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ABSTRACT

Zero-Shot Learning (ZSL) is a classification task where some classes referred
as unseen classes have no labeled training images. Instead, we only have side
information (or description) about seen and unseen classes, often in the form of
semantic or descriptive attributes. Lack of training images from a set of classes
restricts the use of standard classification techniques and losses, including the
popular cross-entropy loss. The key step in tackling ZSL problem is bridging
visual to semantic space via learning a nonlinear embedding. A well established
approach is to obtain the semantic representation of the visual information and
perform classification in the semantic space. In this paper, we propose a novel
architecture of casting ZSL as a fully connected neural-network with cross-entropy
loss to embed visual space to semantic space. During training in order to introduce
unseen visual information to the network, we utilize soft-labeling based on semantic
similarities between seen and unseen classes. To the best of our knowledge, such
similarity based soft-labeling is not explored for cross-modal transfer and ZSL. We
evaluate the proposed model on five benchmark datasets for zero-shot learning,
AwA1, AwA2, aPY, SUN and CUB datasets, and show that, despite the simplicity,
our approach achieves the state-of-the-art performance in Generalized-ZSL setting
on all of these datasets and outperforms the state-of-the-art for some datasets.

1 INTRODUCTION

Supervised classifiers, specifically Deep Neural Networks, need a large number of labeled samples to
perform well. Deep learning frameworks are known to have limitations in fine-grained classification
regime and detecting object categories with no labeled data (Xiao et al., 2015; Socher et al., 2013;
Xian et al., 2017; Zhang & Koniusz, 2018). On the contrary, humans can recognize new classes using
their previous knowledge. This power is due to the ability of humans to transfer their prior knowledge
to recognize new objects (Fu & Sigal, 2016; Lake et al., 2015). Zero-shot learning aims to achieve
this human-like capability for learning algorithms, which naturally reduces the burden of labeling.

In zero-shot learning problem, there are no training samples available for a set of classes, referred
to as unseen classes. Instead, semantic information (in the form of visual attributes or textual
features) is available for unseen classes (Lampert et al., 2009; 2014). Besides, we have standard
supervised training data for a different set of classes, referred to as seen classes along with the
semantic information of seen classes. The key to solving zero-shot learning problem is to leverage
trained classifier on seen classes to predict unseen classes by transferring knowledge analogous to
humans.

Early variants of ZSL assume that during inference, samples are only from unseen classes. Recent
observations (Chao et al., 2016; Scheirer et al., 2013; Xian et al., 2017) realize that such an assumption
is not realistic. Generalized ZSL (GZSL) addresses this concern and considers a more practical
variant. In GZSL there is no restriction on seen and unseen classes during inference. We are required
to discriminate between all the classes. Clearly, GZSL is more challenging because the trained
classifier is generally biased toward seen classes.

In order to create a bridge between visual space and semantic attribute space, some methods utilize
embedding techniques (Palatucci et al., 2009; Romera-Paredes & Torr, 2015; Socher et al., 2013;
Bucher et al., 2016; Xu et al., 2017; Zhang et al., 2017; Kodirov et al., 2015; Akata et al., 2016;
2015; Simonyan & Zisserman, 2014; Frome et al., 2013; Xian et al., 2016; Zhang & Saligrama, 2016;
Al-Halah et al., 2016; Zhang & Shi, 2019; Atzmon & Chechik, 2019) and the others use semantic
similarity between seen and unseen classes (Zhang & Saligrama, 2015; Fu et al., 2015; Mensink
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et al., 2014). Semantic similarity based models represent each unseen class as a mixture of seen
classes. While the embedding based models follow three various directions; mapping visual space to
semantic space (Palatucci et al., 2009; Romera-Paredes & Torr, 2015; Socher et al., 2013; Bucher
et al., 2016; Xu et al., 2017; Socher et al., 2013), mapping semantic space to the visual space (Zhang
et al., 2017; Kodirov et al., 2015; Shojaee & Baghshah, 2016; Ye & Guo, 2017), and finding a latent
space then mapping both visual and semantic space into the joint embedding space (Akata et al.,
2016; 2015; Simonyan & Zisserman, 2014; Frome et al., 2013; Xian et al., 2016; Zhang & Saligrama,
2016; Al-Halah et al., 2016).

