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ABSTRACT

Task sandboxing, as a fundamental security mechanism in
x86 computer systems, is achieved by address space isolation
and virtualization, among others. However, the tight resource
constraints and software design patterns disable IoT devices
to use the above mentioned sandboxing mechanism.

This paper takes ARM Mbed as an example to research
the task sandboxing techniques in Exokernel-based RTOS,
and presents the following three new findings: 1) A new form
of control hijacking attack against Mbed task sandboxing. 2)
Although the existing Mbed memory isolation mechanisms
are incompetent to handle this attack, a lightweight intra-
mode privilege separation mechanism can be invented to
defeat it. Based on this, we present LIPS, which further uses
MPU to divide “the memory (i.e., Flash and RAM) accessible
in unprivilege mode” into Inside and Outside domains. The
domain switching is ensured by Domain Notification Calls.
3) Thorough evaluation and experimental tests are carried
out and LIPS proves to be able to effectively defend the
widely existing control hijacking attack against Mbed task
sandboxing and with small runtime overheads and good
portability.

1 INTRODUCTION

TASK sandboxing, as a fundamental security mechanism
in a x86 computer system, is achieved by address space
isolation [15] and virtualization [3], among others. This paper,
however, will focus on the task sandboxing problem towards
ubiquitous IoT devices [5, 6, 52].

Nowadays, most of the commercial IoT devices use low-
end and low-power ARM Cortex-M processors. However, the
tight resource constraints and software design patterns make
OSes that run on Cortex-M processors unable to employ
virtual memory. Besides, these OSes’ codes only run in Flash
and are set to be unwritable when OS is running, and the
data are stored only in RAM and are modifiable [29]. What’s
more, x86 processors contain complicate and mature security
components (e.g. MMU, ring0-ring3 [50]), while in Cortex-
M processors corresponding security components are less
powerful. For example, MPU (Memory Protection Unit),
which is proposed by ARM in its lightweight OS’ security
design, can only enforce read, write, and execute permissions
on a fixed number of regions of the physical memory[12].

These limitations cause task (process) sandbox isolation
mechanisms between x86 and Cortex-M processors differ-
ent in the following three aspects. [25, 30]. First, in x86
processors, a sandboxed process cannot directly call other
sandboxed processes’ codes, while in Cortex-M processors
the sandboxed task can call codes of other sandboxed tasks
running in the same privileged mode. Second, in x86 proces-
sors a sandboxed process cannot read/write other processes’

data. However, whether one task can read/write the data
of a task in another sandbox depends on whether MPU is
dynamically reconfigured in Cortex-M processors. Third, x86
processors isolate every sandboxed process from each other
through 4 privilege levels (ring0-ring3) and MMU, and finally
realize the two-way sandbox isolation. However, as Cortex-M
processors lack MMU and only support 2 privilege levels
(privileged and unprivileged mode), only one-way sandbox
isolation can be achieved. For example, by OS configuring
MPU, the whole RAM spaces are roughly set into two areas,
called the ” Accessible in Unprivileged Mode” RAM (which
we denote as AUM RAM) and the ”Only Accessible in Privi-
leged Mode” RAM (which we denote as OAPM RAM). And
the tasks data sandboxed in AUM RAM is exposed to the
task whose data are sandboxed in OAPM RAM, while the
exposure is shielded the other way around. Based on these
differences, the vunlerbility of task sandbox isolation mecha-
nism in Cortex-M processors is unique [13, 14], and cannot
be fixed by the similar security solutions available in x86
Processors.

In fact, the implementation and operation of IoT task sand-
boxing greatly rely on the OS design. One of the most popular
type of task sandboxing mechanisms is that implemented by
FreeRTOS (Free Real-Time Operating System/RTOS) [7]
and the variants of it. According to tasks’ pre-set memory
accessibility permissions, FreeRTOS uses MPU to divide all
tasks into unprivileged tasks and privileged tasks. Both priv-
ileged tasks and lib codes of FreeRTOS (RTOS_Lib) run in
privleged mode and their data are stored in OAPM RAM,
while unprivileged tasks run in unprivileged mode with their
data stored in AUM RAM. Depending on these permissions,
unprivileged tasks can not directly modify data stored in
OAPM RAM. However, an unprivileged task can exploit the
buffer overflow vulnerablity to compromise the privileged
codes (i.e., RTOS_Lib) and disable the MPU [8, 12, 56].

Another type of operating system is called Exokernel-based
RTOS by some researchers [4] and has been widely adopted
in more and more industry for its unique merits [54]. These
merits include: 1) the security enhancement by separating
memory management from RTOS_Lib and make RTOS_Lib
run in unprivileged mode, 2) the performance improvement
by tasks directly calling RTOS_Lib in unprivileged mode, and
3) the flexibility increase by tasks manipulating peripherals
efficiently [18]. Accordingly, Exokernel based RTOS, such
as Mbed [33], adopts the second type of rising-Exokernel-
design [17] based solution. Mbed creates uVisor [34] for mem-
ory management. uVisor always runs in privileged mode,
whose data are unmodifiable in any time, so attacks by mod-
ifying its data are invalid. The specialness of uVisor design is
that it make all tasks, both Secure Tasks (STs) and Regular
Tasks (RTs), which are classified by the closeness of Mbed



security, run in unprivileged mode. But, STs’ data are clas-
sified as sandboxed and stored in OAPM RAM, while RTS’
data are stored in AUM RAM. To solve the contradiction that
a ST running in unprivilged mode has to operate with its
data stored in OAPM RAM, uVisor make sure only when
a ST runs, ST’s data will be brought back to AUM RAM.
Due to this strong isolation, exokernel-based RTOSes prevent
any vulnerable codes in unprivileged mode to directly affect
privileged modules.

Besides, some researchers introduce a brand new task sand-
boxing mechanism, employing compiler-based instrumenta-
tion scheme to create the sandbox for particular compartment
in a program [11, 12, 22]. When a compartment is called by
others, its instrumentation code will execute particular Su-
pervisor Call (SVC) instructions to dynamically change the
memory accessibility by reconfiguration of MPU. While such
designs are not much seen in industry yet.

