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Abstract

Brain-Computer Interfaces (BCI) may help patients with faltering communication
abilities due to neurodegenerative diseases produce text or speech by direct neural
processing. However, their practical realization has proven difficult due to limita-
tions in speed, accuracy, and generalizability of existing interfaces. To this end, we
aim to create a BCI that decodes text directly from neural signals. We implement a
framework that initially isolates frequency bands in the input signal encapsulating
differential information regarding production of various phonemic classes. These
bands form a feature set that feeds into an LSTM which discerns at each time
point probability distributions across all phonemes uttered by a subject. Finally, a
particle filtering algorithm temporally smooths these probabilities incorporating
prior knowledge of the English language to output text corresponding to the de-
coded word. Further, in producing an output, we abstain from constraining the
reconstructed word to be from a given bag-of-words, unlike previous studies. The
empirical success of our proposed approach, offers promise for the employment of
such an interface by patients in unfettered, naturalistic environments.

1 Introduction

Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) restrict an individual’s
potential to fully engage with their surroundings by hindering communication abilities. Brain-
Computer Interfaces (BCI) have long been envisioned to assist such patients as they bypass affected
pathways and directly translate neural recordings into text or speech output. However, practical
implementation of this technology has been hindered by limitations in speed and accuracy of existing
systems [4]. Many patients rely on devices that use motor imagery [[L0], or on interfaces that require
them to individually identify and spell out text characters such as the "point and click" cursor method
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Figure 1: Overview of neural signals translation to text. 1) Signals are recorded using depth electrodes
implanted based on clinical need. 2) Signal features are selected for each time point based on spectral
analysis. 3) A bLSTM creates probability distributions over phonemes at each time point. 4)
Probabilities are smoothed and domain knowledge is incorporated using a probabilistic automaton
traversed using a particle filtering algorithm. 5) The highest probability word is chosen as the output.

[L1}112]. Despite significant work in system optimization, inherent limitations in their designs render
them significantly slower than spoken communication.

To address these shortcomings, several studies are using electrocorticography (ECoG) and local
field potential (LFP) signals [2]. These invasive approaches provide superior signal quality with
high temporal and spatial accuracy. Previous work attempted translation to continuous phoneme
sequences using invasive neural data [8]]; however, despite their reported higher translation speed,
their applications are limited to a reduced dictionary (10-100 words). Other design choices meant
to enhance phoneme classification capitalize on prior knowledge of the target words, hindering
their generalization to unmodified scenarios. Additionally, a recent study synthesized speech using
recordings from speech cortex. Though the authors demonstrate partial transferrability of their
decoder amongst patients, their accuracy is again limited to selection of the reconstructed word by a
listener from a pool of 25 words and worsens as the pool size increases [3|].

Thus, establishing the capability of these approaches to generalize to unconstrained vocabularies is
not obvious and has to our knowledge not yet been studied. Here, we present the performance of a
two-part decoder network comprising of an LSTM and a particle filtering algorithm on data gathered
from six patients. We provide empirical evidence that our interface achieves an average accuracy
of 32% calculated against a full corpus, i.e. one encompassing all feasible English words that can
be formulated using the entire set of phonemes uttered by a patient, thus marking an important,
non-incremental step in the direction of viability of such an interface.

2 Methods

The overall system consists of five steps as detailed in Fig[I]

2.1 Experimental Design

non

During the study, subjects were asked to repeat individual words ("yes", "no"), or monopthongal
vowels with or without preceding consonants. During each trial, they were instructed which word
or string to repeat and were then be prompted by a beep followed by a 2.25 second window during
which they spoke. A trial thus consists of each such repetition. The number of these trials varied
between subjects based on their comfort, ranging from 55 to 208. Number of phonemes per subject



consequently fluctuated between 8 (3 consonants, 5 vowels) to 16 (11 consonants, 5 vowels). The
sampling rate of these recordings was 30 kHz. Before further processing, electrodes determined to
have low signal-to-noise ratio (SNR) were removed. Criterion for electrode removal was either that
its time-series signal was uniformly zero, or that it contained artifacts that were atleast one order of
magnitude larger than the mean absolute signal amplitude. Correspondingly, ~ 8-9 % of channels
were eliminated from further analysis. We elucidate in our previous work [9]] the localization and
relevance of the remaining electrodes as pertains to the different parts of speech they encode.