The loss functions in embedding based models have training samples only from the seen classes. For
unseen classes, we do not have any samples. It is not difficult to see that this lack of training samples
biases the learning process towards seen classes only. One of the recently proposed techniques to
address this issue is augmenting the loss function with some unsupervised regularization such as
entropy minimization over the unseen classes (Liu et al., 2018).

Another recent methodology which follows a different perspective is deploying Generative Adver-
sarial Network (GAN) to generate synthetic samples for unseen classes by utilizing their attribute
information (Mishra et al., 2018; Zhu et al., 2018; Xian et al., 2018). Although generative models
boost the results significantly, it is difficult to train these models. Furthermore, the training requires
generation of large number of samples followed by training on a much larger augmented data which
hurts their scalability.

The two most recent state-of-the-art GZSL methods, CRnet (Zhang & Shi, 2019) and COSMO
(Atzmon & Chechik, 2019), both employ a complex mixture of experts approach. CRnet is based
on k-means clustering with an expert module on each cluster (seen class) to map semantic space to
visual space. The output of experts (cooperation modules) are integrated and finally sent to a complex
loss (relation module) to make a decision. CRnet is a multi-module (multi-network) method that
needs end-to-end training with many hyperparameters. Also COSMO is a complex gating model with
three modules: a seen/unseen classifier and two expert classifiers over seen and unseen classes. Both
of these methods have many modules, and hence, several hyperparameters; architectural, and learning
decisions. A complex pipeline is susceptible to errors, for example, CRnet uses k-means clustering
for training and determining the number of experts and a weak clustering will lead to bad results.

Our Contribution: We propose a simple fully connected neural network architecture with unified
(both seen and unseen classes together) cross-entropy loss along with soft-labeling. Soft-labeling is
the key novelty of our approach which enables the training data from the seen classes to also train
the unseen class. We directly use attribute similarity information between the correct seen class and
the unseen classes to create a soft unseen label for each training data. As a result of soft labeling,
training instances for seen classes also serve as soft training instance for the unseen class without
increasing the training corpus. This soft labeling leads to implicit supervision for the unseen classes
that eliminates the need for any unsupervised regularization such as entropy loss in (Liu et al., 2018).
Soft-labeling along with crossentropy loss enables a simple MLP network to tackle GZSL problem.
Our proposed model, which we call Soft-labeled ZSL (SZSL), is simple (unlike GANs) and efficient
(unlike visual-semantic pairwise embedding models) approach which achieves the state-of-the-art
performance in Generalized-ZSL setting on all five ZSL benchmark datasets and outperforms the
state-of-the-art for some of them.

2 PROBLEM DEFINITION

In zero-shot learning problem, a set of training data on seen classes and a set of semantic information
(attributes) on both seen and unseen classes are given. The training dataset D = {(xi, yi)}

n
i=1

includes n samples where xi is the visual feature vector of the i-th image and yi is the class label.
All samples in D belong to seen classes S and during training there is no sample available from
unseen classes U . The total number of classes is C = |S|+ |U|. Semantic information or attributes
ak ∈ Ra, are given for all C classes and the collection of all attributes are represented by attribute
matrix A ∈ Ra×C . In the inference phase, our objective is to predict the correct classes (either seen
or unseen) of the test datasetD′. The classic ZSL setting assumes that all test samples inD′ belong to
unseen classes U and tries to classify test samples only to unseen classes U . While in a more realistic
setting i.e. GZSL, there is no such an assumption and we aim at classifying samples in D′ to either
seen or unseen classes S ∪ U .
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3 PROPOSED METHODOLOGY

3.1 NETWORK ARCHITECTURE

As Figure 1 illustrates our architecture, We map visual space to semantic space, then compute the
similarity score (dot-product) between true attributes and the attribute/semantic representation of the
input (x). Finally, the similarity score is fed into a Softmax, and the probability of all classes are
computed. For the visual features as the input, in all five benchmark datasets, we use the extracted
visual features by a pre-trained ResNet-101 on ImageNet provided by Xian et al. (2017). We do not
fine-tune the CNN that generates the visual features unlike model in Liu et al. (2018). In this sense,
our proposed model is also fast and straightforward to train.

