
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

MEMC-Net: Motion Estimation and Motion
Compensation Driven Neural Network for

Video Interpolation and Enhancement
Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang

Abstract—Motion estimation (ME) and motion compensation (MC) have been widely used for classical video frame interpolation
systems over the past decades. Recently, a number of data-driven frame interpolation methods based on convolutional neural
networks have been proposed. However, existing learning based methods typically estimate either flow or compensation kernels,
thereby limiting performance on both computational efficiency and interpolation accuracy. In this work, we propose a motion estimation
and compensation driven neural network for video frame interpolation. A novel adaptive warping layer is developed to integrate both
optical flow and interpolation kernels to synthesize target frame pixels. This layer is fully differentiable such that both the flow and
kernel estimation networks can be optimized jointly. The proposed model benefits from the advantages of motion estimation and
compensation methods without using hand-crafted features. Compared to existing methods, our approach is computationally efficient
and able to generate more visually appealing results. Furthermore, the proposed MEMC-Net architecture can be seamlessly adapted
to several video enhancement tasks, e.g., super-resolution, denoising, and deblocking. Extensive quantitative and qualitative
evaluations demonstrate that the proposed method performs favorably against the state-of-the-art video frame interpolation and
enhancement algorithms on a wide range of datasets.

Index Terms—Motion Estimation, Motion Compensation, Convolutional Neural Network, Adaptive Warping

F

1 INTRODUCTION

V IDEO frame interpolation aims to synthesize non-
existent frames between original input frames, which

has been applied to numerous applications such as video
frame rate conversion [1], novel view synthesis [2], and
frame recovery in video streaming [3], to name a few.
Conventional approaches [4], [5] are generally based on
motion estimation and motion compensation (MEMC), and
have been widely used in various display devices [6]. A
few deep learning based frame interpolation approaches [7],
[8] have been developed to address this classical topic. In
this paper, we analyze the MEMC-based and learning-based
approaches of video frame interpolation and exploit the
merits of both paradigms to propose a high-quality frame
interpolation processing algorithm.

Conventional MEMC-based approaches entail both mo-
tion estimation [13] and motion compensation [14] for
video interpolation. Motion estimation is used to determine
the block-wise or pixel-wise motion vectors between two
frames. The block-based methods [4] assume that the pixels
within a block share the same motion and use search strate-
gies [15], [16] and selection criteria [4], [17] to obtain the op-
timal motion vector. On the other hand, the methods based
on pixel-based motion, i.e., optical flow, estimate a mo-
tion/flow vector for each pixel of the frames and thus entail
heavy computational loads. The recent years have witnessed

• Wenbo Bao, Xiaoyun Zhang and Zhiyong Gao are with the Department of
Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240.
Email: {baowenbo|xiaoyun.zhang|zhiyong.gao}@sjtu.edu.cn

• Wei-Sheng Lai and Ming-Hsuan Yang are with the Department of
Electrical Engineering and Computer Science, University of California,
Merced, CA, 95340. Email:{wlai24|mhyang}@ucmerced.edu

significant advances in optical flow estimation via varia-
tional optimization [18], nearest neighbor field search [19],
cost volume filtering [20], and deep convolutional neural
networks (CNNs) [11], [21]. However, estimating optical
flow remains a challenging problem due to fast-moving and
thin objects, occlusion and dis-occlusion, brightness change
and motion blur. To account for inaccurate flow and oc-
cluded pixels, motion compensated interpolation methods
usually use sophisticated filters to reduce visual artifacts of
the generated frames [14], [22]. In addition, these schemes
do not perform well where objects in the intermediate frame
are invisible in both forward and backward reference frames
(e.g., some pixels cannot be compensated), and require fur-
ther post-processing procedures to fill in missing or remove
unreliable pixels [17], [23], [24], [25].

Numerous learning-based frame interpolation methods
based on deep CNNs have been recently proposed [7], [8].
The training datasets for learning-based methods typically
contain image triplets from raw video sequences, with the
first and third frame feeding into the network as inputs and
the intermediate second frame acting as ground truth [7],
[8], [9] for output. By imposing loss functions such as Lp-
norm on the difference between the network output and
ground truth frame pixels, the model parameters can be
iteratively updated via a gradient descent scheme.

The conventional MEMC-based methods are computa-
tionally efficient due to the block-wise setting [25], [26].
However, these block-based methods do not achieve the
state-of-the-art results as hand-crafted features are typically
used in the ME and MC stages. In contrast, the learning-
based methods are developed based on the massive amount
of raw video data. However, the state-of-the-art learning-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(a) Overlay (b) MIND [7] (c) ToFlow [9] (d) EpicFlow [10] (e) SPyNet [11]

(f) SepConv-Lf [12] (g) SepConv-L1 [12] (h) MEMC-Net (i) MEMC-Net* (j) Ground Truth
Fig. 1. Visual comparisons with existing frame interpolation approaches. The proposed method MEMC-Net synthesizes the
intermediate frame with clear edges and shape. With the context information and residual blocks used, the improved model
MEMC-Net* obtains better outcome with fine details around motion boundaries.

based approaches [9], [27] focus on motion estimation,
which often leads to blurry results due to bilinear interpo-
lation process. While other approaches [12], [28] are devel-
oped to consider the effect of interpolation kernels, such
schemes are sensitive to large motion.

In this paper, we propose to exploit motion estimation
and motion compensation in a neural network for video
frame interpolation. Both the motion vectors and compen-
sation filters are estimated through CNNs. We further pro-
pose an adaptive warping layer based on optical flow and
compensation filters for synthesizing new pixels. This novel
warping layer is fully differentiable such that the gradients
can be back-propagated to both the ME and MC networks.
To account for the occlusions, we estimate occlusion masks
to adaptively blend the warped frames. Furthermore, the
missing pixels in holes and unreliable pixels of the warped
frames are processed by a post-processing CNN. Our entire
model, MEMC-Net, is motivated by the architecture of con-
ventional methods but realized via the most recent learning-
based approaches. Fig. 1 shows an interpolated frame of our
methods (MEMC-Net and MEMC-Net*) and existing algo-
rithms [7], [9], [10], [11], [12], where the proposed methods
predict the moving ball with clearer contours and sharper
edges.

The contributions of this paper are summarized as fol-
lows:

(1) We propose a motion estimation and compensation
driven neural network for robust and high-quality
video frame interpolation.

(2) We integrate the optical flow warping with learned
compensation filters into an adaptive warping layer. The
proposed adaptive warping layer is fully differen-
tiable and applicable to several video processing tasks,
e.g., video super-resolution, video denoising, and video
deblocking.

(3) We demonstrate that the proposed method performs fa-
vorably against the state-of-the-art frame interpolation
algorithms on several benchmark datasets, including
the Middlebury [29], UCF101 [30], and Vimeo90K [9]
datasets. Our model requires less memory to predict
the compensation filters and executes efficiently.

(4) We extend our network to the other video enhance-
ment tasks including super-resolution, denoising, and
deblocking as the model is general and applicable to
motion compensation based tasks. Our methods obtain
more favorable results against the state-of-the-art algo-
rithms on each of these tasks.

2 RELATED WORK

In this section, we discuss the conventional MEMC-based
and recent learning-based methods.

2.1 Conventional MEMC-based Methods

Fig. 2(a) shows the typical framework of conventional
MEMC-based video frame interpolation methods. First, mo-
tion vectors between the forward and reference frames are
estimated. Along the motion trajectories, pixels of the refer-
ence frames are used to interpolate the intermediate frame.
Conventional ME methods use block-based algorithms such
as the 3D recursive search [4], which are hardware-friendly
and computationally efficient. The block-based methods
typically divide the image frames into small pixel blocks and
exploit certain search strategies such as spatial/temporal
search [4], hierarchical search [31], based on selection criteria
such as the minimum sum of absolute block difference to
compute their motion vectors.

For motion compensated interpolation, overlapped
blocks are usually utilized to cope with the erroneous
motion vectors of pixel blocks [14]. Recently, several meth-
ods [24], [32] exploit optical flow for the truthfulness of
flow fields. Compensation filters via image fusion [24] or
overlapped patch reconstruction [32] are developed to deal
with occlusion or blocky effects.

Aside from the motion estimation and motion compen-
sation procedures, a post-processing step is often required
to minimize artifacts and improve visual qualities [17], [23],
[24], [25]. Due to relative motions and occlusion between
objects with different depth, the estimated flow vectors may
lead to incorrect interpolation results with hole regions.
Kim et al. [25] utilize a hole interpolation method to restore
missing pixels. On the other hand, Wang et al. [17] propose

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

(a) Motion

Estimation

Motion Compensated

Interpolation

መ𝐈𝑡𝐟𝑡→𝑡−1

𝐟𝑡→𝑡+1
Post-processing

ሚ𝐈𝑡𝐈𝑡−1
𝐈𝑡+1

(b) Bilinear

Warping

𝐈𝑡−1
𝐈𝑡+1

Motion

Estimation

𝐟𝑡→𝑡−1

𝐟𝑡→𝑡+1

Post-

processing

ሚ𝐈𝑡
መ𝐈𝑡

(c) Kernel

Estimation

መ𝐈𝑡𝐊𝑡−1

𝐊𝑡+1

Kernel

Convolution

𝐈𝑡−1
𝐈𝑡+1

ሚ𝐈𝑡

Fig. 2. Frameworks of (a) the conventional MEMC-based
approaches, (b) the flow-based and (c) the kernel-based
models. The black, red, and blue text boxes correspond to the
conventional modules, network modules, and network layers
respectively.

a trilateral filtering method to fill the holes and smooth
the compensation errors in both the spatial and temporal
domains. The proposed algorithm differs from the conven-
tional MEMC methods in that we develop a data-driven
end-to-end trainable model with deep features.