In this paper, we research the task sandboxing techniques
on Mbed as an example of Exokernel-based RTOS. During
the research, we craft two attacks to assess the vulnerability
of Mbed. To be specific, the first attack is named Context
Table Remapping (CTR) which dexterously utilizes address
pointers in the context table to perform a novel form of control
hijacking attack against Mbed task sandboxing. The vulner-
ability of the context talbe is known to some reseachers, but
CRT exploiting this vulnerability is not reported in the literi-
ture. The second attack is named Function Code Reuse (FCR).
FCR is proposed to counter a theoretical defense scheme for
CTR, which stores the context table into the OAPM RAM.
However, the context table initialization process depends on
RTOS_Lib codes running in unprivileged mode. FCR can
maliciously recall the newly created SVC functions, which
configure the context table to AUM RAM for initializing the
context table, and launch CTR again.

The further research discovers that effectiveness of two
attacks is the result of their exploiting the Mbed task manage-
ment process. Mbed task management contains two phases:
the first phase is locating the target task, and the second is
uVisor’s memory operation on the task data. In the second
phase Mbed must seek the context table for address pointers
of memory functions in uVisor. However, the context table
will be tampered by CTR anyway no matter it’s located in
OAPM RAM or not, and this is how attackers break Mbeds
sandbox isolation mechanism and attack IoT devices. Based
on this observation we introduce a new isolation mechanis-
m: build an extra protection domain to separate RTs from
the context table which can be exploited to invalidate the
Mbed sandboxing, making up for the insufficiency of privilege
isolation in Exokernel-based RTOS.

We present LIPS (Lightweight Intra-Mode Privilege Sepa-
ration), which uses MPU to divide “the memory (i.e., Flash
and RAM) accessible in unprivilege mode” into Inside and
Outside domains. Context table in Inside domain is well pro-
tected from CTR attack by forbidding its accessibility from
RTs in Outside domain. Necessary switching between the
two domains is ensured by Domain Notification Calls (DNCs)
that can be called by STs only. LIPS uses MPU to set the

“Nonexecutable (“execute never” in ARM’s terminology) in
Unprivileged Mode” Flash region (which is denoted as NUM
Flash), called Notification Guard area. This area stores the
only entries of each DNC. So that any tasks’ calling these
entries will cause a memory exception, and its runtime in-
formation is frozen and role-identified by Reference Monitor
which only allows the ST’s calling request and blocks that of
RT’s. What’s more, the codes and data of LIPS are embed-
ded in the uVisor, and can’t be modified by either STs or
RTs. Through these methods the security of Exokernel-based
RTOS task sandboxing is improved. Because our technology
doesn’t need instrumentation, this paper has nothing to do
with compiler-based sandbox creation scheme.
In summary, our contributions are as follows:

e By crafting two attacks (Context Table Remapping

(CTR) attack and Function Code Reuse (FCR) at-

tack) via uVisor on Mbed as an example, we uncover

the vulnerabilities of task sandboxing mechanism on

Exokernel-based RTOS. Exploiting the vulnerabilities

attackers can hijack the privileged control flow and

affect secure number protected in the sandbox.

The task sandboxing design under two-privilege-mode-

based memory isolation in Cortex-M processors, even

the advanced Exokernel-based RTOS task sandboxing
design, has the risk of being broken by CTR or potential

FCR attacks.

e We propose an original intra-mode privilege separation
mechanism named LIPS that uses MPU to create pro-
tection domains, and design Reference Monitor which
only permits STs’ domain switching.

e We perform a thorough evaluation and experimental
tests of LIPS. The experimental results prove that LIPS
not only can effectively defend the widely existing CTR
and FCR attacks, but also has small runtime overheads
and good portability.

2 BACKGROUND

2.1 Cortex-M Architecture

2.1.1 Memory Protection Unit. LIPS’s isolation employs ba-
sic Memory Protection Unit (MPU) operations in Cortex-M
processors. MPU can add an access control layer over the
physical memory, and defines different memory regions that
own diverse access permissions under both privileged and
unprivileged modes, but memory is still addressed by its phys-
ical addresses. Its actual design varies in different platforms.
For example, NXP FRDM-K64F?!, which is our prototyping
platform, observes the following MPU design rules: (1) it
supports 12 MPU regions, numbered from 0 to 11; (2) the
MPU must define the access permissions of every region un-
der both modes; (3) memory regions are allowed to overlap
each other and the overlapped area will be endowed with all
the assigned permissions [51].

For the remainder of this paper we will use the follow-
ing notations to describe permissions for a memory region.
(P-R/W, U-NX) means readable and writable permissions

'https://os.mbed.com /platforms/FRDM-K64F /
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Figure 1: When a ST runs, its data must be set to
be readable and wirtable in unprivileged mode

for privileged mode (P) and nonexecutable permission for
unprivileged mode (U).

2.1.2 Exception Handling Process. LIPS takes advantage of
the exception handling mechanism to store the register infor-
mation and triger the role-identification process in privileged
mode, so that it’s necessary to understand the mechanism
in Cortex-M processors. If a task forces the access to the
unauthorized memory, Cortex-M processors will raise a mem-
ory access fault. And all registers will be forzen at once and
automatically pushed to the stack (PSP) by the processor,
the frozen registers include: (1) r0-r3, storing function param-
eters. (2) r12 (sp), storing the stack address of the task. (3)
r13 (Ir), storing the return address. (4) r14 (pc), storing the
address of next instruction [30]. After stack pointer changes
from Process Stack Pointer (PSP) to Main Stack Pointer
(MSP), the system will go into privileged mode and cause
the fault handler to execute in privilged mode [39].

2.2 Exokernel based Mbed Design

To illustrate why a malicious RT has to compromise the
privileged control flow to get the sandboxed data of a ST,
it’s necessary to give the background on how Mbed achieves
task switching under its sandboxing design.

2.2.1 Mbed Task Sandboxing. ARM Mbed adopts an Exoker-
nel [21] based RTOS design, which makes tasks directely call
RTOS_Lib for flexible system behavior in unprivileged mode,
leaving uVisor to build task sandboxes in privileged mode. In
Mbed, all of the codes are stored in Flash and are unwritable.
The data are stored in RAM and their accessibility depends
on permissions. With higher privilege level than tasks, uVisor
can read and write unprivileged data and privileged data
with special access. And all tasks cannot directly access the
data of uVisor under any circumstance. uVisor rearranges
the RAM layout for the data of STs and RT's, and defines
separate MPU regions in RAM to store the data. The one
for RT's and RTOS_Lib is in “AUM RAM?”, it enables access
to these data in unprivileged mode. The other region for

STs is in “OAPM RAM?”, which stores the data of STs and
is only accessible in privileged mode. The number of ST's
is determined before Mbed starting up, so OAPM RAM is
fixedly located in low RAM address.