3.2 SOFT LABELING

In ZSL problem, we do not have any training instance from unseen classes, so the output nodes
corresponding to unseen classes are always inactive during learning. Standard supervised training
with cross entropy loss biases the network towards seen classes only. The true labels (hard labels) used
for training only represent seen classes so the cross entropy cannot penalize unseen classes. Moreover,
the available similarity information between the seen and unseen attributed is never utilized.

We propose soft labeling based on the similarity between semantic attributes. For each seen sample,
we represent its relationship to unseen categories by obtaining semantic similarity (dot-product) using
the seen class attribute and all the unseen class attributes. In the simplest form, for every training
data, we can find the nearest unseen class to the correct seen class label and assign a small probability
q (partial membership or soft label) of this instance to be from the closest unseen class. Note, each
training sample only contains a label which comes from the set of seen classes. With soft labeling,
we enrich the label with partial assignments to unseen classes and as Hinton et al. (2015) shows,
soft labels act as a regularizer which allows each training case to enforce much more constraint on
weights.

In a more general soft labeling approach, we propose assigning a probability to all the unseen classes.
A natural choice is to transform seen-to-unseen similarities to probabilities (soft labels) shown in
Equation (1). The unseen distribution is obtained for each seen class by calculating dot-product of
seen class attribute and all unseen classes attributes and squashing all these dot-product values by
Softmax to acquire probabilities. In this case, we distribute the probability q among all unseen classes
based on the obtained unseen distribution. This proposed strategy results in a soft label for each seen
image during training, which as we show later helps the network to learn unseen categories.

In order to control the flatness of the unseen distribution, we utilize temperature parameter τ . Higher
temperature results in flatter distribution over unseen categories and lower temperature creates a
more ragged distribution with peaks on nearest unseen classes. A small enough temperature basically
results in the nearest unseen approach. The Impact of temperature τ on unseen distribution is depicted
in Figure 3.a for a particular seen class. Soft labeling implicitly introduces unseen visual features into
the network without generating fake unseen samples as in generative methods (Mishra et al., 2018;
Zhu et al., 2018; Xian et al., 2018). Hence our proposed approach is able to reproduce same effect as
in generative models without the need to create fake samples and train generative models that are
known to be difficult to train. Below is the formal description of temperature Softmax:

yui,k = q
exp (si,k/τ)∑
j∈U exp (si,j/τ)

where si,j , 〈ai, aj〉 (1)

where ai is the i-th column of attribute matrix A ∈ Ra×C which includes both seen and unseen class
attributes: A = [a1 | a2 | · · · | aC ]. And si,j is the true similarity score between two classes i, j
based on their attributes. τ and q are temperature parameter and total probability assigned to unseen
distribution, respectively. Also yui,k is the soft label (probability) of unseen class k for seen class i. It
should be noted that q is the sum of all unseen soft labels i.e.

∑
k∈U y

u
i,k = q.

3.3 TRAINING STRATEGY

The proposed method is a multi-class probabilistic classifier that produces a C-dimensional vector
of class probabilities p for each sample xi as p(xi) = Softmax

(
AT gw (xi)

)
where AT gw (xi) is a
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Figure 1: The overall workflow of the SZSL classifier and architecture of the proposed MLP. Layers #1 and #2
provide the nonlinear embedding gW(.) to map visual features to attribute space and their weights W1, W2 are
learned by SGD. The output layer with non-trainable weights A, basically calculates dot-products of semantic
representation of the input and all class attributes simultaneously. Soft-labels are also shown for a sample image
from squirrel class.

C-dimensional vector of all similarity scores of an input sample. The predicted similarity score
between semantic representation of sample xi and attribute ak is ŝi,k , 〈gw(xi) , ak〉. Each element
of vector p, represents an individual class probability that can be shown below:

pk(xi) =
exp (ŝi,k)∑C
j=1 exp (ŝi,j)

(2)

This Softmax as the activation function of the last layer of the network is calculated on all classes.
An established choice to train a multi-class probabilistic classifier is the cross-entropy loss which we
later show naturally integrates our idea of soft labeling. Inspired by Hinton et al. (2015), in addition
to the cross-entropy loss over soft targets, we also consider cross entropy-loss over true labels (hard
labels) to improve the performance. During training, we aim at learning the nonlinear mapping gw(.)
i.e. obtaining network weights W through:

min
W

n∑
i=1

L(xi) + λ ‖W‖2F + γ ‖W‖ (3)

where λ and γ are regularization factors which are obtained through hyperparameter tuning, and
L(xi) is the weighted sum of cross-entropy loss over soft labels (Lsoft) and cross-entropy loss over
hard labels (Lhard) for each sample as shown below:

