
Under review as a conference paper at ICLR 2020

ONE-SHOT NEURAL ARCHITECTURE SEARCH
VIA COMPRESSIVE SENSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS), or automated design of neural network models,
remains a very challenging meta-learning problem. Several recent works (called
“one-shot” approaches) have focused on dramatically reducing NAS running time
by leveraging proxy models that still provide architectures with competitive per-
formance. In our work, we propose a new meta-learning algorithm that we call
CoNAS, or Compressive sensing-based Neural Architecture Search. Our approach
merges ideas from one-shot NAS approaches with iterative techniques for learning
low-degree sparse Boolean polynomial functions. We validate our approach on
several standard test datasets, discover novel architectures hitherto unreported,
and achieve competitive (or better) results in both performance and search time
compared to existing NAS approaches. Further, we provide theoretical analysis via
upper bounds on the number of validation error measurements needed to perform
reliable meta-learning; to our knowledge, these analysis tools are novel to the NAS
literature and may be of independent interest.

1 INTRODUCTION

Motivation. Choosing a suitable neural network architecture for complex prediction tasks such
as image classification and language modeling often requires a substantial effort of trial-and-error.
Therefore, there has been a growing interest to automatically learn (or meta-learn) the architecture
of neural networks that can achieve competitive (or better) results over hand-designed architectures.
The sub-field of neural architecture search (NAS) addresses the problem of designing competitive
architectures with as small computational budget as possible.

Numerous approaches for neural architecture search already exist in the literature, each with their own
pros and cons: these include black-box optimization based on reinforcement learning (RL) (Zoph
& Le, 2017), evolutionary search (Real et al., 2019), and Bayesian optimization (Cao et al., 2019;
Kandasamy et al., 2018). Though the algorithmic details vary, most of these NAS methods face the
common challenge of evaluating the test/validation performance of a (combinatorially) large number
of candidate architecture evaluations.

Our Contributions. In a departure from traditional methods, we approach the NAS problem via the
lens of compressive sensing. The field of compressive sensing (or sparse recovery), introduced by the
seminal works of (Candes et al., 2006; Donoho et al., 2006), has received significant attention in both
ML theory and applications over the last decade, and has influenced the development of numerous
advances in nonlinear and combinatorial optimization.

We leverage these advances for the NAS problem. In particular, we develop a new NAS method called
CoNAS (Compressive sensing-based Neural Architecture Search), which merges ideas from sparse
recovery with so-called “one-shot” architecture search methods (Bender et al., 2018), described in
greater detail below. CoNAS consists of two new innovations: (i) a new search space that permits
exploration of a large(r) number of diverse candidate architectures, and (ii) a new search strategy that
borrows ideas from recovery of Boolean functions from their (sparse) Fourier expansions.

Our experiments show that CoNAS is able to discover a deep convolutional neural network with
test error 2.74± 0.12% on CIFAR-10 classification, outperforming existing state-of-the-art methods,
including DARTs (Liu et al., 2018b), ENAS (Pham et al., 2018), random search with weight-sharing
(RSWS) (Li & Talwalkar, 2019), and the baseline vanilla random search method (Liu et al., 2018b) in

1

Under review as a conference paper at ICLR 2020

terms of test error, search time, model size, and number of multiply-add operations. Moreover, CoNAS
can achieve the comparable performance as NASNet (Zoph et al., 2018) and AmoebaNet (Real et al.,
2019) with less than one GPU-day of computation. Our experiments on designing recurrent neural
networks for language modeling are somewhat short of the state-of-the-art (Zilly et al., 2017), but we
find that CoNAS still finds competitive results with less search time than previous NAS approaches.
Our results are exactly reproducible (having been trained with fixed pseudorandom seeds), and an
implementation of CoNAS will be made publicly available post-peer review.

Stage 1 Stage 2

Train
one-shot
model
(f)

Sample

measurements

Approximate
one-shot
model

(g ≈ f)
with

compressive
sensing

Restrict f with

minimizer of g

(a)

Figure 1: Overview of CoNAS. A one-shot neural network
model f is pre-trained, and an appropriate sub-graph of f
is chosen by applying a sparse recovery technique. Iterative
sparse recoveries allow to find the larger sub-graph from f .