2.2.2 Mbed Task Switching. As Fig. 1 (left) shows, the data
of STs are originally stored in OAPM RAM. When ST1 is
running, uVisor assigns another two MPU regions (Regions
X and Y) to point to its stack and context (e.g. heap) section
separately, and make these two regions readable and wirtable
in unprivileged mode. So that ST1 can run in unprivileged
mode. Before ST2 (right) starts to run, uVsior reconfigures
MPU to make Regions X and Y point to the stack and
context section of ST2. So that the unpointed stack and
context section of ST1 will be located in OAPM RAM again.
After that process ST2 will take control, but it cannot access
the data of ST1. To sum up, the data of not running STs
are unwritable and stored in OAPM RAM, while the data of
running ST and RT are writable and in AUM RAM.

3 ATTACKS AGAINST MBED TASK
SANDBOXING

3.1 Context Table Remapping Attack

3.1.1 Role of Context Table . To locate particular mem-
ory operation in uVisor, Mbed needs to search context ta-
ble. Context table, which contains a set of address pointers
pointing to particular memory function codes in uVisor, is
instantiated as a structure (named OsEventObserver) and
pointed by a structure pointer (named osEventObs) in R-
TOS_Lib [36]. For example, one of the address pointers is
called void(*thread_destroy)(void), which links to a static
fuction called thread-destroy_transition in uVisor [35]. The
vulnerability of context table is known to some reseacher-
s [36], but specific attacks exploiting this vulnerability is not
reported in the literiture.

3.1.2 RT Terminating in Mbed . The task memory man-
agement is one of the most important mechanisms in RTOS
design. uVisor is responsible for creating (create_transition),
deleting (destroy_transition) and switching (switch_transition)
the task stacks. In this section we only talk about the
thread_destroy. To better understand CTR attack it is essen-
tial to understand the RT terminating first. Fig. 2(a) shows
steps of the system flow when Mbed deletes a RT. (1) RT2
makes a task terminating SVC request to delete RT'1, which
will cause a software interrupt. (2) SVC dispatcher identifies
the type of SVC instructions and (8) looks up the osEventO-
bs to call thread_destroy. (4) Thread-destroy_transition will
delete the data of RT1 in uVisor.

3.1.3 Attack Details. uVisor protects the data (including
stack and context) of STs in OAPM RAM, and forbids other
tasks to access them. Therefore a ST can store the secure
number like encryption key in its sandbox. But a malicious
RT can get and modify the secure number in following steps.

Step 1: Create a Malicious Task. We assume an attacker
can perform the reverse analysis of the program binary by
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IDA2, thus he knows the exact address of the secure number.
Then he creates a “Modify Function(MF)” in the RT2 to
modify the secure number, which resides in OAPM RAM
and beyond the access of MF at present.

Step 2: Copy the Context Table. Mbed uses the keyword
“const” to define the function pointers stored in OsEventOb-
server, making which unrewritable, so RT2’s direct modifica-
tion to the pointers will cause a bus fault exception. However,
RT2 has the permission to copy the contents (i.e., pointers) of
OsEventObserver and puts them in AUM RAM as a replica,
named “Shadow Backup(SB)”

Step 3: Replace the Pointer with MF. RT2 replaces the
pointer of void(*thread_destroy)(void) with MF in SB. To
guarantee the normal operation of uVisor after control flow hi-

Function Code Reuse Attack

3.2.1 Proposition of FCR. Besides the context table, oth-
er vital data in RTOS_Lib are vulnerable to RT’s malicious
modification, and can be used to compromise the control
flow. For example, changing the global variables (e.g. mbedtl-
s_mdb_context) in a cryptographic function (e.g. md5.h) may
influence the computation result[28]. To explore the imple-
mentation of all these attacks, a major prerequisite is that
these vital global variables (e.g., context table) are stored
in AUM RAM. So that a theoretical defense scheme is pro-
posed to solve this issue: to put these global variables into
OAPM RAM, and bring the variables back in AUM RAM
for their assignment and initialization procedure. However
this scheme needs to create another two SVC functions to

jacking, RT2 must also keep the pointer of void(*thread,destroy)(voif]r)aquenﬂy change the access permission of these variables.

and recall it at the end of MF.

Step 4: Hijack Control Flow and Modify Secure Number.
Finally RT2 makes OsEventObs point to the SB, which
is equivalent to replace the whole contents in OsEventObs
but not to directly modify the original pointers. With the
control flow of task terminating rewritten, every time the
SVC dispatcher wants to seach “void(*thread_destroy)(void)”
for task terminating, it will call MF first, and MF will gain
the access to the secure number in privileged mode.

After the CTR, the task terminating flow will be reconfig-
ured as Fig. 2(b): (1) and (2) are the same as usual. (8) The
SVC dispatcher looks up the OsEventObs, whose contents
have been replaced by that of SB. (4) The MF will be called
and run in privileged mode, which can cither read or write
the secure number willfully. (5) MF then gives control back
to uVisor to fininsh task terminating. In the end, if there is a
task waiting to read the secure number, it can get a modified
result. In fact, we can hijack not only the control flow in task
terminating, but also task creating and task switching, as
they are all implemented through context table.

Zhttps://www.hex-rays.com/

These functions can be used by FCR to counter this solution,
and we will take the context table as an example to illustrate
its vulnerability.

Vulnerability of the Solution. In Mbed, uVisor is dis-
tributed as a prelinked binary blob [32] and physically separat-
ed from RTOS_Libs. To use the memory functions provided
by uVisor, context table must be initialized to point to these
functions before using. As initializing this table depends on
particular codes (i.e. rt_OsEventObserver.c) in RTOS_Libs,
the table in OAPM RAM has to be put back to AUM RAM
during initialization. Therefore additional SVC functions
must be created to flexibly change the access permission of
context table, including (1) Deprivi, which defines the MPU
region to store the table in AUM RAM; (2) Upprivi, which
redefines the region to place the table back to OAPM RAM.