L(xi) = αLsoft(xi) + (1− α)Lhard(xi) (4)

where α ∈ [0, 1] is a hyperparameter. For better understanding, the hard-loss and soft-loss terms for
each sample xi (or x for simplicity) are expanded and elaborated. The hard-loss term is a conventional
cross-entropy loss Lhard(x) = −

∑C
k=1 zklog(pk), where zk is the hard label. Clearly, hard-loss term

alone does not work in ZSL regime since it does not penalize unseen classes. The soft-loss term is
expanded to seen and unseen terms as follows:

Lsoft(x) = −
∑
k∈S

ysklog(psk)−
∑
k∈U

yuk log(puk) (5)
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Let p̄sk and p̄uk be the normalized versions of psk and puk , respectively. Also the total predicted unseen
probability is

∑
k∈U p

u
k , q̂, consequently for seen classes

∑
k∈S p

s
k , 1− q̂. Plugging normalized

probabilities in Equation (5), we have:

Lsoft(x) = −
∑
k∈S

ysklog(p̄sk)−
∑
k∈U

yuk log(p̄uk)−
∑
k∈S

ysklog(1− q̂)−
∑
k∈U

yuk logq̂ (6)

Utilizing Equation (1), we have yuk = qȳuk , where yuk are soft labels of unseen classes and ȳuk is the
temperature softmax where

∑
k∈U ȳ

u
k = 1. Similarly, the normalized seen labels ȳsk can be obtained

by ysk = (1− q)ȳsk. Replacing normalized labels in Equation (6) leads to:

Lsoft(x) = −(1− q)
∑
k∈S

ȳsklog(p̄sk)− q
∑
k∈U

ȳuk log(p̄uk)− (1− q)log(1− q̂)− qlogq̂ (7)

Hence the first two terms of Lsoft(x) is the weighted sum of cross-entropy of seen classes and cross-
entropy of unseen classes. In particular, first term penalizes and controls the relative (normalized)
probabilities within all seen classes and the second term acts similarly within unseen classes. We
also require to penalize the total probability of all seen classes (1 − q̂) and total probability of all
unseen classes (q̂). This is accomplished through the last two terms of Equation (7) which is basically
a binary cross entropy loss. Intuitively soft-loss in Equation (7) works by controlling the balance
within seen/unseen classes (first two terms) as well as the balance between seen and unseen classes
(last two terms).

As we have shown in Equation (7), soft-loss enables the classifier to learn unseen classes by only
being exposed to samples from seen classes. Hyperparameter q acts as a trade-off coefficient between
seen and unseen cross-entropy losses (Figure 2). We can see that the regularizer is a weighted
cross entropy on unseen class, which leverages similarity structure between attributes compared to
uniform entropy function of DCN (Liu et al., 2018). DCN and all prior works use uniform entropy as
regularizer, which does not capitalize on the known semantic similarity information between seen
and unseen class attributes.

At the inference time, our proposed SZSL method works the same as a conventional classifier, we
only need to provide the test image and the network will produce class probabilities for all seen and
unseen classes.

4 EXPERIMENT

We conduct comprehensive comparison of our proposed SZSL model with the state-of-the-art
methods for GZSL settings on five benchmark datasets (Table 1). We present the detailed description
of datasets in Appendix A. Our model outperforms the state-of-the-art methods on GZSL setting for
all benchmark datasets.

Table 1: Statistics of five ZSL benchmark datasets

Dataset #Attributes #Seen Classes #Unseen Classes #Images

AwA1 85 40 10 30475
AwA2 85 40 10 37322
CUB 312 150 50 11788
aPY 64 20 12 18627
SUN 102 645 72 14340

4.1 EVALUATION METRIC

For the purpose of validation, we employ the validation splits provided along with the Proposed Split
(PS) (Xian et al., 2017) to perform cross-validation for hyper-parameter tuning. The main objective
of GZSL is to simultaneously improve seen samples accuracy and unseen samples accuracy i.e.
imposing a trade-off between these two metrics. As the result, the standard GZSL evaluation metric
is harmonic average of seen and unseen accuracy. This metric is chosen to encourage the network not
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be biased toward seen classes. Harmonic average of accuracies is defined as AH = 2ASAU

AS+AU
where

AS and AU are seen and unseen accuracies, respectively.

