architecture designs.

Transformer (Vaswani et al.,|2017) extended the use of self attention mechanism and was proved to
be the state-of-the-art in sequence transduction applications such as machine translation. It dispenses
convolutional and recurrent layers and relies entirely on attention-only layers and element-wise feed
forward layers.

2.3 LATENT SPACE-BASED TEXT GENERATION

One of the main challenges of the language generation task originates from the discrete nature of
text. Similarly to generating other discrete tokens, the back propagation of error through argmax
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operator is not well-defined. To address this problem, various approaches have been proposed in the
literature including continuous approximation of discrete sampling (Gulrajani et al.,|2017; Jang et al.,
2016), using policy gradient from reinforcement learning (Guo, 2015; |Shi et al.| [2018)), etc. One
of the most successful solutions is based on autoencoders with continuous latent spaces (i.e. latent
code-based methods). Various training setups have been proposed for training these autoencoders
including adversarial (Kim et al.,2017a)) and variational (Hu et al., 2017) setups.

A recent paper (Cifka et al.,|2018)) performs a thorough review of the state-of-the-art latent code-
based text generation methods. It studies the performance of a number of code-based text generation
schemes and uses a unified rigorous evaluation protocol to evaluate them. We got inspired by their
evaluation protocol to demonstrate the strength of our self attention-based approach in the context.
They use a broad set of measures to perform a comprehensive study. We adopt forward and reverse
perplexity as well as BLEU from their objective measures and fluency from the subjective ones.

2.4 ADVERSARIAL TEXT GENERATION

In this section, we briefly explain two prominent baseline methods using adversarial latent code-based
generation techniques and present the technical details in Section

2.4.1 AAE

Adversarial autoencoder (AAE) (Makhzani et al.| [2015b) proposes an adversarial setup to train
probabilistic autoencoders. It matches the aggregated posterior of the encoder output (latent codes)
to an arbitrary distribution that can be easily sampled from. Although authors demonstrate the
applications of their setup in semi-supervised learning, style and content disentanglement, etc, AAE
decoder can be effectively used as a generative model, converting samples of the arbitrary distribution
(noise) to real-like outputs. From application perspective, authors only evaluated AAE performance
in vision-related applications. In this paper, we tailor AAE for text generation, following guidelines
proposed by |Cifka et al.| (2018)) and incorporate self attention and Transformer as novel parts in the
model.

2.4.2 ARAE

The adversarially regularized autoencoder (ARAE) (Kim et al.l 2017b) learns an autoencoder with
continuous contracted codes that highly correlate with discrete inputs. That is, similar inputs get
encoded (mapped) to nearby continuous codes. ARAE aims at exploiting GAN’s ability to force the
generator to output continuous codes corresponding to the code space obtained from encoding the
real text data. By matching the outputs of generator and encoder, ARAE provides an implicit latent
code GAN that serves as a generative model for decoding text.

3 SELF ATTENTIVE LATENT CODE-BASED MODELS

In this section, we explain the details of our self attention-based models following the ARAE and
AAE setups proposed in|Cifka et al.| (2018)). These setups have shown comparable to the state-of-the-
art results in text generation. We select similar setups to provide fair comparisons and report the best
techniques/parameters based on our experiments.

In our architectures, Transformer (Vaswani et al., 2017) is used in designing all autoencoders. In
both encoder and decoder, we use three blocks of Transformer. ‘Block’ and ‘layer’ names are used,
respectively, instead of ‘layer’ and ‘sub-layer’ in the original paper.

Layer normalization(Ba et al.,[2016)) is applied on every layer (multi-head attention, masked multi-
head attention and feed forward layers) within each Transformer block. Multi-head attentions have
eight heads and embedding layers are of size 304 (a multiple of eight). Similarly toVaswani et al.
(2017), positional encoding is used at the very first layer of the encoder and decoder. The dimensions
and encoding place were found empirically for the best objective and subjective performance.

