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Abstract
This paper proposes a novel framework for lung segmentation in chest X-rays. It consists of two
key contributions, a criss-cross attention based segmentation network and radiorealistic chest X-
ray image synthesis (i.e. a synthesized radiograph that appears anatomically realistic) for data
augmentation. The criss-cross attention modules capture rich global contextual information in
both horizontal and vertical directions for all the pixels thus facilitating accurate lung segmenta-
tion. To reduce the manual annotation burden and to train a robust lung segmentor that can be
adapted to pathological lungs with hazy lung boundaries, an image-to-image translation module
is employed to synthesize radiorealistic abnormal CXRs from the source of normal ones for data
augmentation. The lung masks of synthetic abnormal CXRs are propagated from the segmenta-
tion results of their normal counterparts, and then serve as pseudo masks for robust segmentor
training. In addition, we annotate 100 CXRs with lung masks on a more challenging NIH Chest
X-ray dataset containing both posterioranterior and anteroposterior views for evaluation. Extensive
experiments validate the robustness and effectiveness of the proposed framework. The code and
data can be found from https://github.com/rsummers11/CADLab/tree/master/
Lung_Segmentation_XLSor.
Keywords: Lung segmentation, chest X-ray, criss-cross attention, radiorealistic data augmentation

1. Introduction

Lung diseases and disorders are one of the leading causes of death and hospitalization throughout the
world. According to the American Lung Association, lung cancer is the number one cancer killer of
both women and men in the United States, and more than 33 million Americans are facing a chronic
lung disease. The chest radiograph (chest X-ray, or CXR) is one of the most requested radiologic
examination for pulmonary diseases such as lung cancer, chronic obstructive pulmonary disease
(COPD), pneumonia, tuberculosis, etc. There are huge demands on developing computer-aided
diagnosis/detection (CADx/CADe) methods to assist radiologists and other physicians in reading
and comprehending chest X-ray images (Shin et al., 2016; Wang et al., 2017, 2018b; Tang et al.,
2018c), given the fact that there is a shortage of experienced radiologists, especially in developing
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countries. Precise segmentation of lung fields can provide rich structural information such as shape
irregularity, size measurement and total lung volume, which further facilitates subsequent stages
of automated diagnosis (e.g., disease pattern recognition, segmentation and quantization) to assess
certain serious clinical conditions.

Over the past decades, automated segmentation of lung boundaries in CXR has received substan-
tial attention in the literature (Candemir et al., 2014; Dai et al., 2017) but still remained a challenging
problem (El-Baz et al., 2016). Previous work mainly adopted hand-crafted features to design rule-
based systems (Li et al., 2001), active shape/appearance models (Xu et al., 2012), or their hybrid
methods (Candemir et al., 2014) to segment the lung boundaries. These approaches rely on the test
CXR images being well modeled by the existing training images but they may fail on a different
distribution or population. Recently, deep learning based methods (e.g. fully convolutional neu-
ral networks (FCN) (Shelhamer et al., 2017)) have achieved great successes in biomedical image
segmentation (Chen et al., 2018; Tang et al., 2019a; Cai et al., 2018; Tang et al., 2018a) and other
medical image analysis tasks (Tang et al., 2019d,c,b, 2018b; Jin et al., 2018; Yan et al., 2018, 2019).
The FCN-based methods are intrinsically limited to local receptive fields and insufficient contex-
tual information due to the fixed geometric structures of the convolution. These limitations impose
unfavorable effects in segmenting boundaries around less clear lung regions caused by pathological
conditions or poor image quality (e.g., low contrast, costophrenic angle clipped off, bad position-
ing of the patient). Structure correcting adversarial network (SCAN) (Dai et al., 2017) incorpo-
rates FCN and adversarial learning (Goodfellow et al., 2014) to segment organs (lungs and heart)
in CXRs. SCAN imposes regularization based on the physiological (global) structures by using a
critic network that discriminates between the ground truth annotations from the segmentation masks
generated by the FCN.