Though the newly created SVC functions can be used to
dynaically change the access permissions of context table,
they are at the risk of “Function Code Reuse (FCR)”. Next
we will introduce a simple and useful way to exploit the buffer
overflow vulnerablity to recall these functions.
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Figure 3: Steps of Function Code Reuse Attack

3.2.2 Attack Details. The goal of our attack is to re-
expose context table and continue CTR. In this section we
introduce FCR to make RT's reuse Deprivi. The details are
shown in Fig. 3:

Step 1: Determine the Address of Deprivi. The attacker
gets Entry Address of Deprivi first. We assume it can be easily
got through a static analysis in the program.

Step 2: Create a FCR Environment. The attacker creates
TaskA containing FuncB where its buffer overflow vulnerabil-
ity makes sure the achievement of FCR in RTs. After Deprivi
finishes, the original return address of FuncB is covered so
that it cannot return to TaskA. Then the attacker sets a
“Restore Point” for its return. Thus TaskA will be divided into
two parts: TaskA (a) is responsible for saving the execute
stack before FuncB executes and TaskA (b) is used to modify
secure number via CTR attack.

Step 3: Set up Appropriate Input Strings for FuncB. The
attacker makes a static analysis for the stack of FuncB and
structures strings to overlap the return address of FuncB.
Then he replaces the return address of FuncB with the Entry
Address of Deprivi. Therefore Deprivi will be called by loading
its Entry Address to pc register after FuncB returns. The
address loaded to pc register must be modified according to
instruction set modes.

Step 4: Return from Deprivi to TaskA. To avoid the pro-
gram out of control, the attacker needs to appoint a des-
ignated loaction for Deprivi returning, which includes (1)
Phase 1: returning to FuncB after Deprivi. Since the Ir of a
caller function will soon be saved by callee in its stack, the
attacker can use a judgment sentence (i.e. if...else) before
FuncB returns to Deprivi. So the Ir will be written with the
address of if in FuncB. (2) Phase 2: returning from FuncB to
TaskA. Normally FuncB cannot return to TaskA because its
original stack (i.e., return address) has been destroyed. To
solve this problem, the attacker adds a setjmp [49] to make
a Restore Point in TaskA(a), and a (longjmp) in FuncB to
return to the Restore Point.

Step 5: Continue the CTR. The context table is down-
graded to AUM RAM, TaskA (b) will repeat CTR attack to
modify the secure number.
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Figure 4: LIPS overview

4 LIPS DESIGN
4.1 Overview of LIPS

Fig. 4 describes our technique to implement the intra-mode
privilege isolation. The two domains are isolated with differ-
ent access permissions. The Outside domain obtains more
restricted access to the memory, especially to Inside domain.
Inside domain has less restricted access and can reach both
Outside and Inside memory. This domain design is closely
related to the Domain Notification Calls, which are designed
only for STs to dynamically alter the permission of Inside
domain. This notification mechanism is introduced to enable
the exposure or concealment of memory for different domains.
4.2 Domain Isolation

Fig. 5 illustrates how we segment “the memory accessible in
unprivileged mode” to achieve domain isolation, and this will
not affect “the memory only accessible in privileged mode”.
The middle part is the original Mbed memory layout and the
left and right parts show the memory perspective of the two
domains.

Context Relocation. To build Inside domain, LIPS fo-
cuses on two basic elements in RT'OS_Lib, which are the vital
global variables and function codes (which take the form of a
function). Crucial global variables are responsible for informa-
tion transmitting among different tasks and Libs, and context
table is a representative one which plays an important role in
Mbed. Exokernel ensures each RT to directly call Lib func-
tions in RTOS_Lib, however, crucial Libs (e.g. cryptographic
methods) also need to be protected. For the remainder of
this paper, the function codes and global variables placed
in Inside domain will be called the Inside Domain Code and
the Inside Domain Data separately. What’s more, to solve the
problem of MPU region limitation codes and global variables
should be placed in separate continuous physical addresses,
which can be easily achieved by the compiler [11]. Therefore
we create new memory sections by marking Inside Domain
Data and Inside Domain Code separately (see section 5.1 for
Inside Domain).

4.2.1 Inside Domain Memory . Fig. 5 (left) describes memory
layout of Inside domain. Inside Domain Code can call all
the unprivileged code and access both Inside Domain Data
and Outside Domain Data whose permissions are set to (U-
R/W). LIPS also designs a flash region called the Notification
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Guard area (dark grey) set to (P-R/X,U-NX), where codes
are nonexecutable in unprivileged mode. This area is used
for the redirection to Reference Monitor, therefore codes in
either Inside or Outside domains cannot modify it.

4.2.2 Outside Domain Memory . Fig. 5 (right) describes mem-
ory layout of Outside domain. Similar to Inside Domain Data
and Inside Domain Code, the data and code in Outside
domain are called Outside Domain Data and Outside Do-
main Code. Outside Domain Code, including RTOS_Lib, RTs
and STs, can only modify Outside Domain Data in unprivi-
leged mode. Outside Domain Data, which contain all data
of RTs and RTOS_Lib, are set to (U-R/W) and range from
0x20004000-0x2002{F20. Inside domain is inaccessible (codes
are nonexecutable and data are unreadable and unwritable)
by Outside domain.

4.3 Domain Notification Calls (DNCs)

Despite that DNCs are designed only for STs to perform
domain switching for safety reason, with RTs and STs all
running in unprivileged mode, DNCs can also be used by RT's
(which is potentially untrusted). For this problem, in DNCs
we design two safety components to fix it, as showed in Fig. 6.
One is DNC Entries, which are stored in Notification Guard
area. Their functions includes guaranteeing themselves as the
entrance of Domain Notification Calls, and causing Cortex-M
processors to froze registers when a task calls them. The
other one is Reference Monitor, which runs in privileged mode
and performs “Frozen-register-based” task role identification-
either RT or ST. It also keeps the access control rule that
only STs can perform domain switching.