Table 2: Results of GZSL methods on ZSL benchmark datasets under Proposed Split (PS) Xian et al. (2017). U,
S and H respectively stand for Unseen, Seen and Harmonic average accuracies.

AwA1 AwA2 aPY CUB SUN
Method U S H U S H U S H U S H U S H

Non-Generative Models
ALE (Akata et al., 2013) 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7 23.7 62.8 34.4 21.8 33.1 26.3
SJE (Akata et al., 2015) 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9 23.5 59.2 33.6 14.7 30.5 19.8
ConSE (Norouzi et al., 2013) 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0 1.6 72.2 3.1 6.8 39.9 11.6
Sync (Changpinyo et al., 2016) 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3 11.5 70.9 19.8 7.9 43.3 13.4
DeViSE (Frome et al., 2013) 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2 23.8 53.0 32.8 16.9 27.4 20.9
CMT (Socher et al., 2013) 0.9 87.6 1.8 8.7 89.0 15.9 1.4 85.2 2.8 7.2 49.8 12.6 8.1 21.8 11.8

Generative Models
f-CLSWGAN (Xian et al., 2018) 57.9 61.4 59.6 - - - - - - 43.7 57.7 49.7 42.6 36.6 39.4
SP-AEN (Chen et al., 2018) 23.3 90.9 37.1 - - - 13.7 63.4 13.7 34.7 70.6 46.6 24.9 38.6 30.3
cycle-UWGAN (Felix et al., 2018) 59.6 63.4 59.8 - - - - - - 47.9 59.3 53.0 47.2 33.8 39.4
SE-GZSL (Kumar Verma et al.,
2018)

56.3 67.8 61.5 - - - - - - 46.7 53.3 41.5 40.9 30.5 34.9

ZSKL (Zhang & Koniusz, 2018) 18.9 82.7 30.8 - - - 10.5 76.2 18.5 21.6 52.8 30.6 20.1 31.4 24.5
DCN (Liu et al., 2018) 25.5 84.2 39.1 - - - 14.2 75.0 23.9 28.4 60.7 38.7 25.5 37.0 30.2
COSMO (Atzmon & Chechik,
2019)

52.8 80.0 63.6 - - - - - - 44.4 57.8 50.2 44.9 37.7 41.0

CRnet (Zhang & Shi, 2019) 58.1 74.7 65.4 52.6 52.6 63.1 32.4 68.4 44.0 45.5 56.8 50.5 34.1 36.5 35.3
SZSL (Ours) 57.2 75.8 65.2 55.1 78.6 64.7 42.7 57.2 48.7 47.1 52.5 49.6 47.2 32.6 38.6

4.2 IMPLEMENTATION DETAILS

To evaluate SZSL, we follow the popular experimental framework and the Proposed Split (PS) in
(Xian et al., 2017) for splitting classes into seen and unseen classes to compare GZSL/ZSL methods.
Utilizing PS ensures that none of the unseen classes have been used in the training of ResNet-101
on ImageNet. The input to the model is the visual features of each image sample extracted by a
pre-trained ResNet-101 (He et al., 2016) on ImageNet provided by (Xian et al., 2017). The dimension
of visual features is 2048.

We utilized Keras (Chollet, 2015) with TensorFlow back-end (Abadi et al., 2016) to implement our
model. We used Xian et al. (2017) proposed unseen classes for validation (3-fold CV) and added 20%
of train samples (seen classes) as seen validation samples to obtain GZSL validation sets. We cross-
validate τ ∈ [10−2, 10], mini-batch size ∈ {64, 128, 256, 512, 1024}, q ∈ [0, 1], α ∈ [0, 1], hidden
layer size ∈ {128, 256, 512, 1024, 1500} and activation function ∈{tanh, sigmoid, hard-sigmoid,
relu} to tune our model. To obtain statistically consistent results, the reported accuracies are averaged
over 5 trials (using different initialization) after tuning hyper-parameters with cross-validation. Also
we ran our experiments on a machine with 56 vCPU cores, Intel(R) Xeon(R) CPU E5-2660 v4 @
2.00GHZ and 2 NVIDIA-Tesla P100 GPUs each with 16GB memory. The code is provided in the
supplementary material.