2.2 Learning-based Methods

Video frame interpolation based on deep learning al-
gorithms can be categorized into the direct method,
phase-based, flow-based, and kernel-based approaches.
Long et al. [7] train a deep CNN to directly predict the
interpolated frames. The outputs are usually blurry and
contain fewer details as this deep model is not able to
capture the multi-modal distribution of natural images and
videos. The phase-based method [33] manipulates the pixel
phase information within a multi-scale pyramid for frame
interpolation. However, this approach is less effective in
handling large motion in complicated scenes. In the fol-
lowing, we focus our discussion on recent flow-based and
kernel-based methods.

Flow-based methods. With the advances in optical flow
estimation by deep CNNs [11], [21], [34], [35], several meth-
ods based on end-to-end deep models have been developed
for frame interpolation. These approaches either predict bi-
directional flow [9] or use the bilinear warping operation to
align input frames based on linear motion models [36], [37],
[38]. To synthesize an output image, a common technique
is to estimate an occlusion mask to adaptively blend the
warped frames. As the bilinear warping blend neighbor
pixels based on the sub-pixel shifts, the flow-based methods
inevitably generate ghost or blurry artifacts when the input
frames are not aligned well. The pipeline for the flow-based
methods is illustrated in Fig. 2(b). Instead of using the fixed
bilinear coefficients for interpolation, our approach learns
spatially-varying interpolation kernels for each pixel. The
learned kernels have larger spatial support (e.g., 4 × 4)
than the bilinear interpolation and thus better account for
occlusion and dis-occlusion.

Kernel-based methods. Instead of relying on pixel-
wise optical flow, frame interpolation can be formulated
as convolution operations over local patches [39], [40].
Niklaus et al. [28] propose the AdaConv model to estimate
spatially-adaptive convolutional kernels for each output
pixel. We show the pipeline of kernel-based methods
in Fig. 2(c). In these methods, a large kernel size is used

(a) Bilinear

Warping

𝐈𝑡−1
𝐈𝑡+1

Motion

Estimation

Kernel

Estimation

መ𝐈𝑡𝐟𝑡→𝑡−1

𝐟𝑡→𝑡+1

Post-

processing

ሚ𝐈𝑡
መ𝐈𝑡−1
መ𝐈𝑡+1

𝐊𝑡−1

𝐊𝑡+1

Kernel

Convolution

መ𝐈𝑡

(b)
Adaptive Warping

Bilinear Warping

𝐈𝑡−1
𝐈𝑡+1

Motion

Estimation

Kernel

Estimation

𝐟𝑡→𝑡−1

𝐟𝑡→𝑡+1
Post-

processing

ሚ𝐈𝑡

𝐊𝑡−1

𝐊𝑡+1
Kernel Convolution

መ𝐈𝑡

Fig. 3. Frameworks of (a) the sequential MEMC-Net model
and (b) our proposed MEMC-Net model.

TABLE 1. CNN-based frame interpolation methods.

Optical
flow

Occlusion
mask

Interpolation
coefficients

Kernel
size

Flow-based [9], [36] X X fixed 2× 2

Kernel-based [12], [28] — — adaptive 41× 41,
51× 51

MEMC-Net (Ours) X X adaptive 4× 4

to handle large motion, which requires a large amount of
memory to process high-resolution images. For an input
frame of H × W pixels, the AdaConv model needs to
estimate H × W × R × R coefficients for interpolation,
where R is the size of the local kernels. To reduce memory
requirements, the SepConv method [12] assumes that the
convolutional kernels are separable and uses a pair of 1D
kernels (one vertical and one horizontal kernel) to approxi-
mate the 2D kernels. This strategy significantly reduces the
memory consumption from O(R2) to O(2R) and further
improves interpolation results. However, both the AdaConv
and SepConv methods cannot handle motion larger than the
pre-defined kernel size. While our approach also learns adap-
tive local kernels for interpolation, the proposed method
is not limited by the assumption of fixed motion range as
optical flow warping is integrated. That is, our method
uses smaller kernels, requires a low amount of memory,
and performs robustly to frames with large motion. We list
the main difference with flow-based methods [9], [36] and
kernel-based approaches [12], [28] in Table 1.

3 MOTION ESTIMATION AND MOTION COMPENSA-
TION DRIVEN NEURAL NETWORK

In this section, we describe the design methodology of the
proposed MEMC-Net framework, adaptive warping layer,
and flow projection layer used in our model.

3.1 MEMC-Net Framework
Following the conventional MEMC-based and recent
learning-based methods, there are different ways to design
a MEMC-Net model for video frame interpolation.

A straightforward method is to combine the motion esti-
mation, motion compensation, and post-processing sequen-
tially. That is, the reference frames are first aligned with the
motion estimation, bilinear warping is applied to account
for large motion, and small convolutional kernels for the
warped frames are estimated to synthesize a final frame.
As in the conventional MEMC-based framework, a post-
processing network is also added to the sequential model
to reduce the possible pixel outliers. Fig. 3(a) illustrates this

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Flow Estimation

Context Extraction

Mask Estimation

Optical Flows

Occlusion Masks

Interpolation Kernels

Contextual Features

Kernel Estimation

Post-processing

Frame 𝑡 − 1

Flow

Projection

Layer

Adaptive

Warping Layer

co
n

ca
te

n
at

e

Frame 𝑡 + 1

Projected Flows

Interpolated Frame 𝑡

Warped Frames

Warped Contexture Features

Blended Frame

 Blended Frame

Interpolation Kernels

Adaptive

Warping Layer

+

෠ -

෠

Projected FlowsInterpolation Kernels

Fig. 4. Network architecture of the proposed MEMC-Net and MEMC-Net*. The context extraction module and its generated
contextual features and warped contextual features are for MEMC-Net*.

sequential model. However, according to our experiments,
the warped frames (Ît−1 and Ît+1) are usually of low quality
due to the imperfect optical flow estimated by existing
methods. Consequently, the lateral kernel estimation, kernel
convolution, and post-processing are not able to generate
visually pleasing results from the corrupted frames.

In this paper, we develop a novel algorithm to simulta-
neously estimate the flow and compensation kernels with
respect to the original reference frames. This approach
requires frame interpolation to be carried out within a
warping layer based on both the flow and compensation
kernel. This new warping layer is expected to tightly couple
the motion estimation and kernel estimation networks so
that both networks can be optimized through the enormous
video data. Fig. 3(b) shows the proposed framework for
video frame interpolation.

We present the network architecture of the proposed
MEMC-Net for the video frame interpolation in Fig. 4.
In this work, we propose a novel adaptive warping layer
to assemble the bilinear warping and kernel convolution
in one single step. The layer takes in the optical flow,
interpolation kernel to warp the input frame pixels. For the
video frame interpolation task, since the intermediate frame
is not originally available, we estimate the flow between the
forward and backward reference frames, and then project it
to simulate the flow between the intermediate and reference
frames. This operation is achieved by our proposed flow
projection layer.

The adaptive warping and the flow projection layers are
the two major technical innovations of our algorithm. We
summarize the benefits of the proposed layer from two
aspects. First, the conventional MEMC-based approaches
rely on hand-crafted features (e.g., SIFT [41] for motion
estimation or Gaussian-like weighting maps [42] for motion
compensation), while the proposed adaptive warping layer
allows us to extract data-driven features for joint motion esti-
mation and motion compensation. Therefore, the proposed
model has a better generalization capability to handle various
scenarios for video frame interpolation and enhancement
tasks. Second, the adaptive warping layer tightly integrates

two learning-based methodologies, namely the flow-based
and kernel-based ones, and inherits their merits in that:
1) Compared to the flow-based methods [9], [36] that rely on
simple bilinear coefficients, our method is able to improve
the interpolation accuracy by using data-driven kernel coeffi-
cients.
2) Compared to the kernel-based approaches [12], [28], our
method obtains higher computational efficiency by largely
reducing the kernel size through pre-aligning the pixels with
learned optical flows.

We present the forward inference and back-propagation
details of the two novel layers in Section 3.2 and Section 3.3
respectively. The pipeline of our method in Fig. 4, as well
as the detailed network configuration of the used motion
estimation, kernel estimation, mask estimation, and post-
processing networks, are described in Section 4. We will also
introduce an additional context extraction network toward
the enhanced MEMC-Net* model.

3.2 Adaptive Warping Layer

The proposed adaptive layer warps images or features
based on the given optical flow and local convolutional
kernels.

Forward pass. Let I(x) : Z2 → R3 denote the RGB
image where x ∈ [1, H] × [1,W], f(x) := (u(x), v(x))
represent the optical flow field and kl(x) = [klr(x)]H×W
(r ∈ [−R + 1, R]2) indicate the interpolation kernel where
R is the kernel size. The adaptive warping layer synthesizes
an output image by:

Î(x) =
∑

r∈[−R+1,R]2

kr(x)I(x + bf(x)c+ r), (1)

where the weight kr = klrk
d
r is determined by both the

learned interpolation kernel klr and bilinear coefficient kdr .
We train a kernel estimation network to predict the weights
for the interpolation kernels. For each 2D spatial location
in the image grid [1,W] × [1, H], the kernel estimation
network generates a 16-channel feature vector. We then
map the feature vector into a 4 × 4 square matrix as the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

𝑃11 𝑃12 𝑃13𝑃10

𝑃01 𝑃02 𝑃03𝑃00

𝑃21 𝑃22 𝑃23𝑃20

𝑃31 𝑃32 𝑃33𝑃30

(b) Learned Interpolation Kernel 𝑘𝐫
𝑙(a) Output feature blob

Channel

H

𝑃11 𝑃12 𝑃13𝑃10

𝑃01 𝑃02 𝑃03𝑃00

𝑃21 𝑃22 𝑃23𝑃20

𝑃31 𝑃32 𝑃33𝑃30

(c) Bilinear Kernel 𝑘𝐫
𝑑

mapping

Fig. 5. Learned interpolation kernel kl
r and bilinear kernel kd

r .
The kl

r is re-organized from the output feature blob generated by
kernel estimation network.

kernel coefficients for sampling the local patch. As shown
in Fig. 5(a) and (b), the colors on the feature vector and the
patch pixels show the mapping of the 16 channels. The red
point in Fig. 5(b) indicates the sub-pixel location shifted by
the optical flow.