2.2 Feature Selection

In order to include as input to our network classifier differential information stored in the neural
signals about production of various phonemes, an experiment was designed that mapped power in
spectral bands of these recordings to the underlying phoneme pronunciation.

Each recording was divided into time windows from -166.67 to 100 ms relative to onset of the
speech stimuli. Labels [0,1] were assigned respectively to the corresponding audio signal: [silence,
consonant/vowel]. The power per band is pre-processed by z-scoring and down sampling it to 100 Hz.
This then acts as an input to a linear classifier which we train using early-stopping and coordinate
descent methods. To additionally ensure that the classifier can identify the silence after completion of
a phoneme string, we performed training over 100 ms post speech onset, but test the features captured
by the classifier over 333.33 ms, since most trials end within this time period.

While previous studies have used bands upto high gamma (70-150 Hz) for all speech uniformly, our
results show that for several of our subjects, vowels are delineated by high spectral bands (> 600 Hz)
and consonants by low ones (< 400 Hz). For individual subject’s values we refer the reader to [9].

2.3 LSTM Model Description

The first part of our decoder is a stacked two-layer bLSTM. We use a bLSTM due to its ability to
retain temporally distant dependencies when decoding a sequence [7]]. Furthermore, our analysis
reveals that while a single-layer network can differentiate between phonemic classes such as nasals,
semivowels, fricatives etc.; a two-layer model can distinguish between individual phonemes. We
train this model with an ADAM optimizer to minimize weighted cross-entropy error, wherein the
weights are inversely proportional to phoneme frequencies. Finally, we evaluate the decoder using
leave-one-trial-out; for each time point in the test trial the recurrent network outputs probability
distributions across all phonemes in the subject’s dataset. Implementation was using Pytorch [1].

2.4 Language Model

A language model is used to apply prior knowledge about the expected output given the target domain
of natural language. In general, such a model creates prior probability distributions for the output
based on the sequences seen in a corpus that is reflective of the target output. In this study, word
frequencies were determined using the Brown corpus [5] translated into phonemic sequences using
the CMU Pronouncing Dictionary [14]. The phoneme prior probabilities were determined by finding
the relative frequency of each phoneme in the resulting corpus. To find probabilities of sequences of
phonemes, these priors may be conjoined using the nth-order Markov assumption to create an n-gram
model. While such models are able to capture local phonemic patterns, they allow for sequences
that are not valid words on the language. A probabilistic automaton (PA) creates a stronger prior
by creating states for every subsequence that starts a word in the corpus [13]]. Each state then links
to every state that represents a superstring that is one character longer (Figure[2)). This graphical
structure accounts for the possibility of homophones by keeping a list of such words associated with
each node along with their relative frequency in the text corpus. Here we would like to reiterate that
our model solely derives from the Brown corpus, and hence as such is patient agnostic.

2.5 Temporal smoothing

Laplacian smoothing is applied to the LSTM model output so that phonemes that were not seen
during training are assigned a non-zero probability. To the resulting distributions we then apply the
language model using a subject-dependent temporal algorithm. Specifically in this study, we employ
a particle filtering (PF) method [[13]. PF estimates the probability distribution of sequential outputs by
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Figure 2: Example probabilistic automaton based on phonemes: /n/, /o/, and /i/. Shaded nodes
represent possible terminations for a word. Lists of words for a given node correspond to homophones.

creating a set of realities (called particles) and projecting them through the model based on observed
data and the language model [6]. Each particle contains a reference to a state in the model, a history
of previous states, and an amount of time that it is going to remain in the current state. Distribution of
states occupied by these particles represents an estimation of the true probability distribution.

When the system begins, a set of P particles is generated and each is associated with the root node of
the language model. At each time point, samples are drawn from the proposal distribution defined by
the transition probabilities from the previous state.