Finally, while our original motivation
was to devise an empirically useful
NAS method, a nice benefit is that
CoNAS can also be theoretically ana-
lyzed, since existing theoretical results
for Fourier-sparse Boolean functions
can be ported over in order to provide
upper bounds for the required num-
ber of performance evaluations of sub-
architectures of the one-shot model.
This, to our knowledge, is one of the
first results of their kind in the NAS
literature and may be of independent
interest. We defer discussion of our
approach to Section 3.

Our Techniques. The intuition be-
hind compressive sensing is that if a
signal (or function) can be represented
via a sparse basis expansion, then it
can be recovered (either exactly or ap-
proximately) from a small number of
randomized measurements. CoNAS leverages this intuition in the context of one-shot architecture
search (Bender et al., 2018). In one-shot NAS, instead of evaluating several candidate architectures,
a single “base” neural network model is pre-trained; a class of sub-networks is identified (called
the search space) and the performance of each sub-network is evaluated on a validation set; and the
best-performing sub-network is finally selected and fine-tuned.

Following Hazan et al. (2017); Stobbe & Krause (2012), we model the sub-network selection as a
sparse recovery problem. Concretely, consider a function f that maps sub-architectures to a measure
of performance (validation loss). We assume that f can be written as a sparse, low-degree polynomial
in the (discrete) Fourier basis . If the sparsity assumption is satisfied, then we claim the function f
can be reconstructed using a very small number of sub-network evaluations, thus reducing overall
compute time. A key challenge lies in defining a suitable search space; we propose one that is
considerably larger than the one used in DARTS or ENAS, allowing us to (putatively) search over a
more diverse set of candidate architectures.

2 BACKGROUND

We briefly describe one-shot neural architecture search techniques (Bender et al., 2018; Li & Tal-
walkar, 2019); a supplementary description is available in Appendix A.1. Following the treatment
given in the recent survey paper (Elsken et al., 2018), one-shot NAS approaches have three main
components: a search space, a search strategy, and a performance estimation strategy.

Search Space. The goal of one-shot NAS is to find the best performing cell, a fundamental
component from which more complex architectures are constructed via stacking. Following Liu
et al. (2018b), a cell is a directed acyclic graph (DAG) where a node corresponds to the latent
representation, and a directed edge transforms predecessor nodes using a given operation; common
operations used in CNNs include 3× 3 and 5× 5 separable convolutions, 3× 3 max pooling, and
3× 3 average pooling. Each cell has two input nodes and one output node, and intermediate nodes

2

Under review as a conference paper at ICLR 2020

can only be connected by predecessor nodes including input nodes. Intermediate nodes are wired to
two predecessor nodes in CNNs and one predecessor node in RNNs.

Search Strategy and Performance Estimation Strategy. Having defined a search space, one-
shot NAS approaches employ four steps: (i) train a single “one-shot” base model that is capable of
predicting the performance of sub-architectures1; (ii) randomly sample sub-architectures of a trained
one-shot model and measure performance over a hold-out validation set of samples; (iii) select the
candidate (cell) with best validation performance; (iv) retrain a deeper final architecture using the best
cell. Using the one-shot model as the proxy measurements of the candidate architecture corresponds
to the performance estimation strategy (first and second step).

Fourier analysis of Boolean functions. We follow the treatment given in O’Donnell (2014). A
real-valued Boolean function is one that maps n-bit binary vectors (i.e., nodes of the hypercube)
to real values: f : {−1, 1}n → R. Such functions can be represented in a basis comprising real
multilinear polynomials called the Fourier basis, defined as follows. (We denote the vectors with
bold letters. Also, [n] denotes the set {1, 2 . . . , n}.)
Definition 2.1. For S ⊆ [n], define the parity function χS : {−1, 1}n → {−1, 1} such that
χS(α) =

∏
i∈S αi. Then, the Fourier basis is the set of all 2n parity functions {χS}.

The key fact is that the basis of parity functions forms an K-bounded orthonormal system (BOS)
with K = 1, therefore satisfying two properties:

〈χS , χT 〉 =
{
1, if S = T

0, if S 6= T
and sup

α∈{−1,1}n
|χS(α)| ≤ 1 for all S ⊆ [n], (2.1)

Due to orthonormality, any Boolean function f has a unique Fourier representation, given by
f(α) =

∑
S⊆[n] f̂(S)χS(α), with Fourier coefficients f̂(S) = Eα∈{−1,1}n [f(α)χS(α)] where

expectation is taken with respect to the uniform distribution over the nodes of the hypercube.