Inside Domain
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Figure 6: Domain Notification Call Architecture
4.3.1 Notification Guard Area and DNC Entries. DNCs take

full advantage of the memory fault exception handling mech-
anism in Cortex-M processors (see section 2.1.2 for Exception
Handling Process), and use MPU to set a NUM Flash arca
(which is nonexecutable in unprivileged mode) named Noti-
fication Guard area. And then, in Notifcation Guard area,
DNCs create several void functions named DNC Entries,
which correspond with different DNCs (to gain the permis-
sion to lock/unlock the Inside domain). Now, if cither a RT or
a ST want to call DNCs by accessing these entries, a memory
access fault will arise. The registers of this task will soon
be frozen, including the pc register which stores the value
of DNC entry and sp register which stores the task’s stack
address. Then the control flow will be redirected to privileged
Request Handler. In Cortex-M processors, the value of run-
time pc register can not be forged, so that Request Handler
can check the frozen pc register to make sure the entries are
not bypassed. To be specific, Request Handler will not pass
control to Reference Monitor until pc register points to one
of the DNC Entries.

4.3.2 Frozen-register-based Access Control in Reference Moni-
tor. LIPS further makes use of frozen sp register to realize
task role identification. Before the system starts, uVisor pro-
vides two appointed RAM areas for STs and RT's respectively,
which are fixed and separate from each other(see section 2.2
for AUM RAM and OAPM RAM). Based on this fact, Ref-
erence Monitor in Request Handler can identify the role of
a task by the following rule: when a task accesses the DNC
entries in notification guard area, the task’s sp will be in-
stantly saved (frozen). As the tasks sp must point to either
of the two designated RAM areas, if the value of tasks sp
register points to the RAM area which belongs to STs, it
must be a ST, otherwise a RT. As Fig. 7 shows, with the help
of the Notification Guard area, Reference Monitor can load
the task registers and check the value of frozen sp. According
to the result, the Monitor can identify the role of the task
and determine to call sys halt or domain switching function.

This frozen-register based task-role access control method
suits both of the situation when the task directly and in-
directly (through FCR) calls DNC entries, as the task’s sp
register always points among RAM areas of tasks.

4.3.3 Domain Switching. When a ST calls the DNC, its input
parameters will be stored in frozen registers (i.e., 10-r3) by
Cortex-M processors, and obtained by the Reference Monitor
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to control the switching bewteen Inside and Outside domains.
According to the varies input parameters, the access permis-
sion of Inside domain can be dynamically changed. Table 1
illustrates the input opcode for each DNC entry. Currently
we provide region_lock and region_unlock to change the per-
mission of Inside Domain Code and data respectively. DNC
Entries support 3 types of Region Code: 0x1 (for Inside Do-
main Code), 0x2 (for Inside Domain Data) and 0x3 (for Inside
Domain Code and Data simultaneously). When a ST wants
to access Inside Domain Data, it must call region_unlock to
unlock domain protection. After that it can call region_lock
to lock the domian.

Another way to lock/unlock the Inside domain is to create
new lib functions which use SVC instructions to enter privi-
leged mode, further to control MPU and finally to operate
the Inside domain. However, this newly created lib functions
are stored in RTOS_Lib so they can be executed by both
RTs and STs, which means that the malicious RT can also
use these functions to break down the domain protection
through FCR attack or directly call them. (see section 3.2
for Function Code Reuse Attack).

5 LIPS IMPLEMENTATION

LIPS is incorporated into ARM Mbed uVisor, with Mbed5.4
and uVisorl.0. Most of our code is written in C. We also
make some modifications to the compiler link script. The
prototype is implemented on FRDM-K64F evaluation board,
which is based on a Cortex-M4 core with 1024KB Flash,
256KB SRAM and a 120Mhz clock.

5.1 Inside and Outside Domains

Due of the MPU region limitation, either Inside Domain Code
or Data need be recompiled in a contiguous range of address.
We adopt the original uVisor memory design as a template.
As Table 2 shows, regions from 0 to 4 are used as the uVisor
defined protection regions, following the uVisor pre-defined
memory permissions [38]. LIPS uses 3 additional regions
for Inside domain. Region 9 is used as Notification Guard
area, whose permission is set to (P-R/X, U-NX) and Regions
10 and 11 are used to store Inside Domain Code and data.
Despite the settings of these regions (9 to 11), the template
can still be changed to meet the system requirements. For
example, if we want to arrange more Vital data and Vital
code to Inside domain, we can enlarge regions 11 and 10.

Table 1: DNC Entries and the input parameters

Region Code | Opcode Meaning Entry Name
Ox1 0x2 Data/User: R region_lock
0x1 0x3 Data/User: R/W region_unlock
Ox1 Ox4 Data/User: Not accessible region_lock
0x2 Ox11 Code/User: Not accessible region_lock
0x2 0x12 Code/User: R region_lock
0x2 0x13 Code/User: R/X region_unlock
0x3 0x21 Code/User: R/X; Data/User: R/W | region_unlock
0x3 0x22 Code/User: R; Data/User: R region_lock
0x3 0x23 Code,Data/User: Not accessible region_lock

Meanwhile, the size of the compiled binary is highly related
to the size of Inside Domain Code, because Inside Domain
Code will occupy additional Flash area, whose unused part
will be filled with Oxff and cannot be omitted. So region 10
must not contain too much unused area for the reduction of
binary size. Regions 5 to 8 are left for later use of the system.

To build up regions 9 to 11, we modify the linking script to
add three new sections: 1) “protected_code” section, to mark
Inside Domain Code; 2) “protected_data” section, marking
Inside Domain Data and 3) “Notification_guard” section, to
mark Notification Guard area. Some init codes are added
to uVisor initialization process to use the new sections for
template regions establishment [38].

5.2 Domain Notification Calls

To accomplish the Domain Notification Calls, we implemen-
t DNC Entries and Request Handler. DNC Entries (i.e.,
region_lock and region_unlock), the entrance to DCN and
initialized as void functions, are gathered through the link
script and stored in the Notification Guard area, and all the
access of tasks to these entries will cause a memory access
fault. The registers running in unprivileged mode, including
p¢, Ir, sp and r0-r3, will be saved. Then the Request Handler
will check these registers in privileged mode to identify the
role of the calling task.

If the task passes the role identification, it is thought
to be a ST and Domain Switching will happen. The input
parameters of DNC will be restored from frozen r0 and r1.
When the Request Handler finishies its work, it will return
to DNC Entries which are pointed by the pc register of the
calling task. Since the entries are in Notification Guard area,
the access will raise a memory access fault again and lead
the system to infinite calling loops. To handle this problem,
Request Handler replaces the value of frozen pc with frozen
Ir to skip repeatedly calling DNC Entries. The details of
Request Handler are shown in appendix C.