For GAN structures, i.e. the generator and discriminator architectures, we use modified Transformer
encoder layers combined with spectral normalization, as depicted in Fig. [I|{(N = 3). As in the regular
transformer blocks, all connections are residual. Inspired by spectral normalization successes in the
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Figure 1: SALSA-TEXT generator and discriminator architecture designed using Transformer
encoder structure

GAN-based image generation, especially proved in SAGAN (Zhang et al., 2018)), we apply it to the
weights of the discriminator and the generator in our network. We did not find layer normalization
(used in original Transformer) to be useful, when applied along with spectral normalization in the
generator and discriminator architectures. Hence, only use spectral normalization in our GAN
structures.

3.1 ADVERSARIAL TECHNIQUES

We use self attention-based structures in two well-known adversarial setups (Makhzani et al.| (2015a)
and [Kim et al.|(2017a))).

AAE We use the AAE-SPH setup used in |Cifka et al.| (2018)). It is based on the original setup
proposed inMakhzani et al.|(2015a)). The discriminator forces encoder outputs to follow a uniform
distribution on the unit sphere. Similarly to Makhzani et al.|(2015a), a two-phase training is used,
where there is regular alternation between minimizing reconstruction and adversarial (regularization)
costs. The trade-off factor (\) between reconstruction and adversarial costs is 20 (as in|Cifka et al.
(2018)). All over the encoder, decoder and discriminator, input and attention heads are dropped with
a probability of 0.1. The general architecture and the proposed (self) attention-based changes are
depicted in Fig. 2}

ARAE We use the original setup from |[Kim et al.|(2017a) with fixed-size full codes as inputs to
the decoder. Inside the encoder and decoder, word and attention head dropout is performed with a
probability of 0.1 and a maximum of 3-word shift is applied to input words. The general architecture
and the proposed (self) attention-based changes are depicted in Fig.
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Figure 2: SALSA-AAE for text generation. As explained in the figure, Transformer-based encoder,
decoder and discriminator (with self attention) architectures are used. Decoder uses fixed-size full
codes.
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Figure 3: SALSA-ARAE for text generation. Similarly to SALSA-AAE, all blocks are Transformer-
based and decoder uses fixed-size full codes. Generator and discriminator comprise of self-attention
layers.

4 EXPERIMENTS

We study the performance of our self attentive (SALSA) architectures and compare it with that of the
code-based setups studied in |Cifka et al.| (2018).

4.1 EXPERIMENTAL SETUP

The performance of the models is evaluated in sentence generation (sampling), on the Google
Sentence Compression (GSC) datasetﬂ (as in|Cifka et al.| (2018)). Training on this dataset is very
challenging as the sentences are relatively long (average of 24.8 words) and diverse in terms of
content, grammar, etc. GSC comprises 200, 000 training and 9, 995 test sentences. For all the trained
models, we use Google’s SentencePiecthokenizer using byte-pair encoding (BPE (Sennrich et al.,
2015)) as in|Cifka et al.| (2018)).

"https://github.com/google-research-datasets/sentence-compression
“https://github.com/google/sentencepiece
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Table 1: Samples from models trained on GSC dataset

Model

Sample sentences

AAE — on Thursday for an undisclosed amount of US Senate.

— .com is launching a new album on “The Idol’s.

— Tuesday for a US dollar in the US, according to the US Department.

— US US markets on Wednesday as US stocks rose to a US dollar, dealers said.
— The US will open its first-day visit to next year.

SALSA- — The world’s largest car maker, said it will buy back a new US$4 million fine for the first time
AAE in three years.

— London, May 6 A 48-year-old man has been charged with raping a woman in the face of
livelihood on Tuesday.

— In a bid to save money, the US government’s most expensive land.

— The Governors of the city of Caterpillar, who was in talks with the world’s most expensive
officials.

— Israel has launched a new website that would help the Gaza Strip, and the first such incident
in a deadly attack on the West Bank and the United States.

— Harrington has been found guilty of two counts of driving under the influence of a semi-final
at a local court.

ARAE — A man has been arrested and charged with sexual assault on an alleged assault and assault for
allegedly assaulting him to death and a child.

— A man is accused of stealing a child in her own home case of her husband.

— A man, who was accused of killing the two-year-old girl in connection with several of them
who died from injuries last week.

— A man is facing charges of sexual assault for allegedly assaulting a woman and her wife.

— A man accused of killing the man in his home is being sentenced to life and is expected to be
on the way.