2 ~ play | 2f2) (1)
The time that the particle will stay in that state is drawn from a distribution representing how long the
subject is expected to spend speaking a specific phoneme. At each time point, the probability weight
is computed for each of the particles using,

L L L
wi ocwByp(y | i) @)
The weights are then normalized and the probability of possible output strings is found by summing
the weights of all particles that correspond to that string. The system keeps a running account of the
highest probability output at each time. The effective number of particles is then computed.
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If the effective number falls below a threshold, Pij.csp, @ new set of particles are drawn from the
particle distribution. This threshold was chosen empirically to be 10% of the total number of particles.
Sensitivity analysis varying this value did not have a significantly affect results. Further at each time
point, the amount of time for a given particle to remain in a state is decremented. Once that reaches
zero, the particle transitions to a new state in the language model based on probability p(z: | zo.t—1).

Perp = 3)

3 Results

In our evaluation, output words were only considered correct if the phoneme sequence matched the
labels and each phoneme overlaped at least partially with its respective audio label. Word accuracies
varied between subjects, ranging from 54.55% (subject 1) to 13.46% (subject 2) (Table [I). On
average, 32.16% of trials were classified completely correctly and an additional 23.06% had at least
one phoneme match. Of the incorrect classifications 32.28% produced incorrect words either because
none of the output phonemes were correct or because the sequences did not align temporally with
the audio signal. In the remaining 12.49% of trials, the system did not detect speech signals, and
produced an empty string as output.

4 Discussion

Each of the subjects in this study were able to communicate with significantly higher accuracy than
chance. Nevertheless, the average word error rate seen in this study (67.8% on average) was higher



Table 1: Word level performance of each subject.

Subject ACCyw (%) Partial (%) Incorrect (%) Omission (%) Baseline (Random chance)

1 54.55 12.73 20.00 12.73 2.36
2 13.46 21.15 46.15 19.23 0.52
3 23.08 35.75 36.65 4.52 0.28
4 29.73 18.92 3243 18.92 1.27
5 31.43 24.57 33.71 10.29 0.76
6 40.72 25.26 24.74 9.28 0.74
Average 32.16 23.06 32.28 12.49 0.99

than the 53% reported in [3]. There were several important differences in these studies, however.
The primary difference is that their system produced an audio output that required a human listener
to transcribe into a word selection. Despite advances in machine learning and natural language
processing, humans have superior ability to use contextual information to find meaning in a signal.
Furthermore, that study limited classifications to an output domain set of 50 words, which is generally
not sufficient for a realistic communication system.

While this study makes a significant addition to existing BCI literature in terms of its avoidance of
the traditional bag-of-words approach, our accuracies are lower than those reported in ERP-based
BCI studies [12]. Moreover, in order for a BCI system based on translating neural signals to become
a practical solution, improvements need to be made either in signal acquisition, machine learning
translation, or user strategy. One approach could be to sacrifice some of the speed advantages by
having users repeat words multiple times. While this would reduce communication speeds below
natural speaking rates, it would still greatly exceed ERP-based methods, while increasing the signals
available for classification which could improve system accuracy.

However, both this study and previous literature have primarily been concerned with decoding
speech/text for patients with intact motor abilities. It is presently unclear how this would translate to
intended speech. While the electrodes used in this study are inept to answer this question, given their
majority location in the speech cortical areas [9], we suggest a plausible new experiment: teaching
those who can’t speak to rethink speech in terms of vocal tract movements. Using electrodes in the
sensorimotor cortex [3l] and continuous visual feedback of ground truth vocal tract movements for
each phoneme’s pronounciation, a subject’s attention could be entrained to only the (intended or
executed) motion of their vocal tract for covert and overt speech respectively. One can then test the
transferability of state space models - latent variables comprising of different articulators and observed
states corresponding to the time-varying neural signals - between the covert and overt behaviours to
better understand and harness the physiological variability between the two to eventually translate
current studies into potentially viable devices.

4.1 Limitations and Future Work

The language model used in this study was designed to be general enough for application in a realistic
BCI system. This generality may have been detrimental to its performance in the current study,
however, as language models based on natural language will bias towards words that are common in
everyday speech. The current study design produced many words that are infrequent in the training
corpus. As a result, the language model biased away from such outputs, making it almost impossible
to correctly classify. Lastly, while the results presented in this study are promising, but they represent
offline performance which does not include several factors such as user feedback.

5 Conclusion

The proposed system serves as a step in the direction of a generalized BCI system that can directly
translate neural signals into written text in naturalistic scenarios. However, communication accuracies
are currently insufficient for a practical BCI device, so future work must focus on improving these
and developing an interface to present feedback to users.
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