In order to capture richer global contextual information for robust and accurate lung segmen-
tation, we make use of a criss-cross attention (CCA) module (Huang et al., 2018b) to aggregate
long-range pixel-wise contextual information in both horizontal and vertical directions. Further
dense contextual information can be achieved by stacking more CCA modules recurrently to cover
all the pixels. In addition, since publicly available datasets only contain small numbers of lung
masks and they are mainly for normal lungs and lungs with subtle findings or unique pathology in
an posterioranterior view (e.g., small nodules within the lung field in the JSRT database (Shiraishi
et al., 2000), CXRs with tuberculosis presented in the Montgomery database (Jaeger et al., 2014)),
it is insufficient to directly use these datasets for training a powerful lung segmentor that can be
adapted to pathological lungs with hazy lung boundaries (e.g., large masses, pneumonias, effusions,
etc.) for both posterioranterior (PA) and anteroposterior (AP) views. Furthermore, it is very time
consuming and tedious for radiologists to manually annotate lung masks, especially on CXRs with
abnormalities/pathologies in lung regions (or the so-called abnormal CXRs in this paper). There-
fore, we use an image-to-image translation method (Huang et al., 2018a) to synthesize radiorealistic
(i.e. a synthesized radiograph that appears anatomically realistic) abnormal CXRs from the source
of normal ones for data augmentation and mask propagation. The lung masks of synthetic abnormal
CXRs are transferred from their normal counterpart and then used as pseudo masks for segmentor
retraining.

The proposed framework XLSor (i.e. X-ray Lung Segmentor) takes advantage of radiorealistic
synthesized abnormal CXRs and pseudo masks, without requiring paired normal and abnormal
CXRs from the same patient (which is infeasible in reality), as well as the criss-cross attention
module to generate robust and accurate lung segmentation. We annotate 100 lung masks on a more
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Figure 1: Framework of the proposed X-ray lung segmentor (XLSor).

challenging NIH Chest X-ray dataset (Wang et al., 2017) containing both PA and AP views for
evaluation. Extensive experiments on different datasets validate the robustness and effectiveness of
the proposed framework.

2. Methodology

2.1. XLSor Framework Overview

The overall XLSor framework is shown in Figure 1. Given a training set R with ground-truth masks,
an initial lung segmentor is trained (see details in Sec. 2.2). Then, for an auxiliary external set, an
image-to-image method MUNIT (Huang et al., 2018a) is used to synthesize abnormal CXRs from
normal ones, so as to augment the training data and pseudo mask annotations (mask of normal CXR
is obtained using the initial lung segmentor and propagated to its synthesized abnormal CXRs, see
details in Sec. 2.3). The initial lung segmentor is updated using R along with the augmented dataset
A with pseudo masks.

2.2. Criss-Cross Attention based Network for Lung Segmentation

In preliminary experiments, we trained a U-Net model (Ronneberger et al., 2015), a widely used
model in many applications of medical image segmentation, for lung segmentation. When testing
it on the unseen abnormal CXRs, the segmentations are not very promising. That is because the
features are extracted from local receptive fields and cannot well capture sufficient contextual infor-
mation of lungs in U-Net. However, the rich and global contextual information of lungs and their
surrounding regions is very important for lung segmentation.

Criss-cross Network (CCNet) (Huang et al., 2018b) achieved state-of-the-art performance in
semantic segmentation based on a novel criss-cross attention (CCA) module. Inspired by this,
we employ CCA to build a robust and accurate lung segmentor (named XLSor) on chest X-rays.
The XLSor is constructed with a fully convolutional network and two CCA modules to capture
long-range contextual information (see Figure 1 top). Specifically, we replace the last two down-
sampling layers in the ImageNet pre-trained ResNet-101 (He et al., 2016) with dilated convolution
operation (Chen et al., 2015), resulting in an output stride of 8. The CCA module collects contextual
information in horizontal and vertical directions to enhance pixel-wise representative capability.
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Recurrent criss-cross attention module can capture dense contextual information from all pixels by
stacking two CCA modules with shared weights. CCA shares the similar idea of capturing global
contextual information as the non-local neural network (Wang et al., 2018a) but with much higher
computational efficiency. Please refer to (Huang et al., 2018b) for more details about the CCA
module. Therefore, the CCA based XLSor can generate clear lung boundaries for more accurate
lung segmentation by considering the richer and global contextual information.