On the other hand, the bilinear coefficient (Fig. 5(c)) is
defined by:

kdr =


[1− θ(u)][1− θ(v)], ru ≤ 0, rv ≤ 0,

θ(u)[1− θ(v)], ru > 0, rv ≤ 0,

[1− θ(u)]θ(v), ru ≤ 0, rv > 0,

θ(u)θ(v), ru > 0, rv > 0,

(2)

where θ(u) = u − buc denotes the fractional part of a float
point number, and the subscript u, v of the 2-D vector r rep-
resent the horizontal and vertical components, respectively.
The bilinear coefficient allows the layer to back-propagate
the gradients to the optical flow estimation network. In
this case, we aim to compute a local interpolation kernel
that combines the bilinear coefficients and the learned co-
efficients from the kernel prediction network. To apply the
bilinear coefficients to kernels of any size, we first compute
the bilinear coefficients for the nearest four neighbor pixels,
i.e., P11, P12, P21, and P22, and then replicate the coefficients
to the pixels at the same corner. Therefore, the pixels with
the same color in Fig. 5(c) have the same bilinear coefficient.
Finally, we multiply the bilinear coefficients with the learned
kernel coefficients as our local adaptive kernels.

Backward pass. We compute the gradient with respect to
the optical flow and interpolation kernels, respectively. The
derivative with respect to the optical flow field f is com-
puted by (using the horizontal component u for example):

∂Î(x)

∂u(x)
=
∑
r

klr(x) · I (x + bf(x)c+ r) · ∂k
d
r

∂u
, (3)

where

∂kdr
∂u

=


− [1− θ(v)], ru ≤ 0, rv ≤ 0,

[1− θ(v)], ru > 0, rv ≤ 0,

− θ(v), ru ≤ 0, rv > 0,

θ(v), ru > 0, rv > 0.

(4)

The derivative with respect to the vertical component v can
be derived in a similar way.

The derivative with respect to the interpolation kernel klr
is:

∂Î

∂klr(x)
= kdr (x) · I (x + bf(x)c+ r) . (5)

The integration with the spatially-varying kernels alle-
viates the limitation of bilinear interpolation to synthesize
pixel values from a broader neighborhood. In addition,
this approach facilitates the warping layer to perform more
robustly to inaccurate optical flow and better account for
occlusion.

3.3 Flow Projection Layer

As the intermediate frame is not available, we transform the
flow between the forward and backward reference frames
and then project it to simulate the flow between the in-
termediate frame and the reference frames. Let ft→t−1(x)
be the motion vector field of frame It to It−1. Similarly,
ft−1→t+1(y) represents the motion vector field of frame It−1
to It+1. Note that we use y to index the 2-D coordinate
at time step t − 1, as distinguished to x at t. Our flow
projection layer is designed to transform an estimated flow
ft−1→t+1(y) to ft→t−1(x). Here we assume that the local
motion between consecutive frames is linear and invert the
flow between It−1 and It+1 to approximate the intermediate
flow fields.

As there may exist multiple flow vectors projected to the
same location in the intermediate frame, we average all the
projected flow vectors at the same location. On the other
hand, there may exist holes where no flow is projected.
Thus, we use the outside-in strategy [29] to fill-in these
holes in the intermediate frame. We denote the set of flow
vectors mapped to location x of time step t by S(x) := {y :

round
(
y + ft−1→t+1(y)/2

)
= x,∀ y ∈ [1, H]× [1,W]} and

denote the 4-directional nearest available flow vectors of a
hole by N (x) := {x′ : |S(x′)| > 0}. The forward pass of the
proposed projection layer is defined by:

ft→t−1(x) =


−1

|S(x)|
∑

y∈S(x)

ft−1→t+1(y)

2
, if |S(x)| > 0,

1

|N (x)|
∑

x′∈N (x)

ft→t−1(x′), if |S(x)| = 0.

(6)
The backward pass computes the derivative with respect to
the input optical flow ft−1→t+1(y):

∂ft→t−1(x)

∂ft−1→t+1(y)
=


−1

2|S(x)|
, for y ∈ S(x) if |S(x)| > 0,

0, for y /∈ S(x) or |S(x)| = 0.
(7)

We use a graph to illustrate the outside-in strategy
in Fig. 6. We use a soft blending way in the proposed flow
projection layer by averaging the 4-directional available
flow vectors from the neighboring non-hole regions. The
spatial position at X has its 4-directional non-hole neighbors
A, B, C, and D. Therefore, the flow vector fX is approxi-
mated by fX = (fA + fB + fC + fD)/4. An alternative is
to fill in the flow holes with zero vectors, which is only
suitable for stationary objects. We show an example in Fig. 7
to compare the two strategies. The outside-in strategy can
reduce interpolation artifacts significantly.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

A

D x B

C

Fig. 6. Outside-in strategy for filling the flow holes. The green
regions indicate a hole, where the flow vectors are approxi-
mated by the average of 4-directional available flow vectors
from the non-hole regions.

(a) zero filling (b) outside-in (c) zero filling (d) outside-in
(IE = 2.76) (IE = 2.66)

Fig. 7. Effectiveness of the used outside-in strategy for hole
filling. (a) and (b) are the flow maps by zero filling and outside-
in strategy. (c) and (d) are the generated frames by them. Less
artifact is generated by the outside-in hole filling strategy. IE is
short for interpolation error. The lower, the better.

4 VIDEO FRAME INTERPOLATION

We provide an overview of the proposed MEMC-Net
in Fig. 4 and describe the detailed architecture design of
each component below.

Motion estimation. Given two input frames It−1 and It+1,
we first estimate the forward flow ft−1→t+1 and backward
flow ft+1→t−1 by passing It−1 and It+1 into the flow es-
timation network twice with a reverse order. In this work,
we use the FlowNetS [21] model for optical flow estima-
tion. Then we use the proposed flow projection layer as
described by Eq.(6) to project the forward flow ft−1→t+1

and backward flow ft+1→t−1 into ft→t−1 and ft→t+1 for the
intermediate frame, respectively.

Kernel estimation. We use the U-Net [43] as our kernel
estimation network, which has an encoder with five max-
pooling layers, a decoder with five un-pooling layers, and
skip connections from the encoder to the decoder. The kernel
prediction network takes two video frames as input and
generates R2 coefficient maps, denoted by Kt−1 and Kt+1.
We then reshape the coefficient maps toR×R convolutional
kernels for each pixel, as shown in Fig. 5(b). Two pairs
of intermediate flow and the kernel coefficients, {ft→t−1,
Kt−1} and {ft→t+1, Kt+1} are then fed into the proposed
adaptive warping layer to warp the input frames by Eq. (1)
and generate two warped frames Ît−1 and Ît+1.

Mask estimation. Due to the depth variation and relative
motion of objects, there are occluded pixels between the
two reference frames. To select valid pixels from the two
warped reference frames, we learn a mask estimation net-
work to predict the occlusion masks. The mask estimation
network has the same U-Net architecture as our kernel

Final Interpolated Frame

Conv, 3 × 3, 64, ReLU

…

+

Input Feature

Blended Frame

Conv, 3 × 3, 3

Conv, 3 × 3, 64, ReLU

Conv, 3 × 3, 64, ReLU

x7

Fig. 8. Proposed post-processing network.

estimation network, but the last convolutional layer outputs
a 2-channel feature map as the occlusion masks Mt−1 and
Mt+1. The blended frame is generated by:

Ît = Mt−1 ⊗ Ît−1 + Mt+1 ⊗ Ît+1 , (8)

where ⊗ denotes the channel-wise multiplication operation.

Context extraction. We also use the contextual informa-
tion [27] in the post-processing module to better deal with
occlusion. We extract the conv1 features of the input refer-
ence frames from a pre-trained ResNet18 [44] as the con-
textual maps. The contextual maps are then warped by the
optical flow and the interpolation kernels via the adaptive
warping layer. The warped contextual maps, denoted as
Ĉt−1 and Ĉt+1, are fed as inputs to the following post-
processing .

Post-processing. Since the blended image Ît usually con-
tains artifacts caused by inaccurate flow estimation or
masks, we introduce a post-processing network to improve
the visual quality. The post-processing module takes as
input the blended frame Ît, estimated flows ft→t+1 and
ft→t−1, coefficient maps of the interpolation kernels Kt−1
and Kt+1, occlusion masks Mt−1 and Mt+1, and the warped
context features Ĉt−1 and Ĉt+1. Our post-processing net-
work contains 8 convolutional layers as shown in Fig. 8.
Except for the last one, each convolutional layer has a filter
size of 3 × 3 with 64 output channels and is followed by a
Rectified Linear Unit (ReLU). The last convolutional layer
outputs a 3-channel RGB image. As the output and input of
this module are highly similar (i.e., both are the interpolated
frame at t), we enforce the network to output the residual
between the blended frame Ît and the ground-truth frame.
Therefore, the post-processing module learns to enhance the
details and remove the artifacts in the blended frame. We
present an example in Fig. 9 to demonstrate the effect of
the post-processing module. The blurry edges and lines are
sharpened by our method. The proposed model generates
Ĩt as the final interpolated frame.