4.3 GENERALIZED ZERO-SHOT LEARNING RESULTS

To demonstrate the effectiveness of SZSL model in GZSL setting, we comprehensively compare our
proposed method with state-of-the-art GZSL models in Table 2. Since we use the standard proposed
split, the published results of other GZSL models are directly comparable.

As reported in Table 2, accuracies of our model achieves the state-of-the-art GZSL performance on
all five benchmark datasets and outperforms the state-of-the-art on AwA2 and aPY datasets. It is
exciting and motivating while our architecture is much simpler compared to recently proposed CRnet
and COSMO, yet, we achieve similar or better accuracies compared to them. We have only one
simple fully connected neural network with 2 trainable layers, compared to CRnet with K mixture of
experts followed by relation module with complex loss functions (pairwsie).

Soft labeling employed in SZSL gives the model new flexibility to trade-off between seen and unseen
accuracies during training and attain a higher value of harmonic accuracy AH , which is the standard

6



Under review as a conference paper at ICLR 2020

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
ci

es AS

AU

AH

max AH

(a) AwA1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
ci

es AS

AU

AH

max AH

(b) aPY

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
ci

es

AS

AU

AH

max AH

(c) CUB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
ci

es

AS

AU

AH

max AH

(d) SUN

Figure 2: Plots of seen (AS), unseen (AU ) and harmonic average (AH ) accuracies versus total probability (q)
assigned to unseen classes are shown for all five ZSL datasets. The maximum obtained harmonic accuracy is
also marked by (×).

metric for GZSL. Assigned unseen soft labels (unseen probability q) enables the classifier to gain
more confidence in recognizing unseen classes, which in turn results in considerably higher unseen
accuracy AU . As the classifier is now discriminating between more classes we get marginally lower
seen accuracy AS . However, balancing AS and AU with the cost of deteriorating AS leads to much
higher AH . This trade-off phenomenon is depicted in Figure 2 for all datasets. The flexibility
provided by soft labeling is examined by obtaining accuracies for different values of q. In Figure 2.a
and 2.b, by increasing total unseen probability q, AU increases and AS decreases as expected. From
the trade-off curves, there is an optimal q where AH takes its maximum value as shown in Figure
2. Maximizing AH is the primary objective in a GZSL problem that can be achieved by semantic
similarity based soft labeling and the trade-off knob, q.

It should be noted that both AwA and aPY datasets (Figure 2.a and 2.b) are coarse-grained class
datasets. In contrast, CUB and SUN datasets are fine-grained with hundreds of classes and highly
unbalanced seen-unseen split, and hence their accuracies have different behavior concerning q, as
shown in Figure 2.c and 2.d. However, harmonic average curve still has the same behavior and
possesses a maximum value at an optimal q.

4.3.1 INTUITION

We illustrate the intuition with AwA dataset (Lampert et al., 2009), a ZSL benchmark dataset.
Consider a seen class squirrel. We compute closest unseen classes to the class squirrel in terms of
attributes. We naturally find that the closest class is rat and the second closest is bat, while other
classes such as horse, dolphin, sheep, etc. are not close (Figure 3.a). This is not surprising as squirrel
and rat share several attribute. It is naturally desirable to have a classifier that gives rat higher
probability than other classes. If we force this softly, we can ensure that classifier is not blind towards
unseen classes due to lack of any training example.