The mean square error loss function and the SGD with momentum of 0.9 and weight decay of
0.0005 are used to optimize the XLSor. The initial learning rate is 0.02 and updated using a poly
learning rate policy where the initial learning rate is multiplied by 1− ( iter

max iter )
0.9, where iter is the

number of current iterations and max iter is the total number of iterations. The batch size is set as
4. The size of the input CXR is 512×512.

2.3. Data Augmentation via Abnormal Chest X-Ray Pairs Construction

As discussed in Sec. 1, it is insufficient to train a robust lung segmentor using the existing datasets
and mask annotations. A simple solution is to enrich the training data, which has been widely used
in deep learning. The traditional data augmentation means is to use a combination of affine transfor-
mations to manipulate the training data, e.g., shifting, zooming in/out, rotation, flipping, etc, so as to
generate new duplicate images for each input image. The contextual information in these generated
images do not change very much. To solve these problems, we propose a data augmentation strategy
using an image-to-image translation method (Huang et al., 2018a) to construct a large number of
abnormal chest X-ray pairs without involving any human intervention, based on which a powerful
model can be learned for robust and accurate lung segmentation on different challenging CXRs.

To construct the pairs of abnormal CXR and its corresponding lung masks, there are two
straightforward ways. One is to convert the abnormal CXRs into normal ones, and then compute
the lung masks which serve as the ground truths for the abnormal CXRs. The other one is to convert
the normal CXRs into abnormal ones, and then the lung masks segmented on the normal CXRs
are considered as the ground truths of the abnormal ones. Here, we prefer the second way, since
the lung regions in real normal CXRs are determined while the ones could be different for various
generated normal CXRs in the first way. For the image-to-image translation task, i.e. from normal
CXRs to abnormal ones, a state-of-the-art method, i.e. MUNIT (Huang et al., 2018a), is utilized in
this work. MUNIT assumes that the image representation can be decomposed into a content code
that is domain-invariant, and a style code that captures domain-specific properties. To translate an
image to another domain, MUNIT recombines its content code with a random style code sampled
from the style space of the target domain. Please refer to (Huang et al., 2018a) for more details about
MUNIT. In this work, we first train the MUNIT model using the default parameter configuration
and the NIH chest X-Ray dataset (Wang et al., 2017), from which 5,000 normal CXRs and 5,000
abnormal CXRs are randomly selected for training. Then, given a normal CXR (see Figure 2(a)),
we use the trained MUNIT model to generate (or synthesize) a number of abnormal CXRs (see Fig-
ure 2(c)-(g)) by combining the content code of the normal CXR and different random style codes
learned from the domain of abnormal CXRs. From Figure 2(c)-(g), we can see that the generated
abnormal CXRs are radiorealistic. We also notice that the shape of lungs are distorted slightly in
the generated abnormal CXRs sometimes. Therefore, the generated abnormalities are customized
using the style codes and visually radiorealistic. At last, we use the initial XLSor model trained
from the publicly available datasets to obtain the lung masks (see Figure 2(b)) of the given normal
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Three examples (rows) of the constructed abnormal CXR pairs. Given an unseen normal
CXR (a), XLSor outputs a lung segmentation that is binarized with a threshold of 0.5 to
get the lung mask (b) and MUNIT generates different abnormal CXRs (c-g). The lung
mask (b) and the synthesized abnormal CXRs (c-g) form the constructed abnormal CXR
pairs.

CXR, which are also considered as the pseudo masks of the generated abnormal CXRs (i.e. mask
propagation) to form the constructed abnormal CXR pairs (see Figure 1 bottom) for further training
the XLSor model. We also iteratively conducted above processes and found that it is not helpful
because the normal CXRs are easy to segment and the pseudo masks are good enough at the first
iteration.