MEMC-Net. We provide two variants of the proposed
model. The first one does not use the contextual information,
where we refer the model as MEMC-Net. The second one
includes the context information as the inputs to the post-
processing module, where we refer the model as MEMC-
Net*.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Before post-processing After post-processing Ground-truth

Fig. 9. Effectiveness of the proposed post-processing network.

5 IMPLEMENTATION DETAILS

In this section, we discuss the implementation details in-
cluding the loss function, datasets, and hyper-parameter
settings of the proposed MEMC-Net and MEMC-Net*.

Loss Function. We use a robust loss function between the
restored frames Ĩt, Ît and the corresponding ground truth
frame IGT

t . We also regularize the sum of two masks to be
1.0. The combined loss function is given by:

L =
∑
x

Φ
(
Ĩt − IGT

t

)
+ α

∑
x

Φ
(
Ît − IGT

t

)
+ β

∑
x

Φ (Mt−1 + Mt+1 − 1.0)
(9)

where Φ(x) =
√
x2 + ε2 is the Charbonnier penalty func-

tion [45] with ε to be 1e − 6. We empirically set α and β to
be 1e− 3 and 2e− 3 respectively.

Datasets. We use the training set of the Vimeo90K dataset [9]
to learn the proposed frame interpolation model. There are
51,312 triplets, and each image is of 448×256 pixels. During
the training process, we use the data augmentation with
random horizontal and vertical flipping as well as reversing
the temporal order of input sequences.

Hyper-parameter settings. We initialize the network param-
eters with the method of He et al. [46]. We set the initial
learning rate of the kernel prediction, mask estimation and
post-processing networks to be 0.001 while using a smaller
learning rate of 0.00001 for fine-tuning the flow estimation
network. We decrease the learning rates by a factor of 0.2
if the validation loss does not decrease during 5 epochs.
We use a batch size of 4 and use the Adam [47] optimizer
with β1 of 0.9 and β2 of 0.999 for training our model.
In addition, we use a weight decay of 1e − 6. The entire
network is trained for 100 epochs. Except for the last output
layer, the convolutional layers of the FlowNetS network are
activated by the leaky ReLU [48], while those of the other
three networks are activated by the ReLU [49] layer. We use
the batch normalization [50] layer in the kernel prediction
and mask estimation networks.

The source code, trained model, and video frame inter-
polation results generated by all the evaluated methods are
available on our project website: https://sites.google.com/
view/wenbobao/memc-net.

Output Image

Conv, 3 × 3, 128, ReLU

Residual Block

…

+

Input Feature

Input Image

Conv, 3 × 3, 3

Residual Block

x10

Output Feature

Conv, 3 × 3, 128

+

Input Feature

Conv, 3 × 3, 128

ReLU

(a) Frame enhancement network (b) Residual block

Fig. 10. Network architecture for frame enhancement.

Adaptive

Warping

ሶ𝐈𝑘
𝐻𝑅

Motion

Estimation

Kernel

Estimation

𝐟𝑘

Frame

Enhancement

𝐊𝑘

Context

Extraction

𝐂𝑘

ሶ𝐈𝑡
𝐻𝑅

෠𝐂𝑘 መ𝐈𝑘
𝐻𝑅

𝐟𝑘𝐊𝑘
ሶ𝐈𝑡
𝐻𝑅

Fig. 11. Network architecture for video frame super-
resolution.

6 VIDEO FRAME ENHANCEMENT

In addition to video frame interpolation, we show that the
proposed framework can be generalized to several video
frame enhancement tasks, including video super-resolution,
video denoising, and video deblocking. In these tasks, mul-
tiple consecutive frames are used to extract useful texture
cues to reduce the distortions like low-resolution, noise,
blockiness, etc. Existing learning-based methods [9], [51] of-
ten align the consecutive frames based on the estimated op-
tical flow and bilinear interpolation. However, as discussed
in Section 3.1 and 4, the bilinear interpolation process may
result in blurred pixels. In contrast, the proposed adaptive
warping layer is able to compensate for more accurate frame
pixels.

Here we discuss how the proposed method can be ex-
tended for the video super-resolution problem. Given 2L+1
consecutive low-resolution frames {ILR

k }
t+L
k=t−L, our goal is

to recover a high-resolution frame IHR
t at the time step

t. We first use bicubic interpolation to up-sample all the
low-resolution frames to the target resolution, denoted by
{İHR

k }t+L
k=t−L. For each pair of İHR

k (k 6= t) and İHR
t , we

estimate the optical flow fk(k 6= t) and compensation kernel
Kk(k 6= t) via our flow estimation and kernel estimation
networks. Then, we use the proposed adaptive warping
layer to warp all the neighboring frames to align with İHR

t at
the time step t, denoted by ÎHR

k (k 6= t). Alongside the frame
pixels, we also extract and warp the context information
from a pre-trained ResNet18 [44] model. Finally, all the
generated motions fk, kernel Kk, context Ĉk, warped frame
ÎHR
k as well as up-sampled blurry frame İHR

t are fed into
a frame enhancement network. Our frame enhancement
network has a similar architecture to the single-image super-

https://sites.google.com/view/wenbobao/memc-net
https://sites.google.com/view/wenbobao/memc-net

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

resolution method, EDSR [52].
The frame enhancement network is deeper than the post-

processing network for video frame interpolation. Since the
input frames are heavily degraded by low resolution, noise,
or blockiness, the frame enhancement network thus requires
more complex architecture to restore high-quality results. In
the frame enhancement network shown in Fig. 10(a), we
first use one convolutional layer with a ReLU activation.
Then, we adopt 10 residual blocks, where each residual
block contains two convolutional layers, one ReLU layer,
and a skip connection as shown in Fig. 10(b). Finally, the
last convolutional layer generates the residuals between
the input and output images. All the convolutional layers
have 128 channels and a 3 × 3 kernel size. The final output
frame of this network is denoted by Ĩt. We name the entire
video super-resolution network as MEMC-Net SR as shown
in Fig. 11.

The model difference between the MEMC-Net SR and
MEMC-Net* is twofold. First, the MEMC-Net SR does not
require the flow projection layer as we can directly estimate
flow for the target frame. Second, since each pixel of the
target frame has a valid flow vector, we discard the mask
estimation module in MEMC-Net SR. We use the same
network architecture as MEMC-Net SR for video denoising
and deblocking. The extended model for denoising and
deblocking are referred to as MEMC-Net DN and MEMC-
Net DB, respectively.

For each of the three video enhancement tasks, we train
our network on the corresponding training set from the
Vimeo90K dataset [9], namely Vimeo90K-SR, Vimeo90K-
DN, and Vimeo90K-DB. Each of the training sets con-
sists of 91,701 7-frame sequences with an image resolution
of 448 × 256 pixels. Note that the input images of the
Vimeo90K-SR set are first downsampled to a resolution of
224×128 and then upsampled to 448×256 with the bicubic
interpolation. In each training iteration, a batch contains
one sequence with 7 consecutive frames. The learning rate
is initialized to 0.0005 for the first 10 epochs and then is
dropped to 0.0001 for the following 5 epochs. Similar to the
video frame interpolation task, we initialized the parameters
with the method of He et al. [46] and use the Adamax
optimizer [47] to update the parameters.

7 EXPERIMENTAL RESULTS

In this section, we first analyze and discuss the contribu-
tions of each sub-module, processing speed, and model
parameters. We then present the experimental results on
video frame interpolation and the other three video frame
enhancement tasks.

7.1 Analysis and Discussion

We first describe the evaluated datasets and conduct experi-
ments to analyze the contribution of each component in the
proposed model, especially on flow and kernel estimation.

7.1.1 Datasets

We evaluate the proposed frame interpolation approach on
a wide variety of video datasets.

Middlebury. The Middlebury dataset [29] is widely used
for evaluation of optical flow estimation, stereo image
matching, and frame interpolation methods. There are 12
sequences in the OTHER set and 8 sequences in the EVALU-
ATION set with a resolution of 640× 480 pixels. We use the
evaluation protocol to compute the Interpolation Error (IE)
and Normalized Interpolation Error (NIE).

UCF101. The UCF101 dataset [30] contains a large variety
of human actions. We use 379 triplets from the UCF101 test
set, where the image resolution is 256× 256 of pixels.

Vimeo90K. Xue et al. [9] develop a high-quality dataset with
videos from Vimeo (https://vimeo.com). There are 3,782
triplets for evaluation with the image resolution of 448×256
pixels.

HD videos. In this work, we collect 7 HD (High Defini-
tion) videos from the Xiph website (https://media.xiph.
org/video/derf/), and interpolate the first 50 even frames
for each of the videos. We also evaluate on four short video
clips from the Sintel dataset [53], where each image is of
1280× 544 pixels.

7.1.2 Ablation Studies
Flow-based analysis. We first construct a baseline model
by using the optical flow estimation network and bilinear
interpolation for warping images. Similar to the ToFlow [9]
method, the baseline model does not contain the kernel
estimation, mask estimation, and post-processing networks.
Table 2 shows the performance of this baseline model is
similar to that by the ToFlow method. We then include
the mask estimation and post-processing (abbreviated by
post-proc. in Table 2) networks, where both modules clearly
contribute to the performance on all the test datasets. By re-
placing the fixed bilinear kernel module with the proposed
spatially-adaptive kernel estimation network, a significant
performance gain can be achieved. Our final model with all
the components achieves the state-of-the-art performance
on all three benchmark datasets. The FlowNetS contains
38.6M parameters, which take 57.4% of the parameters in
our MEMC-Net model. We conduct an experiment to use
a fixed flow estimation network. The performance of this
variant drops a lot on all the datasets, as shown in the last
two rows of Table 2. Without fine-tuning the flow estimation
network, the projected flow is a simple approximation of
the flow from the intermediate frame to the reference frame,
which is not able to synthesize high-quality intermediate
frame.