— A man has been arrested in connection with her death and then sex with her husband, who
was in critical condition and will be released on Monday.

SALSA- — Former PSV Ethanolve said he has “two and the title of his contract,” the first-round pick of
ARAE the season.

— The Queen will present a “Curprone of the Donegal Plan” in a new biopic of the forthcoming
musical, and “Kalways,” the school said in a statement.

— This week between the “Daily Show” flights, a year after the airing, a day before the launch
of a summer vacation.

— However, the Myssenon, is planning to open its first wedding, with a move that will include a
number of its customers, but they are not planning to sell their services.

— The Dallas Morning News reported that a Houston man is in “a new, a state that is leaving the
Houston Rockets.

— The Dallas Morning News Corp. said it is to open a subsidiary of Houston, the largest
newspaper and its staff, to be in the city.

We filter the dataset to only include sentences with a maximum of 50 PBE tokens. This only lowers the
average number of words per sentence and total number of sentences to 23.1 and 183739, respectively
in the training set. The test dataset is also reduced to 9254 lines with an average of 22.7 words per
sentence. Samples of generated sentences from all models is listed in Section[4.3]

The input noise to the generator is of size 100 (as in|Cifka et al.|(2018)). We upsample the noise to
the embedding size of 304 by using a fully connected layer. The same upsampled noise is copied a
number of times equal to the maximum number of steps in the sentence. We use 7' = 50 times in
our experiments. The noise is then fed to the generator, where positional encodings are added to
each step. The previously mentioned fully connected layer also serves to allow the model to learn
to protect the information of the positional encodings from the noise. Positional encodings are also
added at the start of each transformer encoder block. As we use fixed size sequences, the attention
depth is always fixed (" bpe). Positional encodings are also added to the input of each transformer
encoder block, inside of the generator.
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4.2 EVALUATION METRICS

We use various objective and subjective measures to evaluate the models. As objective measures, we
use BLEU (Papineni et al., 2002)), Self-BLEU (Zhu et al.l 2018]), forward and reverse perplexity.

BLEU (Papinenti et al.l 2002) is a widely used metric to compute the similarity of a set of generated
sentences with a reference dataset. The results are described in Table 2

Self BLEU (Zhu et al., 2018) (Table is a measure of diversity for generated texts. In Self-BLEU,
for each generated sentence, we compute the BLEU using the sentence as hypothesis and the rest of
the generated sentences as the reference. When averaged over all the references, it gives us a measure
of how diverse the sentences are. Lower Self-BLEU scores are better, as high BLEU scores indicate
great similarity.

In Perplexity evaluation (Table [)), the goal is to measure the individual quality of the sentences
generated. We train an LSTM language model on the WMT News 2017 Datasetﬂﬁltered for lines of
a maximum of 50 BPE tokens (a total of 200000 sentences). The perplexity of the language model is
computed over 100000 generated sentences for each model.

Reverse perplexity evaluation (Table |4) aims to measure variety of the generated sentences. For
each model, we train an LSTM-based language model based on 100000 generated sentences, and
then evaluate the perplexity on the GSC test dataset, filtered to a maximum length of 50 BPE. Diverse
generated sentences that cover dataset to a good extent would result in better (lower) reverse perplexity
measures resulting from the trained LSTM network (language model).

For the subjective evaluation (Table [3), we use Amazon mechanical Turk [f| online platform. 18
sentences are sampled from each model, i.e. a total of 162 sentences. We assign 81 randomly selected
sentences to 50 native English speakers (among Mechanical Turk Masters with hit approval ratings
greater than 75%). The remaining 81 are assigned to another group of 50 people with the same
qualifications. Each person was asked to evaluate the assigned 81 sentences in one and a half hours.
In the evaluation, the 5-point Likart scale is used to measure grammaticality, semantic consistency
and overall (Fluency). The overall reflects both grammar and semantic consistency in addition to
other human-specific factors. Hence, it is a good representative of "Fluency" measure used in |Cifka
et al.[|(2018)).

4.3 SAMPLES OF GENERATED SENTENCES

In Table [T} we list six generated sentences for each model. As seen, AAE generates rather short
sentences, while the corresponding SALSA version (SALSA-AAE) has alleviated the issue to a good
extent. Finally, ARAE suffers from extreme mode collapse as opposed to its SALSA counterpart.