3. Experiments

3.1. Datasets and Evaluation Criteria

We evaluate the lung segmentation performance of the proposed XLSor using two publicly available
datasets, i.e. JSRT (Shiraishi et al., 2000) and Montgomery (Jaeger et al., 2014), and our own
annotated dataset (named NIH). JSRT contains 247 CXRs, among which 154 have lung nodules
and 93 have no lung nodule. Montgomery contains 138 CXRs, including 80 normal patients and 58
patients with manifested tuberculosis (TB). Both datasets provide pixel-wise lung mask annotations.
We notice that the abnormal lung regions in these two datasets are mild. Only using such datasets
for evaluation cannot well demonstrate the effectiveness and generalizability of the methods, since
diseases can occasionally cause severe damages to the lungs. Therefore, we manually annotate
the lung masks of 100 abnormal CXRs with various severity of lung diseases, which are selected
from the NIH Chest X-Ray dataset (Wang et al., 2017) by excluding the samples used for MUNIT
training. Here, we name the manually labeled set as NIH.
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JSRT and Montgomery datasets are combined and randomly split into three subsets for both
normal and abnormal CXRs, i.e. training (70%), validation (10%) and testing (20%). Specifically,
the validation and testing sets include 37 and 78 CXRs, respectively. The remaining 280 CXRs
serve as a training set for model training. The validation set is used for model selection, and the
testing set and the NIH dataset are used for performance evaluation. Five criteria, i.e. volumetric
similarity (VS), averaged Hausdorff distance (AVD), Dice similarity coefficient (DICE), precision
(PRE) and recall (REC) scores, are calculated pixel-wisely by a publicly available segmentation
evaluation tool (Taha and Hanbury, 2015) with threshold of 0.5 and used to evaluate the quantitative
segmentation performance.

3.2. Quantitative Results

In this work, U-Net (Ronneberger et al., 2015) is applied for performance comparisons to demon-
strate the effectiveness of the criss-cross attention based XLSor. To validate the usefulness of adding
the augmented samples for lung segmentation, we first use the proposed data augmentation strat-
egy to generate four augmented training sets, denoted as A1, A2, A3 and A4, respectively. Here,
A1 contains 600 constructed pairs including 100 normal pairs and 500 abnormal pairs where five
abnormal CXRs are synthesized from each normal CXR using MUNIT (Huang et al., 2018a). Ai

(i = 2,3,4) contains all samples in Ai−1 and another new 600 constructed pairs. We then train the
XLSor and U-Net models for lung segmentation using six different training settings, i.e. only using
the real public training set (denoted R), using the real public training set and any augmented set Ai

i = 1,2,3,4 (denoted R+Ai), and only using the augmented set A4. To validate the effectiveness
of CCA for segmentation performance improvement, we also train the XLSor model without CCA
modules (denoted XLSor−) and the U-Net model with CCA modules (denoted U-Net+) using R
and R+A4. In each training setting, the same traditional data augmentation techniques (e.g., scal-
ing and flipping) are adopted. Finally, the five criteria are used to evaluate the performance of lung
segmentation on the public testing set and NIH dataset, whose results are reported in Table 1.

From Table 1, we can see that 1) the proposed XLSor gets better results than U-Net on both
the simple public testing set and the difficult NIH dataset. Especially, the performance of XLSorR