Kernel-based analysis. We conduct experiments to analyze
the contribution of the learned interpolation kernels in the
proposed method. We train a baseline model by removing
the optical flow estimation network and only learn 4 × 4
spatially-adaptive kernels for interpolation. This baseline
model is similar to the SepConv method [12] but with a
much smaller kernel. In Table 3, it is interesting to see
that this baseline model already outperforms the SepConv
method on the UCF101 dataset. It is sufficient to use a 4× 4
interpolation kernel for all videos as the image resolution
is low and object motion is small. However, it does not
perform well on the Vimeo90K and Middlebury datasets,
which contain much larger motion. By introducing the flow

https://vimeo.com
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 2. Analysis on flow-based methods. The red numbers indicate the best performance.

Methods Sub-networks UCF101 [30] Vimeo90K [9] Middlebury [29] #Param.
flow kernel (size) mask post-proc. PSNR SSIM PSNR SSIM IE (oth.)

DVF [36] Enc-Dec bilinear (2)
√

× 34.12 0.9631 31.54 0.9462 7.75 1,604,547
ToFlow+Mask [9] SPyNet bilinear (2)

√ √
34.58 0.9667 33.73 0.9682 2.51 1,074,635

MEMC-Net

FlowNetS bilinear (2) × × 34.65 0.9664 32.73 0.9606 2.81 38,676,496
FlowNetS bilinear (2) ×

√
34.70 0.9667 33.25 0.9646 2.50 38,922,323

FlowNetS bilinear (2)
√

× 34.69 0.9667 32.94 0.9626 2.72 52,842,818
FlowNetS bilinear (2)

√ √
34.76 0.9671 33.40 0.9661 2.47 53,088,645

FlowNetS learned (4) ×
√

34.77 0.9669 33.29 0.9663 2.42 53,092,995
FlowNetS learned (4)

√
× 34.88 0.9669 33.51 0.9670 2.37 67,013,490

FlowNetS (fixed) learned (4)
√ √

33.15 0.9632 32.05 0.9580 3.26 28,583,973
FlowNetS learned (4)

√ √
34.95 0.9679 34.02 0.9704 2.24 67,260,469

TABLE 3. Analysis on kernel-based methods.

Methods Sub-networks UCF101 [30] Vimeo90K [9] Middlebury [29] #Param.
flow kernel (size) mask post-proc. PSNR SSIM PSNR SSIM IE (oth.)

SepConv-Lf [12] × learned (51) × × 34.69 0.9655 33.45 0.9674 2.44 21,675,452
SepConv-L1 [12] × learned (51) × × 34.78 0.9669 33.79 0.9702 2.27 21,675,452

MEMC-Net
× learned (4) × × 34.89 0.9682 32.73 0.9581 2.74 14,710,415
× learned (4) ×

√
34.97 0.9682 33.31 0.9633 2.57 14,720,783

FlowNetS learned (4)
√ √

34.95 0.9679 34.02 0.9704 2.24 67,260,469

TABLE 4. Evaluation on models with fewer model parameters.
M.B. stands for Middlebury.

Methods UCF101 [30] Vimeo90K [9] M.B. [29] #Param.
PSNR SSIM PSNR SSIM IE (oth.)

MEMC-Net s 34.83 0.9676 33.97 0.9721 2.44 7.2M
MEMC-Net 34.95 0.9679 34.02 0.9704 2.24 67.2M
MEMC-Net* 35.01 0.9683 34.40 0.9742 2.10 70.3M

TABLE 5. Runtime of frame interpolation methods (seconds).
Methods 640× 480p 1280× 720p 1920× 1080p

AdaConv [28] 2.80 — —
ToFlow [9] 0.43 1.01 1.90
SepConv [12] 0.20 0.50 0.90
MEMC-Net s 0.13 0.33 0.67
MEMC-Net 0.06 0.20 0.41
MEMC-Net* 0.12 0.36 0.64

estimation network, the proposed method performs better
than the evaluated models on the Vimeo90K and Middle-
bury datasets. The results demonstrate the importance of
integrating optical flow and learned interpolation kernels to
deal with large motions in frame interpolation.

Model parameters. Since modern mobile devices typically
have limited memory size, we present a smaller model
with fewer parameters but maintaining the same MEMC
framework. We first replace the FlowNetS [21] with the
SPyNet [11] model, which reduces about 97% parameters
in the flow estimation network. We then simplify the kernel
prediction network by removing one convolutional layer be-
fore each max-pooling and un-pooling layer and discard the
occlusion estimation network. This reduced model, denoted
by MEMC-Net s, has only 7,204,367 trainable parameters,
which is 89.3% smaller than our full network. We compare
the performance of the full and small models in Table 4.
As the SPyNet performs better than the FlowNetS [21]
on small motion [11], the performance of MEMC-Net s is
slightly better than our full model on the Vimeo90K dataset.
However, MEMC-Net s does not perform as well on the
Middlebury dataset as it contains large displacement.

TABLE 6. Runtime of the proposed models (seconds). We
evaluate these models on 640× 480 videos.

Networks flow kernel mask context post-proc. Total

MEMC-Net s 0.103 0.005 — — 0.020 0.13
MEMC-Net 0.024 0.008 0.008 — 0.020 0.06
MEMC-Net* 0.024 0.008 0.008 0.001 0.080 0.12

Execution speed. We evaluate the runtime of the proposed
algorithm on an NVIDIA Titan X (Pascal) GPU. We com-
pare the execution time of the proposed method and the
state-of-the-art algorithms on 640× 480p, 1280× 720p and
1920 × 1080p videos in Table 5. Our MEMC-Net model
can process 1920 × 1080p videos with the runtime of 0.41
second per frame. Moreover, when using four GPU cards
to process a 1920 × 1080p videos in parallel by splitting
input frames into 270 × 240 non-overlapped patches, our
method is able to process 30 frames per second. We note that
the small model MEMC-Net s does not necessarily have
better runtime performance as the SPyNet applies several
convolutional layers on the input resolution (which results
in larger feature maps and a higher computational cost).
On the other hand, the operations of the FlowNetS model
are mostly applied on the 1/4 or smaller resolution space.
The SPyNet uses 97% fewer parameters but has 1.35 times
more FLOPs than the FlowNetS. In Table 6, we show the
runtime of each component in the proposed models. The
small model can be used for memory-constrained devices
while the full model is preferable for applications that
require prompt response time. The proposed MEMC-Net*
can be used for cases where the interpolation quality is of
most importance.

Our MEMC-Net s consists of only 7.2M parameters but
performs better than a larger SepConv model which con-
tains 21.7M parameters. Furthermore, the amount of param-
eters is not the only factor to be considered. Although the
ToFlow+Mask model uses fewer parameters, it runs slower
than the proposed and SepConv methods. We present the
evaluation results of these algorithms in Table 7.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 7. Quantitative evaluation on UCF101, Vimeo90K, and Middlebury datasets. The abbreviations oth. and eval. represent
the OTHER and EVALUATION sets in the Middlebury dataset. The runtime is evaluated on the 640× 480 sequences.

Methods #Parameters
(million)

Runtime
(seconds)

UCF101 [30] Vimeo90K [9] Middlebury [29]

PSNR SSIM PSNR SSIM IE (oth.) IE (eval.)

ToFlow+Mask [9] 1.07 0.43 34.58 0.9667 33.73 0.9682 2.51 —
SepConv-L1 [12] 21.6 0.20 34.78 0.9669 33.79 0.9702 2.27 5.61
MEMC-Net s 7.20 0.13 34.83 0.9676 33.97 0.9721 2.44 —
MEMC-Net 67.2 0.06 34.95 0.9679 34.02 0.9704 2.24 5.35
MEMC-Net* 70.3 0.12 35.01 0.9683 34.40 0.9742 2.10 5.00

TABLE 8. Quantitative comparisons with the sequential
model. M.B. stands for Middlebury.

Methods UCF101 [30] Vimeo90K [9] M.B. [29] #Param.
PSNR SSIM PSNR SSIM IE (oth.)

Sequential 34.34 0.9652 32.94 0.9639 2.47 67.2M
MEMC-Net 34.95 0.9679 34.02 0.9704 2.24 67.2M

7.2 Video Frame Interpolation

We first provide the comparison with the sequential model
and then present quantitative and qualitative evaluations
with the state-of-the-art approaches.

7.2.1 Comparisons with the Sequential Model

We train the sequential model and present the quantitative
results in Table 8. Compared to the proposed approach, the
performance of the sequential model is 0.61dB and 1.08dB
lower on the UCF101 and Vimeo90K datasets, respectively.
We attribute the performance difference to the flow warping
errors on the motion boundary (which has occlusion and
dis-occlusion). The proposed model avoid estimating ker-
nels from warped images and leads to better performance.