A modeling assumption is that the Fourier spectrum of the function is concentrated on monomials of
small degree (≤ d). This corresponds to the case where f is a decision tree (Hazan et al., 2017), and
allows us to simplify the Fourier expansion by limiting its support. Let Pd ⊆ 2[n] be a fixed collection
of Fourier basis such that Pd := {χS ⊆ 2[n] : |S| ≤ d}. Then Pd ⊆ 2[n] induces a function space
consisting of all functions of order d or less, denoted byHPd := {f : Supp[f̂] ⊆ Pd}. For example,
P2 allows us to express the function f with at most

∑d
l=0

(
n
l

)
≡ O(n2) Fourier coefficients.

Lastly, if we have prior knowledge of some set of bits J , we use an operation called restriction.

Definition 2.2. Let f : {−1, 1}n → R, (J, J) be a partition of [n], and z ∈ {−1, 1}J . The
restriction of f to J using z denoted by fJ|z : {−1, 1}J → R is the subfunction of f given by fixing
the coordinates in J to the bit values z.

3 PROPOSED ALGORITHM: CONAS

Overview. Our proposed algorithm, Compressive sensing-based Neural Architecture Search
(CoNAS), infuses ideas from learning a sparse graph (Boolean Fourier analysis) into one-shot
NAS. CoNAS consists of two novel components: an expanded search space, and a more effective
search strategy.

Search Space. Our first ingredient is an expanded search space. Following the approach of
DARTS (Liu et al., 2018b), we define a directed acyclic graph (DAG) where all predecessor nodes
are connected to every intermediate node with all possible operations. We represent any sub-graph of
the DAG using a binary string α called the architecture encoder. Its length is the total number of
edges in the DAG, and a 1 (resp. −1) in α indicates an active (resp. inactive) edge.

1We note that the quality of sub-network performance predictions is heavily dependent on the base model
that is trained. Choosing the correct base model is itself a separate challenge, which earlier papers such as
Bender et al. (2018) have addressed in detail. We do not pursue that direction here since our focus is on the
sub-network selection problem, and assume that the base model is well-trained.

3

Under review as a conference paper at ICLR 2020

Cell Choice i

Output

Softmax

Cell3

Cell2

Cell1

Stem2

Stem1

Image Cellk−2 Cellk−1

Choice1 Choice2

Node1
Choice3 Choice4

Choice5

Node2

Concat.

Input 1 Input 2 Input 3 Input L

Concat.

Identity5x5

5x5

3x3

3x3

Max Pool Avg Pool

Sum

αi

αi+1
αi+2 αi+3

αi+4

Figure 2: Diagram inspired by Bender et al. (2018). The example architecture encoder α samples
the sub-architecture for N = 5 nodes (two intermediate nodes) with five different operations. Each
component in α maps to the edges one-to-one in all Choice blocks in a cell. If a bit in α corresponds
to 1, the edge activates, while −1 turns off the edge. Since the CNN search space finds both normal
cell and reduce cell, the length of α is equivalent to (2 + 3) · 5 · 2 = 50.

Figure 2 gives an example of how the architecture encoder α samples the sub-architecture of the
fully-connected model in case of a convolutional neural network. The goal of CoNAS is to find
the “best” encoder α∗, which is ”close enough” to the global optimum returning the best validation
accuracy by constructing the final model with α∗ encoded sub-graph.

Since each edge can be switched on and off independently, the proposed search space allows exploring
a cell with more diverse connectivity patterns than DARTS Liu et al. (2018b). Moreover, the number
of possible configurations exceeds similar previously proposed search spaces with constrained wiring
rules Li & Talwalkar (2019); Pham et al. (2018); Real et al. (2019); Zoph et al. (2018).

Search Strategy. We propose a compressive measuring strategy to approximate the one-shot model
with a Fourier-sparse Boolean function. Let f : {−1, 1}n → R map the sub-graph of the one-shot
pre-trained model encoded by α to its validation performance. Similar to Hazan et al. (2017), we
collect a small number of function evaluations of f , and reconstruct the Fourier-sparse function g ≈ f
via sparse recovery algorithms with randomly sampled measurements. Then, we solve argminα g(α)

by exhaustive enumeration over all coordinates in its sub-cube {−1, 1}J where (J, J) partitions [n]
(Definition 2.2)2. If the solution of the argminα g(α) does not return enough edges to construct the
cell (some intermediate nodes are disconnected), we simply connect the intermediate nodes to the
previous cell output, Cellk−2, using the Identity operation (this does not increase neither the model
size nor number of multiply-add operations). Larger cells can be found from multiple iterations by
restricting the approximate function g and with fixing the bit values found in the previous solution,
and randomly sampling sub-graphs in the remaining edges.