6 EVALUATION

In this section, we evaluate LIPS in five perspectives, the
effectiveness of LIPS, the impact on task scheduling, perfor-
mance overhead, the portability across different platforms
and the security analysis. We first implement the proof-of-
concept of both CRT and FCR, and then LIPS, to prove
that LIPS can defend both CRT and FCR in real-world IoT
applications. Next we set up the experiment to verify original
task scheduling is rarely affected by LIPS. Then we measure



Table 2: LIPS region template.

Region Num Permissions Stat Addr Size Protects
0 P-R/W 0x0000-0000 4GB Background Region
1 P-R/X, U-R/X 0x0000-0000 Code size Code Section
2 P-R/W, U-R/W 0x2000-0400 Outside RAM size Outside RAM
3 P-R/W, U-R/W 0x1FFF_0000+(Box N Start offset) Box N Data Size Box N Stack
4 P-R/W, U-R/W | 0x1FFF_0000+(Box N Start offset)+(Box N Stack Size) | Box N Context Size Box N Context
9 P-R/X, U-NX 0x0002_-7000 1KB Notification Guard
10 P-R/X, U-Varies 0x0002_7420 4KB Inside Domain Code
11 P-R/W, U-Varies 0x2002_F020 4KB Inside Domain Data
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Figure 8: Effectiveness against CTR and FCR
the performance overhead on a real IoT device. Then the

compatibility of LIPS is tested in different platforms of var-
ious versions of Mbed. At last we summarize the security
guarantees provided by LIPS.

Several different kinds of binaries are evaluated in our test,
including (1) unmodified baseline, (2) setting Inside/Outside
domain, Domain Switching through SVC (theoretical design)
and (3) setting Inside/Outside domain, with Domain Notifica-
tion Calls (LIPS design). All binaries are obtained by default
configuration of Mbed compiling command. Mbed system
in our evaluation ranges from versions 5.4 to 5.9, which are
fully supported by uVisor version stable (1.0). The main
system clock in our test platform (i.e., NXP FRDM-K64F)
is statically set to 120MHz.

6.1 Effectiveness Evaluation

The official example “secure number store”® is adopted to
evaluate the effectiveness of LIPS, which is quite suitable
for our test with the purpose to store sensitive data in a
ST (called secure number) and prevent it from unauthorized
modification of other tasks (incluing other STs and RTs).
Based on the example, we slightly change the program that
“secure_number” blocks all the modification request from oth-
er STs (client_a and client_b) and RTs, only with reading
permissions left. Next we will show how to use a untrusted
RT to change the sensitive data in secure_number.

Fig. 8 illustrates our effectiveness experiment. The sensitive
data is set 0x00000001 in “secure_number”, and all RTs can’t

3https://github.com/ARMmbed/mbed-os-example-uvisor-number-
store/

tents of OsEventObserver to build the “DNC Backup (SB)”.
Then he replaces the pointer “void (*thread_destroy)(void
with a malicious function in SB and makes Os-
EventObs point to the SB(see section 3.1 for Context Table
Remapping Attack). Phase 2: a button interrupt is registered
to trigger a task terminating request. After receiving the
request, the SVC dispatcher actually calls the malicious func-
tion in SB. This function owns the privileged permission to
modify the sensitive data. Phase 3: the target data has been
successfully changed to 0x00003355. Phase 4 and 5: with the
introduction of LIPS, performing CTR attack will raise a
system hard fault. This is because RT's have no permission
to copy OsEventObserver, which is already in Inside domain
(0x2002FF20, inaccessible from Outside domain).

Fig. 8 Attack Case (right) describes how FCR attack can be
used to call “Deprivi” for downgrading context table to “the
RAM which is accessible in unprivileged mode”. The details
will show as the following phases: Phase 1: By carefully
filling up the stack, the attacker can reuse Deprivi and Uprivi
through a buffer overflow vulnerability in a bug RT (see
section 3 for Function Code Reuse Attack). Phase 2 and 3:
the table downgraded, the attacker can continue with CTR,
attack and maliciously modify sensitive data. Phase 4 and
5: The entries of Deprivi and Uprivi will be marked and
recompiled into Notification Guard area. The access to the
entries will be redireted to the Reference Monitor to make
sure RTs can’t perform domain switching.

In fact, the context table vulnerability is a system flaw in
Mbed’s Exokernel design and these applications won’t affect
any internal design in uVisor. Therefore all the features
provided by LIPS will work well. This makes us believe that
LIPS can serve most of the Mbed daily application scenarios.

6.2 Impact on Task Scheduling

Mbed adopts a Round-Robin scheduler, which employs time-
sharing, giving each task a time slot. Once the time slot
expires, the scheduler will force tasks out of the processor by
storing the stack. To best test the impact of our technology
on task scheduling, we will focus on the worst case.
Supposing the following situation: there are two tasks
scheduled by the kernel, TaskA (ST) and TaskB (RT). How-
ever task scheduling happens before TaskA finishes accessing
the resources in Inside domain, TaskA has no time to lock
the Inside domain. When TaskB takes control, it can directly



Table 3: Impact on task scheduling.

Ttem Task scheduling between Tasks (1ms)
RT - RT ST - RT
Without LIPS 1.495 4.44
With LIPS 1.514 4.46
Overhead 1.3% up 0.4% up

Table 4: Performance overhead on a sweeping robot.

Robot Stage | Normal (s) Number of Access Inside domain (s)
0 1 2 3
wWC 0.44 0.44 0.444 0.448 0.452
DC 10 10 10.004 | 10.008 10.012

access Inside domain. To handle this situation, we patch the
scheduler so that it can help recognize TaskA and lock the
Inside domain. However the locking process will cause some
overhead and we will check if this overhead can be ignored.

Table 3 illustrates our experiments to measure the overhead
on task scheduling. In Mbed two types of task scheduling
exist, RT-RT and ST-RT. The locking process only happens in
ST-RT, during which the permission of the sandbox memory
needs to be reconfigured so that the Inside domain can be
locked at the same time. Therefore the average extra latency
is only 0.4%, which is within the time window of the deadline.
Other than task scheduling in ST-RT, task scheduling in
RT-RT does not need locking process so its overhead is only
cost by extra task identification code in the scheduler, which
is also tolerable.