7.2.2 Comparisons with the State-of-the-arts

We evaluate the proposed MEMC-Net and MEMC-Net*
against the kernel-based method (SepConv [12]), flow-based
algorithms (DVF [36], ToFlow [9], and CtxSyn [27]), and
a direct interpolation approach (MIND [7]). The ToFlow
method [9] generates two results with and without learning
occlusion masks. Two pre-trained models of the SepConv
approach [12] are available: the SepConv-L1 model is op-
timized with a L1 loss function while the SepConv-Lf

model uses both the L1 loss and the perceptual loss [56] for
generating more realistic results. As no pre-trained model
of the MIND method [7] is available, we train their network
on the Vimeo90K training set for evaluations. In addition to
the above learning-based frame interpolation methods, we
also use existing optical flow algorithms (SPyNet [11] and
EpicFlow [10]) to directly interpolate frames.

We show the interpolation results of the Middle-
bury EVALUATION set in Table 9. These results are
also publicly available on the Middlebury benchmark
website (http://vision.middlebury.edu/flow/eval/results/
results-i1.php). For the sequences with smaller motions (i.e.,
the maximum flow magnitude is less than 10 pixels) or fine
textures, such as the Mequon, Teddy and Schefflera, the CtxSyn
method [27] obtains the best results in terms of both IE
and NIE metrics. In contrast, our MEMC-Net and MEMC-
Net* perform well on the videos with complicated motion,

e.g., the Backyard sequence with dancing feet and the Bas-
ketball video with moving arms and fingers. Notably, the
SuperSlomo method [38] generates the best results for the
synthetic Urban sequence. On average, the proposed models
perform favorably against the state-of-the-art approaches
on the Middlebury dataset. In Table 10, we present the
average IE and NIE values with standard variances on the
Middlebury dataset. Also in Fig. 13, we present error bars
on the IE and NIE metrics to show the statistical comparison
between different methods. The MEMC-Net* obtains lower
interpolation error at smaller variance on different scenarios.

Table 11 shows that the proposed methods perform
favorably against the state-of-the-art approaches on the
UCF101 [30], Vimeo90K [9], and Middlebury [29] datasets.
The numbers in red depict the best performance, while the
numbers in blue depict the second-best performance. The
diverse scenarios in these video datasets demonstrate that
our model generalizes well to different types of motion. On
the other hand, the MIND model [7] trained on the same
Vimeo90k training set does not perform well on the UCF101
and Middlebury datasets.

In Table 12, we present the evaluation results on the HD
videos, which typically contain much larger motion. Our
approach consistently performs well against the state-of-
the-art methods on different resolutions. The performance
gap between the proposed MEMC-Net and SepConv [12]
becomes larger especially on 1080p videos, which demon-
strates that it is not feasible to handle large motion with
the fixed kernel size (e.g., 51 × 51). Our MEMC-Net* with
context information and residual blocks performs favorably
against the existing methods with significant improvement
up to 0.9dB (e.g., Alley2 and ParkScene).

7.2.3 Qualitative Results
We present sample interpolation results from the evalu-
ated datasets in Fig. 12, 14, 15, and 16. On the first row
of Fig. 12, the EpicFlow [10] and SPyNet [11] methods
do not reconstruct the straight lamppost due to inaccurate
optical flow estimation. Both the SepConv-L1 and SepConv-
Lf [12] models cannot interpolate the lamppost well as the
motion is larger than the size of the interpolation kernels. In
contrast, our method reconstructs the lamppost well. On the
second row of Fig. 12, the proposed method interpolates the
falling ball with a clear shape with fewer artifacts on the leg
of the girl.

In Fig. 15, the ToFlow [9] and SepConv [12] methods
generate ghost effect around the hand. Due to large and
non-rigid motion, flow-based methods are less effective in
estimating accurate optical flow for interpolation, while
kernel-based approaches are not able to infer motion beyond

http://vision.middlebury.edu/flow/eval/results/results-i1.php
http://vision.middlebury.edu/flow/eval/results/results-i1.php

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 9. Quantitative results on the Middlebury EVALUATION set. The red numbers indicate that corresponding method takes
the 1st place among all the evaluated algorithms.

Methods
Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen Average

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

EpicFlow [10] 3.17 0.62 3.79 0.70 4.28 1.06 6.37 1.09 11.2 1.18 6.23 1.10 8.11 1.00 8.76 1.04 6.49 0.97
MDP-Flow2 [54] 2.89 0.59 3.47 0.62 3.66 1.24 5.20 0.94 10.2 0.98 6.13 1.09 7.36 0.70 7.75 0.78 5.83 0.87
DeepFlow2 [55] 2.98 0.62 3.88 0.74 3.62 0.86 5.39 0.99 11.0 1.04 5.91 1.02 7.14 0.63 7.80 0.96 5.97 0.86
SepConv-L1 [12] 2.52 0.54 3.56 0.67 4.17 1.07 5.41 1.03 10.2 0.99 5.47 0.96 6.88 0.68 6.63 0.70 5.61 0.83
SuperSlomo [38] 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69 5.31 0.78
CtxSyn [27] 2.24 0.50 2.96 0.55 4.32 1.42 4.21 0.87 9.59 0.95 5.22 0.94 7.02 0.68 6.66 0.67 5.28 0.82
MEMC-Net 2.83 0.64 3.84 0.73 4.16 0.84 5.75 0.99 8.57 0.93 4.99 0.96 5.86 0.60 6.83 0.69 5.35 0.80
MEMC-Net* 2.39 0.59 3.36 0.64 3.37 0.80 4.84 0.88 8.55 0.88 4.70 0.85 6.40 0.64 6.37 0.63 5.00 0.74

(a) Overlay (b) EpicFlow (c) SPyNet (d) SepConv-Lf (e) SepConv-L1 (f) MEMC-Net (g) MEMC-Net*

Fig. 12. Visual comparisons on Middlebury [29]. The sequences are from the EVALUATION set.

TABLE 10. Average IE and NIE values with standard variances
on Middlebury benchmark.

Method IE NIE

EpicFlow [10] 6.48 ± 2.75 0.97 ± 0.20
MDP Flow2 [54] 5.83 ± 2.52 0.86 ± 0.23
DeepFlow2 [55] 5.96 ± 2.65 0.85 ± 0.17

SepConv L1 [12] 5.60 ± 2.37 0.83 ± 0.20
SuperSlomo [38] 5.31 ± 2.34 0.77 ± 0.16

CtxSyn [27] 5.27 ± 2.39 0.82 ± 0.29
MEMC-Net 5.35 ± 1.81 0.79 ± 0.15
MEMC-Net* 4.99 ± 2.02 0.73 ± 0.12

Fig. 13. Error bars on the Middlebury sequences.

the size of local kernels. In contrast, our model reconstructs
the hand with fewer visual artifacts. As shown in Fig. 16,
the SepConv [12] method is not able to interpolate the scene

well due to large motion. In contrast, the proposed method
interpolates frames well with visually pleasing results when
optical flow is not accurately estimated.

7.3 Video Frame Enhancement

We use the Vimeo90K dataset [9] to evaluate the proposed
method on the video denoising, video super-resolution, and
video deblocking tasks. There are 7,824 sequences in the
Vimeo90k test set, and each contains 7 consecutive frames.
The qualitative results for super-resolution, denoising and
deblocking tasks are presented in Table 13, Table 14 and
Table 15, respectively.

Super-Resolution. We evaluate the proposed method on
the widely used video super-resolution dataset developed
by Liu et al. [57], which is denoted by BayeSR in Table 13.
The low-resolution image distortion for both the Vimeo90K
and BayesSR datasets are generated by down-sampling the
original high-resolution frames at the scaling ratio of 4 (use
the MATLAB function imresize with the bicubic mode). And
the evaluated algorithms are to up-sample the middle frame
of a sequence in Vimeo90K dataset or each frame of a
video in BayesSR dataset by a factor of 4. The DeepSR [51]
and ToFlow [9] methods are CNN-based approaches for
video super-resolution. In addition, we also compare with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE 11. Quantitative evaluation on UCF101, Vimeo90K, and Middlebury datasets. The abbreviations oth. and eval. represent
the OTHER and EVALUATION sets in the Middlebury dataset. The numbers in red depict the best performance, while the numbers
in blue depict the second-best performance.

Methods
UCF101 [30] Vimeo90K [9] Middlebury [29]

PSNR SSIM PSNR SSIM IE (oth.) IE (eval.)

SPyNet [11] 33.67 0.9633 31.95 0.9601 2.49 —
EpicFlow [10] 33.71 0.9635 32.02 0.9622 2.47 6.48
MIND [7] 33.93 0.9661 33.50 0.9429 3.35 —
DVF [36] 34.12 0.9631 31.54 0.9462 7.75 —
ToFlow [9] 34.54 0.9666 33.53 0.9668 — —
ToFlow+Mask [9] 34.58 0.9667 33.73 0.9682 2.51 —
SepConv-Lf [12] 34.69 0.9655 33.45 0.9674 2.44 —
SepConv-L1 [12] 34.78 0.9669 33.79 0.9702 2.27 5.61
MEMC-Net s 34.83 0.9676 33.97 0.9721 2.43 —
MEMC-Net 34.95 0.9679 34.02 0.9704 2.24 5.35
MEMC-Net* 35.01 0.9683 34.40 0.9742 2.10 5.00

TABLE 12. Quantitative evaluation on HD videos.

