
Workshop track - ICLR 2017

ACCELERATING SGD FOR DISTRIBUTED DEEP-
LEARNING USING APPROXIMTED HESSIAN MATRIX

Sébastien Arnold
University of Southern California
Los Angeles, CA-90007, USA
arnolds@usc.edu

Chunming Wang
University of Southern California
Los Angeles, CA-90007, USA
cwang@math.usc.edu

ABSTRACT

We introduce a novel method to compute a rank m approximation of the inverse
of the Hessian matrix in the distributed regime. By leveraging the differences
in gradients and parameters of multiple Workers, we are able to efficiently im-
plement a distributed approximation of the Newton-Raphson method. We also
present preliminary results which underline advantages and challenges of second-
order methods for large stochastic optimization problems. In particular, our work
suggests that novel strategies for combining gradients provide further information
on the loss surface.

1 INTRODUCTION

The Stochastic Gradient Descent (SGD) method has been shown to be well-suited for distributed
deep-learning applications (Mitliagkas et al., 2016; Gupta et al., 2015; Dean et al., 2012; Amodei
et al., 2015). Typically a set of Worker nodes evaluate the gradient of the cost functional on one
or a batch of data point and perform updates to the parameters acquired (Read) from a Parameter
Server in parallel either synchronously or asynchronously. Periodically, the Workers return (Write)
updated parameters to the Server. In most of cases, the average of the returned parameter values is
evaluated by the Server and is made available to Workers for the subsequent acquisitions. In some
implementations, the Workers are not required to return the gradient vectors of the cost functional
to the server. In our method, the Workers supply the gradient evaluated at the updated parameters
to the Server. Using these gradient vectors the Server uses an approximated Hessian matrix to
produce a quasi-Newton update of the parameter which is made available to Workers. Our numerical
experimental results show that the new approach leads to accelerated convergence of the parameter,
as well as, reduction of the cost functional. In some cases, the new algorithm exhibits quadratic
convergence of the parameter which is characteristically associated with the Newton’s method.

2 METHOD

Following each Write operation by a Worker or all Workers in either an asynchronous or syn-
chronous implementation of distributed SGD algorithm, the Server receives the updated parameters
θk ∈ Rn and the estimated gradient5J(θk) from Workers k = 1, · · · ,m. An approximation of the
Hessian matrix HJ can be obtained by requiring the following equality:

5J(θk)−5J(θj) = HJ(θk − θj),∀k, j = 1, · · · ,m. (1)

We define n ×m matrices G and Θ such that the k-th columns of these matrices are 5J(θk) − ḡ
and θk − θ̄, respectively, where

ḡ =
1

m

m∑
k=1

5J(θk), θ̄ =
1

m

m∑
k=1

θk.

Equation (1) leads to G = HJΘ which represents key characteristics of the Hessian matrix. Note
that both matricesG and Θ are not square matrices and not invertible in general. Therefore the above

1



Workshop track - ICLR 2017

equality does not uniquely define the matrix HJ . Our objective is to find a rank p approximation
H̄−1J of the inverse of the Hessian matrix and to generate an update to the parameter

θnew = θ̄ − τH̄−1J ḡ. (2)

Our selection for H̄−1J is guided by the following observations. Consider a singular value decompo-
sition of the matrix G given by UGΣGV

H
G where the first m columns of the unitary matrix VG are

eigenvectors of the matrixGHG and ΣG is a n×m diagonal matrix with σ1,1 ≥ σ2,2 ≥ · · ·σm ≥ 0.
Note that the first m columns of the matrix UG are given by uk = Gvk/‖Gvk‖2, k = 1, · · · ,m
where vk is the k-th column of the matrix VG. Equation G = HJΘ can be rewritten as
H−1J UGΣG = ΘVG. We define n × n matrix P = H−1J UG and n × m matrix Y = ΘVG, by
matching the first m columns we obtain pk = σ−1k yk where pk and yk = Θvk are the k-th columns
of matrices P and Y , respectively. We define an approximation of the matrix H−1J by

H̄−1J z =

{
PUHG z, z ∈ span{uk, k = 1, · · · , j},
z, z ∈ span{uk, k = 1, · · · , j}⊥, (3)

where the integer j is satisfies σj ≥ λσ1, σj+1 < λσ1 for a selected value 0 < λ < 1. In particular,
for any z ∈ Rn such that

z =

j∑
k=1

αkuk + z⊥, αk = zHuk, k = 1, · · · , j,

we define

H̄−1J z = z⊥ +

j∑
k=1

αkσ
−1
k yk. (4)

Note that when j = 0, equation (2) is equivalent to the standard SGD method. The algorithm does
require computation of the eigenvalues and eigenvectors of the m × m matrix GHG. For small
enough number of Workers, this represents a relative minor computational effort.

We underline that while this presentation follows the parameter server (Li et al., 2014) semantics,
our technique is easily adapted to the tree-reduction framework (Iandola et al., 2015). In fact, it can
be seen as a more sophisticated reduction of the gradients across Workers, as opposed to a simple
averaging. Our MPI-based implementation consists of a large All-to-All broadcast of the parameters
and gradients, followed by the computations presented above. With n parameters and m replicas,
this method has a space complexity on the order ofO(mn) and its time complexity isO(m3+m·n).