Full Algorithm. We now describe CoNAS in detail, with pseudocode provided in Appendix A.3.
We first train a one-shot model with standard backpropagation but only updates the weight cor-
responding to the randomly sampled sub-graph edges for each minibatch. Then, we randomly
sample sub-graphs by generating architecture encoder strings α ∈ {−1, 1}n using a Bernoulli(p)
distribution for each bit of α independently (We set p = 0.5).

In the second stage, we collect m measurements of randomly sampled sub-architecture performance
denoted by y = (f(α1), f(α2), . . . , f(αm))T . Next, we construct the graph-sampling matrix
A ∈ {−1, 1}m×|Pd| with entries

Al,k = χSk(αl), l ∈ [m], k ∈ [|Pd|], S ⊆ [n], |S| ≤ d, (3.1)

where d is the maximum degree of monomials in the Fourier expansion, and Sk is the index set
corresponding to kth Fourier basis.

2This is similar to the idea of de-biasing in the Hard-Thresholding (HT) algorithm (Foucart & Rauhut, 2017)
where the support is first estimated, and then within the estimated support, the coefficients are calculated through
least-squares estimation.

4

Under review as a conference paper at ICLR 2020

We solve the familiar Lasso problem (Tibshirani, 1996):

x∗ = argmin
x∈R|Pd|

‖y −Ax‖22 + λ‖x‖1, (3.2)

to (approximately) recover the global optimizer x∗, the vector contains the Fourier coefficients
corresponding to Pd. We define an approximate function g ≈ f with Fourier coefficients with the
top-s (absolutely) largest coefficients from x∗, and compute α∗ = argminα g(α), resulting all the
possible points in the subcube defined by the support of g (this computation is feasible if s is small).
Multiple stages of sparse recovery (with successive restrictions to previously obtained optimal α∗)
enable us to approximate additional monomial terms. Finally, we obtain a cell to construct the final
architecture by activating the edges corresponding to all i ∈ [n] such that α∗i = 1.

Theoretical support for CoNAS. The system of linear equations y = Ax with the graph-sampling
matrix A ∈ {−1, 1}m×O(nd), measurements y ∈ Rm, and Fourier coefficient vector x ∈ RO(nd) is
an ill-posed problem when m� O(nd) for large n. However, if the graph-sampling matrix satisfies
Restricted Isometry Property (RIP), the sparse coefficients, u can be recovered:

Definition 3.1. A matrix A ∈ Rm×O(nd) satisfies the restricted isometry property of order s with
some constant δ if for every s-sparse vector u ∈ RO(nd) (i.e., only s entries are non-zero) the
following holds:

(1− δ)‖u‖22 ≤ ‖Au‖22 ≤ (1 + δ)‖u‖22.

We defer the history of improvements on the upper bounds of the number of rows from bounded
orthonormal dictionaries (matrix A) for which A is guaranteed to satisfy the restricted isometry
property with high probability in Appendix A.2. To the best of our knowledge, the best known result
with mild dependency on δ (i.e., δ−2) is due to Haviv & Regev (2017), which we can apply for
our setup. It is easy to check that the graph-sampling matrix A in our proposed CoNAS algorithm
satisfies BOS for K = 1 (Eq 3.1).

Theorem 3.2. Let the graph-sampling matrix A ∈ {−1, 1}m×O(nd) be constructed by taking m
rows (random sampling points) uniformly and independently from the rows of a square matrix M ∈
{−1, 1}O(nd)×O(nd). Then the normalized matrix A with m = O(log2(1

δ)δ
−2s log2(sδ)d log(n))

with probability at least 1 − 2−Ω(d logn log(sδ)) satisfies the restricted isometry property of order s
with constant δ; as a result, every s-sparse vector u ∈ RO(nd) can be recovered from the sample
yi’s:

y = Au =
(|O(nd)|∑

j=1

ujAi,j

)m
i=1

,

by LASSO (equation 3.2).