Video Resolution
ToFlow+Mask [9] SepConv-Lf [12] SepConv-L1 [12] MEMC-Net MEMC-Net*

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Alley2 544p 26.30 0.7997 28.26 0.8462 28.52 0.8646 29.57 0.8845 29.60 0.8920
Market5 544p 18.21 0.7324 20.59 0.7878 20.57 0.8012 21.16 0.8074 21.64 0.8105
Temple1 544p 25.20 0.9174 26.42 0.9295 26.69 0.9370 27.25 0.9354 27.18 0.9390
Temple2 544p 19.90 0.8246 21.74 0.8471 21.93 0.8533 22.72 0.8628 22.94 0.8532
Parkrun 720p 27.77 0.8841 28.69 0.9083 29.03 0.9158 29.07 0.9125 29.15 0.9145
Shields 720p 34.10 0.8884 34.55 0.9093 34.91 0.9188 35.21 0.9206 35.49 0.9251
Stockholm 720p 33.53 0.8534 33.99 0.8669 34.27 0.8826 34.64 0.8894 34.89 0.8931
Kimono 1080p 33.34 0.9107 34.07 0.9168 34.31 0.9287 34.93 0.9341 34.99 0.9363
ParkScene 1080p 33.49 0.9233 35.27 0.9374 35.51 0.9451 36.20 0.9491 36.64 0.9521
Sunflower 1080p 33.75 0.9476 34.88 0.9539 35.02 0.9605 35.42 0.9616 35.59 0.9638
Bluesky 1080p 37.53 0.9673 38.32 0.9730 38.83 0.9775 39.28 0.9791 39.55 0.9801

Average 29.37 0.8772 30.61 0.8978 30.87 0.9077 31.40 0.9124 31.60 0.9145

(a) Overlay (b) MIND [7] (c) ToFlow [9] (d) EpicFlow [10] (e) SPyNet [11]

(f) SepConv-Lf [12] (g) SepConv-L1 [12] (h) MEMC-Net (i) MEMC-Net* (j) Ground Truth

Fig. 14. Visual comparisons on Middlebury [29]. The sequences are from the OTHER set.

the BayesSR [57] method. Since the single-image super-
resolution (SISR) is also a well-studied task, we include the
state-of-the-art SISR method, EDSR [52], for evaluations.

We present the quantitative results on video super-
resolution in Table 13. Our method performs favorably
against the state-of-the-art approaches on both benchmark
datasets. Compared to the state-of-the-art SISR method [52],
MEMC-Net SR has fewer residual blocks and a smaller
number of filters but obtains higher PSNRs on both the
Vimeo90K and BayesSR datasets. Compared to existing
video super-resolution approaches [9], [51], [57], our method

is more favorable, especially on the BayesSR dataset.
In Fig. 17, we present the video super-resolution results.
In the first row, the EDSR [52] does not restore the correct
shape of the number “31” on the calendar. The results by
the ToFlow [9] and BayesSR [57] methods contain artifacts
and blurry pixels. In contrast, the proposed MEMC-Net SR
model is able to restore sharper video frames.

Denoising. We evaluate our method with the ToFlow [9]
and V-BM4D [58] algorithms. In addition, we train a single
frame denoising model as the baseline. The model archi-
tecture is the same as the EDSR network except that the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

(a) MIND [7] (b) ToFlow [9] (c) SepConv-Lf [12] (d) SepConv-L1 [12] (e) MEMC-Net (f) Ground Truth

Fig. 15. Visual comparisons on the Vimeo90K dataset [9].

(a) ToFlow [9] (b) SepConv-Lf [12] (c) SepConv-L1 [12] (d) MEMC-Net (e) MEMC-Net* (f) Ground Truth

Fig. 16. Visual comparisons on HD videos.

(a) Bicubic (b) EDSR [52] (c) ToFlow [9] (d) BayesSR [57] (e) MEMC-Net SR (f) Ground Truth

Fig. 17. Visual comparisons of video super-resolution methods.

(a) Noisy (b) EDSR DN [52] (c) ToFlow [9] (d) V-BM4D [58] (e) MEMC-Net DN (f) Ground Truth

Fig. 18. Visual comparisons of video denoising methods.

(a) Blocky (b) EDSR DB [52] (c) ToFlow [9] (d) V-BM4D [58] (e) MEMC-Net DB (f) Ground Truth

Fig. 19. Visual comparisons of video deblocking methods.

input images are with noise instead of low-resolution, and
referred to as EDSR DN. We evaluate on the Vimeo90k test

set as well as the dataset developed by Maggioni et al. [58].
For the denoising experiments, we add Gaussian noise with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

TABLE 13. Quantitative evaluation for video super-resolution.

Frame
#Num.

Methods
Vimeo90K [9] BayesSR [57]

PSNR SSIM PSNR SSIM

1 Bicubic 29.79 0.9036 22.17 0.7391
EDSR [52] 33.08 0.9411 23.93 0.8113

7

DeepSR [51] 25.55 0.8498 21.85 0.7535
BayesSR [57] 24.64 0.8205 21.95 0.7369
ToFlow [9] 33.08 0.9417 23.54 0.8070

MEMC-Net SR 33.47 0.9470 24.37 0.8380

TABLE 14. Quantitative evaluation for video denoising.

Frame
#Num.

Methods
Vimeo90K [9] V-BM4D [58]

PSNR SSIM PSNR SSIM

1 Noisy 22.63 0.5007 22.28 0.4715
EDSR DN [52] 35.11 0.9513 32.02 0.8828

7

ToFlow [9] 32.66 0.9198 30.19 0.8699
V-BM4D [58] 34.39 0.9217 32.27 0.8913

MEMC-Net DN 36.35 0.9642 34.22 0.9310

TABLE 15. Quantitative evaluation for video deblocking.

Frame
#Num.

Methods
Vimeo90K [9] V-BM4D [58]

PSNR SSIM PSNR SSIM

1 Blocky 31.99 0.9179 29.38 0.8302
EDSR DB [52] 32.87 0.9319 29.66 0.8362

7

ToFlow [9] 32.57 0.9292 29.59 0.8390
V-BM4D [58] 32.74 0.9293 29.94 0.8435

MEMC-Net DB 33.37 0.9388 30.14 0.8498

σ = 20 to synthesize noisy input frames.
The quantitative results for video denoising are pre-

sented in Table 14. Our method performs well on both
datasets. The PSNR gains of MEMC-Net DN over the sec-
ond best method are 1.24dB and 1.95dB on the Vimeo90K
and V-BM4D datasets, respectively. In Fig. 18, the fine tex-
tures on the clothes and street are not well restored by the
EDSR DN, ToFlow, and V-BM4D methods. In contrast, our
MEMC-Net DN preserves these textures well.

Deblocking. For the video deblocking task, we use the same
videos as in the denoising task. The images encoded by the
widely used H.264 [59] standard may generate blockiness
due to the block-based approach. We use the FFmpeg soft-
ware to encode the images in the Vimeo90K and V-BM4D
datasets with libx264 and the quality parameter qp of 37, and
disable the in-loop deblocking of the codec. We compare the
proposed algorithm with the EDSR DB [52], ToFlow [9] and
V-BM4D [58] methods.

The quantitative evaluation results for video deblock-
ing are presented in Table 15. Overall, the proposed
model performs favorably against all the evaluated algo-
rithms. In Fig. 19, the blocky regions around the hand
and eye are sufficiently reduced by both MEMC-Net DB
and V-BM4D [58] methods. The ToFlow [9] and EDSR DB
schemes, however, do not reduce the blocky pixels well.

8 CONCLUSIONS

In this work, we propose the motion estimation and motion
compensation driven neural network for learning video
frame interpolation and enhancement. Our model exploits

the merits of the MEMC framework to handle large motion
as well as the data-driven learning-based methods to extract
effective features. Two network layers, namely the adaptive
warping layer and flow projection layers, are proposed to
tightly integrate all the sub-networks to make our model
end-to-end trainable. The generalized motion compensated
alignment of the proposed MEMC framework enables it to
be extended to various video enhancement tasks such as
video super-resolution, denoising, and deblocking. Quanti-
tative and qualitative evaluations on the various benchmark
datasets show that the proposed methods perform favorably
against the state-of-the-art algorithms in video interpolation
and enhancement.

ACKNOWLEDGMENT

W. Bao, X. Zhang, and Z. Gao are supported in part by Na-
tional Natural Science Foundation of China (61771306), Nat-
ural Science Foundation of Shanghai (18ZR1418100), Chi-
nese National Key S&T Special Program (2013ZX01033001-
002-002), Shanghai Key Laboratory of Digital Media Pro-
cessing and Transmissions (STCSM 18DZ2270700). W.-S. Lai
and M.-H. Yang are supported in part by NSF Career Grant
(1149783) and gifts from Adobe, Google, and NEC.