6.3 Performance Evaluation

To evaluate the performance on overall system, we deploy
LIPS on a carefully simulated sweeping robot. The typical
working flow of the robot can be divided into two stages. In
first stage the robot analyse the control command from the
remote host, called Waiting for Command (WC). In the second
stage the robot will work until it finishes cleaning, called
Doing the Cleaning (DC). The total time of DC depends on
the size of cleaning area, so we make the robot clean 0.5 square
meters. To measure the overhead in both stages, we manually
set the numbers of their access to Inside domain. The results
are shown in Table 4, although the access number is set to 3,
the final benchmark scores reach 0.91 % (during WC) and 0.4
% (during DC) performance overhead on average, shwoing
the feasibility of the prototype. Due to the linear growth of
the score, we can conclude that the time of the WC will be
expressed in this form: Time (WC)= 0.4440.004n (s), where
n represents the number of requests for Inside domain during
the execution of WC. Simultaneously DC can be expressed
as Time (DC)= 1040.004n (s).

We select 10 of BEEBs benchmarks [48] at random to
measure the average execution time of Donmain Notifica-
tion through Reference Monitor and SVC. Each benchmark
performs a full domain access operations, including unlock-
ing, accessing and locking the Inside domain. As Table 5
shows, columns are the time consumption of (1) original
benchmarking (BA), (2) accessing Inside Domain Code (SC),

Table 5: Time consumption to perform Domain No-

tification through eihter Reference Monitor or SVC.
Benchmark BA (ms) Direct SVC (ms) DNC (ms)
sSC SD CD SC SD CD
ah..press 78.96 81.42 81.44 81.45 83.17 83.18 83.2
ah..ont64 93.71 95.17 96.19 96.2 97.93 97.93 97.95
Bu..sort 85.89 88.38 88.37 88.39 90.1 90.11 90.14
cnt 101.6 104.07 104.07 104.1 105.81 105.82 105.84
Compress 81.6 84.07 84.07 84.1 85.81 85.82 85.84
Cover 118.48 120.95 120.95 120.98 122.69 122.7 122.72
Ud 93.84 96.32 96.314 96.34 98.05 98.06 98.08
Tarai 81.44 83.91 83.91 83.94 85.65 85.66 85.68
Qsort 84.24 86.71 86.72 86.74 88.45 88.46 88.48
Lednum 84.4 86.87 86.88 86.9 88.62 88.62 88.64
DNC-Cost 2.38 2.48 2.49 4.21 4.22 4.24

(3) accessing Inside data (SD) and (4) accessing both Inside
Domain Code and data (CD). We can draw conclusions that:
(1) The time of domain switching to access Inside Domain
and Code are basically the same. (2) The average overhead
of domain switching will be 2470us by SVC, and 4210us
by DNC. (3) Though taking shorter time, the SVC-based
domain switching lacks the task role identification.

6.4 Portability Evaluation

Table 6 gives the compatibility evaluation on various plat-
forms. STM32F429Discovery[16] and Giant Gecko[19] both
support Mbed and uVisor. Despite only 8 MPU regions in
these two boards, their design rules of MPUs endow the over-
lapped MPU regions with the permission of higher numbered
one, different from those applied in our prototype which al-
low overlapping permissions. So we reuse some regions to
realize the core techniques in LIPS to finish transplantation.
Though LPC 1768[41], Nucleo-32[46] and Nucleo-64[37] are
available for Mbed, our technique cannot run on these devices
for their lack of MPU. The FreeRTOS-based Mico Evalution
board[43], which does not support uVisor, is also not feasi-
ble. In fact, uVisor Guides [37] claims it can be ported to
not only Mbed-enabled platforms but also CMSIS RTOSes
by simply adding some platform specific codes. Since LIPS
exerts the maximum effect in uVisor, the good portability of
our technique is ensured.

6.5 Security Analysis

Throughout section 4, we discussed in detail how LIPS
achieves domain isolation, Frozen-register-based access con-
trol and domain switching. In this section, we first summarize
how these features fulfill the required security guarantees.
Afterwards, we discuss how LIPS prevents other possible
attack scenarios.

Security Guarantees: According Section 4, LIPS pro-
vides two principal security guarantees. First, it guarantees
that malicious RT's cannot break the domain isolation. CTR,
attack is well protected by this property. Second, it guaran-
tees the access control that only STs can execute Domain
Notification Calls to access Inside Domain, and block the
request from RTs. This property can defend the FCR attack.

Section 4.2 shows how LIPS uses the MPU to provide the
domain isolation. The Inside Domain design can protect not
only the context table, but also other vital global variables



Table 6: The portability of LIPS crossing different platforms.

NO. Platform Architecture Mbed(ver 5.4-5.9) | uVisor(ver 1.0) LIPS remark

1 FRDM-K64F Cortex-M4, 12 MPU regions fit fit fit soft/hardware support
2 STM32F429Discovery Cortex-M4, 8 MPU regions fit fit fit soft/hardware support
3 Giant Gecko Cortex-M3, 8 MPU regions fit fit fit soft/hardware support
4 LPC 1768 Cortex-M3, No MPU fit not fit not fit lack uVisor support
5 STM32L031 Nucleo-32 Cortex-M0, No MPU fit not fit not fit lack uVisor support
6 STM32L053 Nucleo-64 Cortex-M0, No MPU fit not fit not fit lack uVisor support
7 Mico Evalution board Cortex-M3, 8 MPU regions not fit not fit not fit FreeRTOS

and function codes (e.g. decryption functions) in RTOS_Lib.
The memory latout defined by LIPS prevents the Outside Do-
main from accessing the isolated Inside Domain. Moreover, as
LIPS is embedded in uVisor and their data are unmodifiable,
RTs cannot compromise uVisor to use privileged instructions
to control the MPU to revoke this protection.

Section 4.3 shows how Domain Notification Calls take
advantage of DNC entries, Notification Guard area and froze-
task-register based access control. These mechanisms com-
bined guarantee that the Inside Domain is accessible only
when the ST takes control. They also guarantees that this
only happens at a specific entry point (i.e., DNC entries).
Hence, RTs cannot tamper with domain notification process
to break the isolation.