3 EXPERIMENTAL RESULTS

Figure 1: Convergence curves on MNIST and CIFAR-10. DistNewton-m denotes the use of m
Workers. In both experiments we notice an improvement in convergence as m increases. (ie, more
gradients are used to compute H̄−1). On the CIFAR-10 experiment we also plot the SGD ReLU
performance, which outperforms tanh activations and diverged using our method.

We now present preliminary results on two widely used datasets (MNIST (Lecun and Cortes) and
CIFAR-10 (Krizhevsky et al., 2012b)) and compare the convergence rate of our proposed method

2



Workshop track - ICLR 2017

against SGD. Furthermore, we restrict our study to the synchronous case. Since we are only inter-
ested in the optimization performance, we keep most of our hyper-parameters constant, including
learning rates (0.0003 and 0.01), activation functions (ReLU (Nair and Hinton, 2010) and tanh), and
a global batch size of 256. Our model is a 5 layer convnet with about 16’000 parameters, which
we train each time for 50 epochs. We report the negative log-likelihood on the train dataset at every
epoch, and for up to 8 Workers. Note that since the global batch size is fixed, the SGD convergence
curves are identical and thus only reported once.

Our results clearly demonstrate convergence improvements as we scale to a larger number of Work-
ers, and consistently outperforms stochastic gradient descent in the most distributed case. Inter-
estingly the latter is true even with a relatively small number of Workers, as we observe a much
faster convergence with m = 4 in both experiments. However, when the number of Workers is
not sufficient to properly estimate the most influential singular values the method converges to poor
minimas and is slower than distributed SGD. This effect underlines the importance of the number of
eigenvalues considered which is defined through the parameter j.

Additionally, our method suffers of the limitations of Newton’s method. For example, several exper-
iments diverged when using too large a learning rate, whereas this was beneficial to the convergence
rate of SGD. Another downside is related to the use of ReLU activations; a good enough estimate of
the Hessian results in numerical errors as the second derivative becomes 0. However, ReLUs have
been widely successful in the computer vision domain (Krizhevsky et al., 2012a; He et al., 2016),
and usually outperform other non-linear activations. This is demonstrated by the SGD-relu curve
in the CIFAR-10 experiment. Finally, as pointed by Dauphin et al. (2014), even when including
second-order information, iterative methods such as SGD or Newton method can be slowed down
by saddle-points surrounded by plateaus.

We note that previous work has suggested approaches to tackle some of those limitations. In par-
ticular, LeCun et al. derived an optimal formulation of the learning rate, assuming knowledge of
the largest singular value σmax: τopt = 1

σmax
. Since we directly approximate σmax we can trivially

adapt the learning rate to be upper-bounded by this approximate optimal at every update. In addition
to underlining the saddle-point issue, Dauphin et al. (2014) also proposed a counter-measure: con-
sidering the absolute value of the Hessian’s singular values. This approach comes as an artifact of
our suggested method, since we approximate the inverse of the Hessian using only positive singular
values.

4 CONCLUSION

In this work, we introduced a Quasi-Newton method specifically designed for the distributed regime.
On preliminary small-scale experiments, our method largely outperforms stochastic gradient descent
when the number of Workers allow for a good approximation of the inverse of the Hessian. Our
results suggest that our method is effectively taking advantage of the second-order information of
the optimization problem.

More importantly, this work suggests that alternative strategies for combining Workers’ gradients
will provide superior convergence rates than a simple averaging. Intuitively this results from the ob-
servation that each Worker is exploring a different region of the loss surface and thus the aggregated
information will provide a better understanding than averaged local statistics.

Finally, we would like to indicate that our work is preliminary and more comprehensive investigation
into the potential of this approach is required. In particular, we want to further define criteria to
identify cases for which this approach offers maximum benefits.

ACKNOWLEDGMENTS

Sponsorship of the Living With a Star Targeted Research and Technology NASA/NSF Partnership
for Collaborative Space Weather Modeling is gratefully acknowledged.

3



Workshop track - ICLR 2017

REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jing-
dong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in neural information processing systems, pages 2933–2941, 2014.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–1231, 2012.

Suyog Gupta, Wei Zhang, and Josh Milthrope. Model accuracy and runtime tradeoff in distributed
deep learning. arXiv preprint arXiv:1509.04210, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

Forrest N Iandola, Khalid Ashraf, Mattthew W Moskewicz, and Kurt Keutzer. Firecaffe: near-
linear acceleration of deep neural network training on compute clusters. arXiv preprint
arXiv:1511.00175, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012a.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012b.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits. URL http://
yann.lecun.com/exdb/mnist/.

Yann LeCun, Patrice Y Simard, and Barak Pearlmutter. Automatic learning rate maximization by
on-line estimation of the hessians eigenvectors.

Mu Li, David G Andersen, and Jun Woo Park. Scaling distributed machine learning with the param-
eter server. 2014.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momentum,
with an application to deep learning. arXiv preprint arXiv:1605.09774, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

4

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Method
	Experimental Results
	Conclusion