REFERENCES

[1] R. Castagno, P. Haavisto, and G. Ramponi, “A method for motion
adaptive frame rate up-conversion,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 6, no. 5, pp. 436–446, 1996. 1

[2] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deepstereo:
Learning to predict new views from the world’s imagery,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016. 1

[3] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Modeling
and optimization of high frame rate video transmission over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 4, pp. 2713–2726, 2016. 1

[4] G. De Haan, P. W. Biezen, H. Huijgen, and O. A. Ojo, “True-
motion estimation with 3-D recursive search block matching,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 3,
no. 5, pp. 368–379, 1993. 1, 2

[5] W. Bao, X. Zhang, L. Chen, L. Ding, and Z. Gao, “High-order
model and dynamic filtering for frame rate up-conversion,” IEEE
Transactions on Image Processing, vol. 27, no. 8, pp. 3813–3826, 2018.
1

[6] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Enabling
adaptive high-frame-rate video streaming in mobile cloud gaming
applications.” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 12, pp. 1988–2001, 2015. 1

[7] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu,
“Learning image matching by simply watching video,” in Euro-
pean Conference on Computer Vision, 2016. 1, 2, 3, 10, 12, 13

[8] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” in International Conference
on Learning Representations, 2016. 1

[9] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-
ment with task-oriented flow,” arXiv preprint arXiv:1711.09078,
2017. 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14

[10] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid,
“Epicflow: Edge-preserving interpolation of correspondences for
optical flow,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2015. 2, 10, 11, 12

[11] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 1, 2, 3, 9, 10, 12

[12] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via
adaptive separable convolution,” in IEEE International Conference
on Computer Vision, 2017. 2, 3, 4, 8, 9, 10, 11, 12, 13

[13] J. Konrad and E. Dubois, “Bayesian estimation of motion vector
fields,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, no. 9, pp. 910–927, 1992. 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

[14] M. T. Orchard and G. J. Sullivan, “Overlapped block motion com-
pensation: An estimation-theoretic approach,” IEEE Transactions
on Image Processing, vol. 3, no. 5, pp. 693–699, 1994. 1, 2

[15] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast
block-matching motion estimation,” IEEE Transactions on Image
Processing, vol. 9, no. 2, pp. 287–290, 2000. 1

[16] X. Gao, C. Duanmu, and C. Zou, “A multilevel successive elim-
ination algorithm for block matching motion estimation,” IEEE
Transactions on Image Processing, vol. 9, no. 3, pp. 501–504, 2000. 1

[17] C. Wang, L. Zhang, Y. He, and Y.-P. Tan, “Frame rate up-
conversion using trilateral filtering,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 20, no. 6, pp. 886–893, 2010.
1, 2

[18] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Euro-
pean Conference on Computer Vision, 2004. 1

[19] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu, “Large displacement
optical flow from nearest neighbor fields,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2013, pp. 2443–2450. 1

[20] J. Xu, R. Ranftl, and V. Koltun, “Accurate optical flow via direct
cost volume processing,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1289–1297. 1

[21] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in IEEE International
Conference on Computer Vision, 2015. 1, 3, 6, 9

[22] B.-D. Choi, J.-W. Han, C.-S. Kim, and S.-J. Ko, “Motion-
compensated frame interpolation using bilateral motion estima-
tion and adaptive overlapped block motion compensation,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 4, pp. 407–416, 2007. 1

[23] M. Biswas and V. Namboodiri, “On handling of occlusion for
frame rate up-conversion using video in-painting,” in IEEE Inter-
national Conference on Image Processing. IEEE, 2010, pp. 785–788.
1, 2

[24] W. H. Lee, K. Choi, and J. B. Ra, “Frame rate up conversion based
on variational image fusion,” IEEE Transactions on Image Processing,
vol. 23, no. 1, pp. 399–412, 2014. 1, 2

[25] U. S. Kim and M. H. Sunwoo, “New frame rate up-conversion
algorithms with low computational complexity,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 24, no. 3, pp. 384–
393, 2014. 1, 2

[26] J. Zhai, K. Yu, J. Li, and S. Li, “A low complexity motion
compensated frame interpolation method,” in IEEE International
Symposium on Circuits and System. IEEE, 2005, pp. 4927–4930. 1

[27] S. Niklaus and F. Liu, “Context-aware synthesis for video frame
interpolation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 2, 6, 10, 11

[28] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via
adaptive convolution,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 2, 3, 4, 9

[29] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A database and evaluation methodology for optical
flow,” International Journal of Computer Vision, vol. 92, no. 1, pp.
1–31, 2011. 2, 5, 8, 9, 10, 11, 12

[30] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” in CRCV-TR-12-
01, 2012. 2, 8, 9, 10, 12

[31] K. M. Nam, J.-S. Kim, R.-H. Park, and Y. S. Shim, “A fast hierar-
chical motion vector estimation algorithm using mean pyramid,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 5,
no. 4, pp. 344–351, 1995. 2

[32] H. R. Kaviani and S. Shirani, “Frame rate upconversion using
optical flow and patch-based reconstruction,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1581–
1594, 2016. 2

[33] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-
Hornung, “Phase-based frame interpolation for video,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2015. 3

[34] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 3

[35] W.-S. Lai, J.-B. Huang, and M.-H. Yang, “Semi-supervised learning
for optical flow with generative adversarial networks,” in Neural
Information Processing Systems, 2017. 3

[36] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” in IEEE International Conference
on Computer Vision, 2017. 3, 4, 9, 10, 12

[37] J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz, Z. Wang,
and J. Caballero, “Frame interpolation with multi-scale deep loss
functions and generative adversarial networks,” arXiv preprint
arXiv:1711.06045, 2017. 3

[38] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller,
and J. Kautz, “Super slomo: High quality estimation of multiple
intermediate frames for video interpolation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 3, 10, 11

[39] Y. Zhang, D. Zhao, X. Ji, R. Wang, and X. Chen, “A spatio-
temporal autoregressive frame rate up conversion scheme,” in
IEEE International Conference on Image Processing, 2007. 3

[40] Y. Zhang, D. Zhao, X. Ji, R. Wang, and W. Gao, “A spatio-temporal
auto regressive model for frame rate upconversion,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 19, no. 9, pp.
1289–1301, 2009. 3

[41] T. Brox and J. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 500–513,
2010. 4

[42] D. Wang, A. Vincent, P. Blanchfield, and R. Klepko, “Motion-
compensated frame rate up-conversionpart ii: New algorithms
for frame interpolation,” IEEE Transactions on Broadcasting, vol. 56,
no. 2, pp. 142–149, 2010. 4

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention, 2015. 6

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2016. 6, 7

[45] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud,
“Two deterministic half-quadratic regularization algorithms for
computed imaging,” in IEEE International Conference on Image
Processing, 1994. 7

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in IEEE International Conference on Computer Vision, 2015. 7, 8

[47] D. P. Kingma and J. Ba, “ADAM: A method for stochastic opti-
mization,” in International Conference on Learning Representations,
2015. 7, 8

[48] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in International Confer-
ence on Machine Learning, 2013. 7

[49] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learn-
ing, 2010. 7

[50] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional Conference on Machine Learning, 2015. 7

[51] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, “Video super-resolution
via deep draft-ensemble learning,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2015. 7, 11, 12, 14

[52] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” in IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017. 8, 12, 13, 14

[53] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A natural-
istic open source movie for optical flow evaluation,” in European
Conference on Computer Vision, 2012. 8

[54] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical
flow estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 9, pp. 1744–1757, 2012. 11

[55] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deep-
flow: Large displacement optical flow with deep matching,” in
IEEE International Conference on Computer Vision, 2013. 11

[56] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014. 10

[57] C. Liu and D. Sun, “A bayesian approach to adaptive video super
resolution,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2011. 11, 12, 13, 14

[58] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video
denoising, deblocking, and enhancement through separable 4-d

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

nonlocal spatiotemporal transforms,” IEEE Transactions on Image
Processing, vol. 21, no. 9, pp. 3952–3966, 2012. 12, 13, 14

[59] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 13, no. 7,
pp. 560–576, 2003. 14

Wenbo Bao is a Ph.D. candidate of Electrical
Engineering with the Institute of Image Com-
munication and Network Engineering, Shanghai
Jiao Tong University, Shanghai, China. He re-
ceived the B.S. degree in Electronic Information
Engineering from Huazhong University of Sci-
ence and Technology, Hubei, China, in 2014.
His research interests include computer vision,
machine learning, and video processing.

Wei-Sheng Lai is a Ph.D. candidate of Electri-
cal Engineering and Computer Science at the
University of California, Merced, CA, USA. He
received the B.S. and M.S. degree in Electrical
Engineering from the National Taiwan University,
Taipei, Taiwan, in 2012 and 2014, respectively.
His research interests include computer vision,
computational photography, and deep learning.

Xiaoyun Zhang is an associate professor in
Electrical Engineering at Shanghai Jiao Tong
University. She received the B.S. and M.S. de-
grees in applied mathematics from Xian Jiao-
tong University in 1998 and 2001, respectively,
and the Ph.D. degree in pattern recognition from
Shanghai Jiao Tong University, China, in 2004.
Her Ph.D. thesis has been nominated as Na-
tional 100 Best Ph.D. Theses of China. Her
research interests include computer vision and
pattern recognition, image and video process-

ing, digital TV system.

Zhiyong Gao is a professor in Electrical Engi-
neering with Shanghai Jiao Tong University. He
received the B.S. and M.S. degrees in electrical
engineering from the Changsha Institute of Tech-
nology, Changsha, China, in 1981 and 1984, re-
spectively, and the Ph.D. degree from Tsinghua
University, Beijing, China, in 1989. From 1994
to 2010, he took several senior technical po-
sitions in England, including a Principal Engi-
neer with Snell and Wilcox, Petersfield, U.K., a
Video Architect with 3DLabs, Egham, U.K., a

Consultant Engineer with Sony European Semiconductor Design Cen-
ter, Basingstoke, U.K., and a Digital Video Architect with Imagination
Technologies, Kings Langley, U.K. His research interests include video
processing, video coding, digital TV, and broadcasting.

Ming-Hsuan Yang is a professor in Electrical
Engineering and Computer Science at Univer-
sity of California, Merced. He received the Ph.D.
degree in computer science from the University
of Illinois at Urbana-Champaign in 2000. Yang
serves as a program co-chair of IEEE Interna-
tional Conference on Computer Vision (ICCV)
in 2019, program co-chair of Asian Conference
on Computer Vision (ACCV) in 2014, and gen-
eral co-chair of ACCV 2016. Yang served as
an associate editor of the IEEE Transactions on

Pattern Analysis and Machine Intelligence from 2007 to 2011, and is an
associate editor of the International Journal of Computer Vision, Image
and Vision Computing and Journal of Artificial Intelligence Research.
He received the NSF CAREER award in 2012, the Senate Award for
Distinguished Early Career Research at UC Merced in 2011, and the
Google Faculty Award in 2009. He is a Fellow of the IEEE and a Senior
Member of the ACM.