is much better than the one of U-NetR on the NIH dataset (e.g., improving the Dice score about
12%), meaning that the proposed XLSor is able to work much better than U-Net on the unseen
CXRs whose data distribution is much different from the training data. This demonstrates that the
proposed XLSor based on the criss-cross attention module can well learn the global contextual in-
formation of lung regions and strong discriminative features to distinguish the lung regions from
their surrounding structures regardless of the CXRs’ properties. 2) When adding the augmented
samples for model training, the performance is improved, i.e. XLSorR+Ai (or U-NetR+Ai) gets better
results than XLSorR (or U-NetR), suggesting the effectiveness of our data augmentation technique
for lung segmentation performance improvement. Through experiments, we find that the perfor-
mance remains stable when adding more augmented samples than A4. 3) When only using the
augmented samples for model training, both XLSor and U-Net still get very promising performance
on the public testing set and the NIH dataset (see the results of XLSorA4 and U-NetA4 in Table 1),
suggesting that the generated abnormal CXRs are radiorealistic and the pseudo lung masks effec-
tively supervise the learning processes for lung segmentation. 4) The results by all models are quite
similar in the public testing set, that is because the testing CXRs are all (near-)normal and the lung
segmentation task is relatively easy. 5) U-Net obtains worse performance on NIH dataset than the
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Table 1: Lung segmentation results on the public testing set and NIH dataset using the proposed
XLSor and U-Net with different training settings. Results showing mean with standard
deviation. ↑: the larger the better. ↓: the smaller the better.

Method REC↑ PRE↑ DICE↑ AVD↓ VS↑
Public testing set

XLSorR 0.973±0.02 0.979±0.02 0.976±0.01 0.149±0.51 0.992±0.01
XLSorR+A1 0.973±0.02 0.979±0.02 0.976±0.01 0.152±0.52 0.991±0.01
XLSorR+A2 0.974±0.02 0.978±0.02 0.976±0.01 0.117±0.31 0.991±0.01
XLSorR+A3 0.972±0.02 0.979±0.02 0.976±0.01 0.126±0.33 0.991±0.01
XLSorR+A4 0.974±0.02 0.977±0.02 0.976±0.01 0.146±0.44 0.991±0.01

XLSorA4 0.965±0.03 0.979±0.02 0.972±0.02 0.162±0.36 0.989±0.01
XLSor−R 0.973±0.02 0.978±0.02 0.975±0.01 0.151±0.53 0.991±0.01

XLSor−R+A4 0.972±0.02 0.978±0.02 0.976±0.01 0.148±0.47 0.991±0.01
U-NetR 0.976±0.02 0.968±0.03 0.972±0.02 0.198±0.56 0.988±0.02

U-NetR+A1 0.973±0.02 0.976±0.02 0.974±0.01 0.162±0.54 0.990±0.01
U-NetR+A2 0.977±0.02 0.973±0.02 0.975±0.01 0.135±0.41 0.989±0.01
U-NetR+A3 0.976±0.02 0.975±0.02 0.975±0.01 0.131±0.34 0.990±0.01
U-NetR+A4 0.973±0.02 0.978±0.01 0.975±0.01 0.152±0.46 0.990±0.01

U-NetA4 0.967±0.02 0.975±0.01 0.971±0.01 0.164±0.37 0.989±0.01
U-Net+R 0.976±0.02 0.970±0.03 0.972±0.02 0.191±0.54 0.988±0.02

U-Net+R+A4 0.975±0.02 0.977±0.01 0.975±0.01 0.130±0.33 0.990±0.01

NIH dataset
XLSorR 0.966±0.02 0.927±0.09 0.943±0.05 0.669±1.64 0.966±0.05

XLSorR+A1 0.958±0.03 0.973±0.02 0.965±0.02 0.172±0.26 0.985±0.01
XLSorR+A2 0.962±0.02 0.980±0.01 0.971±0.01 0.097±0.08 0.989±0.01
XLSorR+A3 0.967±0.02 0.978±0.02 0.973±0.01 0.089±0.07 0.990±0.01
XLSorR+A4 0.974±0.01 0.976±0.01 0.975±0.01 0.078±0.06 0.993±0.01

XLSorA4 0.964±0.02 0.983±0.01 0.973±0.01 0.098±0.13 0.988±0.01
XLSor−R 0.965±0.03 0.902±0.10 0.929±0.06 0.952±1.81 0.955±0.06