Proof. First, we note that the graph-sampling matrix A is a BOS matrix with K = 1; hence, directly
invoking Theorem 4.5 of Haviv & Regev (2016) to our setting, we can see that matrix A satisfies
RIP. Now according to Theorem 1.1 of Candes (2008), letting δ <

√
2− 1, the l1 minimization or

LASSO will recover exactly the s sparse vector u. For instance, in our experiments, we have selected
m = 1000 which is consistent with our parameters, d = 2, s = 10, n = 140.

Here, it is worthwhile to mention two points: first, the above upper bound on the number of rows of
the graph-sampling matrix A is the tightest bound (according to our knowledge) for the BOS matrices
to satisfy RIP. There exist series of results establishing the RIP for BOS matrices during the last 15
year. We have reviewed these results in the appendix A.2. Second, instead of LASSO, one can use
any sparse recovery method (such as IHT (Blumensath & Davies, 2009)) in our algorithm. In essence,
Theorem 3.2 provides a successful guarantee for recovering the optimal sub-network of a given size
given a sufficient number of performance measurements.

4 EXPERIMENTS AND RESULTS

We experiment on two different NAS problems: (i) CNN search on CIFAR-10, CIFAR-100, Fashion
MNIST and SVHN, (ii) an RNN search for Penn Treebank (PTB). We describe the training details

5

Under review as a conference paper at ICLR 2020

Table 1: Comparison with hand-designed networks and state-of-the-art NAS methods on
CIFAR-10 (Lower test error is better). The results are grouped as follows: manually designed
networks, published NAS algorithms, and our experimental results. The average test error of our
experiment used five random seeds. Table entries with ”-” indicates that either the field is not
applicable or unknown. The methods listed in this table are trained with auxiliary towers and cutout
augmentation. Running time cost is measured on NVIDIA TITAN X GPU. The reported time of
CoNAS includes both training one-shot model and gathering measurements for the sparse recovery.

Test Error Params Multi-Add Search
Architecture (%) (M) (M) GPU days

PyramidNet (Yamada et al., 2018) 2.31 26 - -
AutoAugment (Cubuk et al., 2019) 1.48 26 - -

ProxylessNAS (Cai et al., 2019) 2.08 5.7 - 4
NASNet-A (Zoph et al., 2018) 2.65 3.3 - 2000
AmoebaNet-B (Real et al., 2019) 2.55± 0.05 2.8 - 3150
GHN+ (Zhang et al., 2018) 2.84± 0.07 5.7 - 0.84
SNAS (Xie et al., 2018) 2.85± 0.02 2.8 - 1.5
ENAS (Pham et al., 2018) 2.89 4.6 - 0.45
DARTs (Liu et al., 2018b) 2.76± 0.09 3.3 548 4
Random Search (Liu et al., 2018b) 3.29± 0.15 3.1 - 4
ASHA (Li & Talwalkar, 2019) 2.85|3.03± 0.13 2.2 - -
RSWS (Li & Talwalkar, 2019) 2.71|2.85± 0.08 3.7 634 2.7
DARTs# (Li & Talwalkar, 2019) 2.62|2.78± 0.12 3.3 - 4

DARTs† 2.59|2.78± 0.13 3.4 576 4
CoNAS (t=1) 2.57|2.74± 0.12 2.3 386 0.4
CoNAS (t=4) 2.55|2.62± 0.06 4.8 825 0.5
CoNAS (t=1, C=60)++AutoAugment 1.87 6.1 1019 0.4

DARTS experimental results from Li & Talwalkar (2019).
† Used DARTS search space with five operations for direct comparisons.
+ ‘C’ stands for the number of initial channels. Trained 1000 epochs with AutoAugment.

for CIFAR-10 and PTB in Sections 4.1 and 4.3 respectively. Our evaluation setup for training the
final architecture (CIFAR-10 and PTB) is the same as that reported in DARTS and RSWS.

4.1 CIFAR-10

Architecture Search. We create a one-shot architecture similar to RSWS with a cell containing
N = 7 nodes with two nodes as input and one node as output; our wiring rules between nodes are
different and as in Section 3. We used five operations: 3× 3 and 5× 5 separable convolutions, 3× 3
max pooling, 3×3 average pooling, and Identity. On CIFAR-10, we equally divide the 50,000-sample
training set to training and validation sets, following Li & Talwalkar (2019) and Liu et al. (2018b). We
train a one-shot model by sampling the random sub-graph under Bernoulli(0.5) sampling with eight
layers and 16 initial channels for 100 training epochs. All other hyperparameters used in training the
one-shot model are the same as in RSWS.