From a learning perspective, without any regularization, we cannot hope classifier to classify unseen
classes accurately. This problem was identified in Liu et al. (2018), where they proposed entropy-
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Figure 3: The impact of temperature parameter τ for AwA dataset. (a) unseen soft labels (before multiplying q)
produced by temperature Softmax Equation (1) for various τ , (b) accuracies versus τ for proposed Z-Softmax
DU classifier.

based regularization in the form of Deep Calibration Network (DCN). DCN uses cross-entropy loss
for seen classes, and regularize the model with entropy loss on unseen classes to train the network.
Authors in DCN postulate that minimizing the uncertainty (entropy) of predicted unseen distribution
of training samples, enables the network to become aware of unseen visual features. While minimizing
uncertainty is a good choice of regularization, it does not eliminate the possibility of being confident
about the wrong unseen class. Clearly in DCN’s approach, for the above squirrel example, the
uncertainty can be minimized even when the classifier gives high confidence to a wrong unseen
class dolphin on an image of seen class squirrel. Utilizing similarity based soft-labeling implicitly
regularizes the model in a supervised fashion. The similarity values naturally has information of how
much certainty we want for specific unseen class. We believe that this supervised regularization is the
critical difference why our model outperforms DCN with a significant margin.

4.4 ILLUSTRATION OF SOFT LABELING

Figure 3 shows the effect of τ and the consequent assigned unseen distribution on accuracies for
AwA dataset. Small τ enforces q to be concentrated on nearest unseen class, while large τ spread q
over all the unseen classes and basically does not introduce helpful unseen class information to the
classifier. The optimal value for τ is 0.2 for AwA dataset as depicted in Figure 3.b. The impact of τ
on the assigned distribution for unseen classes is shown in Figure 3.a when seen class is squirrel in
AwA dataset. Unseen distribution with τ = 0.2, well represents the similarities between seen class
(squirrel) and similar unseen classes (rat, bat, bobcat) and basically verifies the result of Figure 3.b
where τ = 0.2 is the optimal temperature. While in the extreme cases, when τ = 0.01, distribution
on unseen classes in mostly focused on the nearest unseen class, rat, and consequently the other
unseen classes’ similarities are ignored. Also τ = 10 flattens the unseen distribution which results in
high uncertainty and does not contribute helpful unseen class information to the learning.

5 CONCLUSION

We proposed a discriminative GZSL classifier with visual-to-semantic mapping and cross-entropy
loss. During training, while SZSL is trained on a seen class, it simultaneously learns similar unseen
classes through soft labels based on semantic class attributes. We deploy similarity based soft labeling
on unseen classes that allows us to learn both seen and unseen signatures simultaneously via a simple
architecture. Our proposed soft-labeling strategy along with cross-entropy loss leads to a novel
regularization via generalized similarity-based weighted cross-entropy loss that can successfully
tackle GZSL problem. Soft-labeling offers a trade-off between seen and unseen accuracies and
provides the capability to adjust these accuracies based on the particular application. We achieve
state-of-the-art performance, in GZSL setting, on all five ZSL benchmark datasets while keeping the
model simple, efficient and easy to train.
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A APPENDIX

A.1 DATASET

The proposed method is evaluated on five benchmark ZSL datasets. The statistics for the datasets are
shown in table 1. Animal with Attributes (AwA1) (Lampert et al., 2014) dataset is a coarse-grained
benchmark dataset for ZSL/GSZl. It has 30475 image samples from 50 classes of different animals
and each class comes with side information in the form of attributes (e.g. animal size, color, specific
feature, place of habitat). Attribute space dimension is 85 and this dataset has a standard split of 40
seen and 10 unseen classes introduced in (Lampert et al., 2014). AWA2 Xian et al. (2017) is the
public licensed version of AWA1 with roughly the same amount of samples and the same number of
attributes and seen/unseen classes as AWA1.

Caltech-UCSD-Birds-200-2011 (CUB) (Wah et al., 2011) is a fine-grained ZSL benchmark dataset.
It has 11,788 images from 200 different types of birds and each class comes with 312 attributes. The
standard ZSL split for this dataset has 150 seen and 50 unseen classes (Akata et al., 2016).

SUN Attribute (SUN) (Patterson & Hays, 2012) is a fine-grained ZSL benchmark dataset consists of
14340 images of different scenes and each scene class is annotated with 102 attributes. This dataset
has a standard ZSL split of 645 seen and 72 unseen classes.

attribute Pascal and Yahoo (aPY) (Farhadi et al., 2009) is a small and coarse-grained ZSL benchmark
dataset which has 14340 images and 32 classes of different objects (e.g. aeroplane, bottle, person,
sofa, ...) and each class is provided with 64 attributes. This dataset has a standard split of 20 seen
classes and 12 unseen classes.
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