Stack safety of Inside Domain Code: There is a se-
curity issue that if the run-time scheduler performs task
switching when a task calls Inside Domain Code, its local
stack will be left in Outside domain and face the danger of
being compromised by other RT's. But this will not affect our
Inside domain design as Inside domain is only for STs, and
RT's can not access the Inside domain. If above issue happens
to a ST, its stack will be sandboxed in OAPM RAM. So the
stack security of ST's is ensured.

Code Snippet Reuse: To reuse DNC, in addition to
FCR, a possible way of attacks can be done by reusing
some code snippet in a ST. As DNC is designed for ST, it
will be in some ST’s function code, the reusing of which
can indirectly call DNC entries. Even so, RT’s sp pointer
is still in AUM RAM so that the judgement of Reference
Monitor won’t be changed. In fact, due to software and
hardware restraints, in RTOS all the attacks repeatedly and
sophisticatedly modify the stack and registers but soon will
lose control that programs would go out and RTOS would
crash. We will take the attack of “reusing some code snippet
in a ST” as an example, to illustrate the unpredictable system
influence on RTOS. The details are showed in Appendix A.

7 RELATED WORK

There have been lots of defending technique in desktop sys-
tems, such as Control-Flow Integrity (CFI)[1, 26, 44, 47,
55, 57] and protections of code pointers (CCFI,CPI)[24, 40].
Performance and precision are two key factors affecting the
implementation of CFI in real system. Since all instructions
need to be tracked, the overhead of the CFI will be pretty
high. However a fine-grained CFI research illustrates that it
can reduce the overhead[55]. But the security of the most
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precise CF1I still remains contingent. ECFI[2] designs a novel
and PLC-compatible CFI mechanism for real-time PLCs and
considers the runtime operation of the PLC as the highest
priority. LMP[20] leverages Intels Memory Protection Exten-
sions (MPX) to make backwards-edge CFI both secure and
efficient. Our techniques build protection domain for context
table. Therefore the control flow in Exokernel cannot be hi-
jacked by CTR. CPI[24] depends on the virtual memory in
MMU, whose feature is not available on Cortex-M processors.
We provide the Reference Monitor, checking the sp of tasks
whose legal access to DNC will be assured.

Building protection domains in Cortex-M processors is a
relatively new problem, as most of the current researches are
focusing on the Cortex-A processors. To the best of our knowl-
edge, the most notable work recently to realize this technique
is Hilps[10], which utilizes TxSZ hardware field on AArch64
to achieve an intra-mode privilege isolation mechanism that
memory in the same privilege will be divided into two sepa-
rate domains. Microstache[42] achieves efficient intra-process
isolation through a specialized hardware mechanism and new
process abstraction on x86-64 platform. However these so-
lutions require either special registers (TxSZ) or powerful
peripherals (MMU), which are beyond Cortex-M processors
for constrained resources. LIPS uses MPU to divide “the
memory accessible in unprivileged mode” into separate do-
mains, which only causes a small amount of overheads.

Focusing on embedded systems, some frameworks[7, 9, 11,
22, 23, 45] are proposed to build memory isolation. FreeRTOS|[7]
achieves coarse-graid isolation by separating tasks in differ-
ent privileges. EPOXY [12] introduces the “privilege overlay”
mechanism in which all the marked instructions are redi-
rected to run in privileged mode. Therefore the unprivileged
bare program cannot directly access the critical hardware
resources. But the high frequency for instruction overlay
will cause a huge slowdown. ACES [11] uses a LLVM-based
compiler to automatically infer and enforce inter-component
isolation on bare-metal systems. A thread will be cut into
many small components so that it may affect the effectiveness
of task scheduling. MINION [22] uses LLVM and dynamic
analysis to infer thread-level compartments and uses the
OS context switch to change compartments. However this
technology puts all the RTOS in “the memory accessible in
unprivileged mode”, which is not fit for the Exokernel design.
TrustLite[23], TyTan[9] and Sancus[45] provide effective iso-
lation solution, but they all require specific modifications to
the circuit of processors, which show poor portability. ARM



TrustZone[27] is available in all spectrums of Cortex-A and
the coming Cortex-M processors which are based on ARMvS-
M][31]. ARMv7-M based IoT devices are still widely adopted
in industry while they do not contain this feature.

8 DISCUSSION

Vulnerability harmfulness. In the previous chapters we
firstly exploit the vulnerability of context table to uncovered
the vulnerabilities of ARM Mbed task sandboxing via uVisor
by crafting two attacks-Context Table Remapping (CTR)
attack and Function Code Reuse (FCR) attack. The devel-
opers or system maintainers may utilize these vulnerabilities
to reserve some spy interfaces in RTs, through calling the
interfaces they can break the sandbox when necessarily and
store ST’s data or change IoT devices’ operating mode.

Compiler-based Domain Solutions. In some studies,
domain establishment can be achieved by modifying the
compiler. The llvm seems to be a good solution because it’s
convenient to develop new technique by adding additional
compiling passes[11, 12, 22], which is not supported by uVisor
for now. To use it one must rewrite all the core code including
uVisor, Exokernel and RTOS_Libs so that the posibility of
making error will be much higher. While our technique only
requires slight modifications to Mbed and uVisor, which
presents both practicality and flexibility.

9 CONCLUSION

After all these years, both the attack and defense mechanism
targeting x86 systems have developed to be accomplished
with more and more complicate and cumbersome steps, ac-
companied with the evolvements of OS and hardware[25][53].
In comparison, Cortex-M based RT'OSes are not only light-
weight but also low-level in hardware, which make it much
more direct and easier for RTOSes to be attacked and also
to defend.

In this paper, we takes ARM Mbed as an example to
research the task sandboxing techniques in Exokernel-based
RTOS, and specifically craft the new attack to illustrate
the severity of the vulnerability in task management. The
experimental results show that exploiting the vulnerabilities
attackers can hijack the privileged control flow and break the
sandbox protection.

To make up for the new vulnerabilities, we propose LIPS,
which uses Inside/Outside domains and Domain Notificaion
Calls to enfore the task sandboxing technique in Mbed uVisor.
A new round of experimental results prove that LIPS not
only can effectively defend the widely existing CTR and FCR,
but also has small runtime overheads and good portability.
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