XLSor−R+A4 0.965±0.02 0.981±0.01 0.967±0.01 0.093±0.10 0.990±0.01
U-NetR 0.938±0.07 0.761±0.20 0.823±0.16 5.231±9.02 0.869±0.15

U-NetR+A1 0.926±0.05 0.960±0.03 0.942±0.03 0.832±1.29 0.971±0.02
U-NetR+A2 0.947±0.04 0.950±0.04 0.948±0.03 0.500±1.03 0.981±0.02
U-NetR+A3 0.950±0.03 0.954±0.03 0.951±0.02 0.393±0.58 0.983±0.02
U-NetR+A4 0.943±0.04 0.958±0.03 0.950±0.03 0.454±0.73 0.982±0.02

U-NetA4 0.952±0.03 0.959±0.03 0.955±0.02 0.315±0.47 0.983±0.02
U-Net+R 0.929±0.07 0.804±0.20 0.842±0.14 4.782±8.05 0.895±0.14

U-Net+R+A4 0.956±0.03 0.969±0.02 0.962±0.02 0.262±0.54 0.985±0.02

public testing set, meaning that the CXRs in the NIH dataset are more complex and difficult than the
ones in the public testing set. But XLSor can get comparable and good results on both datasets, sug-
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CXR Mask U-NetR U-NetA4 U-NetR+A4 XLSorR XLSorA4 XLSorR+A4
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Figure 3: Four examples (rows) of lung segmentation results produced by XLSor and U-Net trained
using R, A4 and R + A4. Here, the results are given as the probability maps directly
outputted by the models, which can be binarized with a threshold of 0.5 to get the binary
lung masks for performance evaluation. The first two rows are from the public testing set
and the last two rows are from the NIH dataset. To better visualize the differences between
lung segmentation results and ground truths, we colorize them with pseudo-colors. Better
viewed in color.

gesting that the proposed XLSor is robust and powerful for lung segmentation in different scenarios.
6) XLSor/U-Net+ achieves better results than XLSor−/U-Net (especially, on the NIH dataset), sug-
gesting that using CCA modules can make the model learn the global contextual information of lung
regions better and extract more powerful discriminative features for performance improvement. All
results quantitatively demonstrate the effectiveness and generalizability of the proposed XLSor for
lung segmentation on various CXRs.

3.3. Qualitative Results

Figure 3 shows four qualitative lung segmentation results produced by the models (i.e. XLSor
and U-Net) trained with the following settings: R, A4 and R + A4. Compared with U-Net, the
lung segmentation results produced by the proposed XLSor are much closer to the ground truths
in various challenging scenarios. To be specific, 1) the proposed XLSor not only highlights the
correct lung regions clearly, but also well suppresses the probabilities of background regions, so
as to produce the segmentation results with higher contrast between lung regions and background
than U-Net. 2) With the help of the criss-cross attention module that considers sufficient contextual
information, the proposed XLSor is able to output the lung segmentations with clear boundaries

464



XLSOR: A ROBUST AND ACCURATE LUNG SEGMENTOR ON CHEST X-RAYS

and consistent probabilities, even when the model is trained and tested on CXRs with different
distribution of abnormalities. 3) With the augmented samples for training, the qualities of lung
segmentations are improved. These intuitively demonstrate the effectiveness of the proposed XLSor
and the usefulness of the proposed data augmentation strategy for lung segmentation on chest X-
rays.

4. Conclusions and Future Work

In this paper, we propose a robust and accurate lung segmentor based on a criss-cross attention
network and a customized radiorealistic abnormalities generation technique for data augmentation.
Experiments showed that the proposed framework was able to capture rich contextual information
from both original and radiorealistic synthesized CXRs to adapt to more challenging images, re-
sulting in much better segmentation, especially in unseen abnormal CXRs. Future work includes
segmenting more organs and integrating with more downstream tasks such as disease classification
and detection to provide comprehensive and accurate computer-aided detection on CXR images,
e.g., performing segmentation and classification simultaneously by training different MUNIT mod-
els for individual diseases and using them to generate abnormalities accordingly in categories.
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