4.4 RESULTS AND DISCUSSION

The results of objective and subjective evaluations are presented in Tables [2]to 5] As seen, the
proposed self attention-based (SALSA) architectures consistently outperform the non-attention-based
benchmarks in terms of diversity (measured by reverse perplexity). Moreover, they often show better
performance in terms of output quality (measured by BLEU, self BLEU, preplexity and human
evaluations) on the long and complicated sentences of the GSC dataset.

As seen in the generated samples (Table[I)), human evaluation (Table 5 and objective metrics (Tables
[2to[), the original AAE and ARAE setups perform very poorly on GSC with long sentences. With
reverse perplexities of over 8000 and high self-BLEU scores close to 0.9, they suffer from a high
level of mode collapse (repeated sentences).

Human evaluations do not account for lack of diversity. The reason is humans are presented with
a number of shuffled sentences and asked to evaluate them independently (without knowing which
sentence coming from which model). Hence, in our experiments for the original AAE and ARAE, a
model can generate similar sentences (maybe due to mode collapse) and still receives high subjective
scores.

Shttp://www.statmt.org/wmt17/
*https://www.mturk.com/
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Objective and subjective evaluation of the studied models on the GSC dataset

Table 2: BLEU

AAE | SALSA-AAE | ARAE | SALSA-ARAE

BLEU-1 | 0.671 0.905 0.924 0.865

BLEU-2 | 0.500 0.638 0.698 0.585

BLEU-3 | 0.279 0.367 0.402 0.294

BLEU-4 | 0.149 0.192 0212 0.137
BLEU-5 | 0.086 0.101 0.116 0.071

Table 3: Self-BLEU
AAE | SALSA-AAE | ARAE | SALSA-ARAE

Self BLEU-1 | 0.950 0.897 0973 0.896
Self BLEU-2 | 0.759 0.738 0.921 0.731
Self BLEU-3 | 0.604 0.573 0.843 0.549
Self BLEU-4 | 0.412 0.410 0.751 0.367
Self BLEU-5 | 0.270 0.275 0.653 0.226

Table 4: Perplexity
AAE [ SALSA-AAE | ARAE [ SALSA-ARAE
Reverse perplexity | 10309 822 8857 1008
Perplexity 88 61 37 106

Table 5: Human Evaluations

AAE [ SALSA-AAE [ ARAE | SALSA-ARAE
Grammaticality 2.756 3.09 2.980 2.898
Semantic consistency | 2.575 2.597 2.856 2.617
Fluency 2.604 2.700 2.851 2.652

It seems that, in our experiments, the original ARAE model suffers from mode collapse. We can see
that it has slightly higher human evaluation scores, but extremely poor diversity metrics, i.e. very
high reverse perplexity and self-BLEU scores. It can also be seen in the randomly selected generated
sentences (Table[T), where all the sentences start with "A man" and invariably mention he is being
arrested or accused of grievous crimes. This is likely because the sentences in the GSC dataset
are long and that their structure is elaborate. SALSA-ARAE on the other hand reliably produces
sentences of quality with great diversity.

SALSA-AAE has both considerably higher individual quality metrics than the original AAE and
much better diversity metrics. It is the strongest pure adversarial text model. As seen in Table [5]
SALSA-AAE provides the best grammaticality, semantic consistency and Fluency performance.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced SALSA-TEXT, a Transformer-based architecture for adversarial code-
based text generation. It incorporates self-attention mechanism by utilizing Transformer architecture
in autoencoder and GAN setups. Our extensive experiments demonstrate the better performance
of our models compared to the state-of-the-art in adversarial code-based text generation (without
self-attention). The proposed architectures provide diverse, long and high quality output sentences as
confirmed by objective metrics and human evaluations in extensive experiments.

As a future direction, it is beneficial to study the performance of self attention in other text generation
methods including variational code-based and reinforcement learning-based approaches. Another
interesting direction is to experiment with deeper Transformer-based autoencoders to better capture
the underlying language model and perform unsupervised pre-training isnpired by the success of
Al-Rfou et al. (2018)) and |[Radford et al..
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