We run CoNAS in two different settings to find small and large size CNN cells. Specifically, we use
the sparsity parameters s = 10, Fourier basis degree d = 2, and Lasso coefficient λ = 1 (We include
experiments with varying lasso coefficients in Appendix A.6). As a result, we found the normal cell
and reduce cell with one sparse recovery stage as shown in Appendix A.4 (the larger CNN cells were
found with multiple sparse recovery stages). Repeating four stages (t = 4) of sparse recovery with
restriction in definition (2.2) returns an architecture encoder α∗ with numerous operation edges in
the cells (Please see Appendix A.9.1 for the found architecture). We support the effect of multiple
stages sampling providing the empirical experiments on Appendix A.7. Now, we evaluate the model
found by CoNAS as follows:

Architecture Evaluation. We re-train the final architecture with the learned cell and with the same
hyperparameter configurations in DARTS to make the direct comparisons. We use NVIDIA TITAN
X, GTX 1080, and Tesla V100 for final architecture training process. CoNAS cells from four sparse

6

Under review as a conference paper at ICLR 2020

recovery stages (t=4) cannot use the same minibatch size (i.e., 96) used in DARTs and RSWS, due
to the hardware constraint; instead, we re-train the final model with minibatch size 56 with TITAN
X. CoNAS architecture with one sparse recovery (t=1) outperforms DARTs and RSWS (stronger
than vanilla random search) in test errors with smaller parameters, multiply-addition operations,
and search time. In addition, CoNAS with four recovery stages (t=4) performs better than CoNAS
(t=1) on both lower test error average and deviation; however, it requires larger parameters and
multiply-add operations compared to DARTs, RSWS, and CoNAS (t=1). We also train CoNAS (t=1)
with increasing the number of channels from 36 to 60 and training epochs from 600 to 1,000 together
with a recent data augmentation technique called AutoAugment (Cubuk et al., 2019), which breaks
through 2% test error barrier on CIFAR-10.

4.2 TRANSFER TO OTHER DATASETS

We test the cell found from CIFAR-10 to evaluate the transferability to different datasets: CIFAR-100,
SVHN, and Fashion-MNIST in Table 2. As we can see, CoNAS achieves the competitive results with
the smallest architecture size compared to the other algorithms.

4.3 PENN TREEBANK

Architecture Search. Similar to the setup in DARTS and RSWS, CoNAS explores the cell with
the following operations: Tanh, ReLU, Sigmoid, and Identity. We augment the RNN cell with a
variation of highway connections suggested by Pham et al Pham et al. (2018). Layers of depth l in
Recurrent Highway Network (Zilly et al., 2017) utilize a nonlinear transformation from its hidden
state hl as follows:

hl = (1− cl)⊗ activation(hl−1 ·W (h)
l,l−1) + hl−1 ⊗ cl,

where ”⊗” denotes the element-wise multiplication. Since we use an expanded search space, we allow
multiple operations; in such cases, we replace activation(hl−1 ·W (h)

l,l−1) with its sum-pooled

version, 1
n

∑n
i activation

i(hl−1 ·W (h)
l,l−1).

Pre-training the above RNN using weight-sharing can create unstable results since the sub-graphs
could have some internal nodes with no connections, leading to exploding gradients. One way to
mitigate this issue is to increase the p-parameter in the Bernoulli sampling to enforce connectivity;
however, this can significantly slow down the computations. Hence, we add an additional heuristic of
randomly activating an edge to connect the intermediate node if the node does not have any input
edge according to its architecture encoder α.

After obtaining the one-shot model, we randomly sample the measurements of the sub-graph without
the above heuristic used in the training stage. Running CoNAS with two stages of sparse recovery
with s = 10 and s = 5 finds enough number of edges for the RNN cell. If the final resulting cells
has intermediate nodes with a disconnected input, we added ReLU operations from the previous
intermediate node. The visualization of the RNN cell found by CoNAS is shown in Appendix A.9.2.

Table 2: Image Classification Test Error of CoNAS on Multiple Datasets. We compare the
performance of CoNAS on different datasets with existing NAS results. The experiment details for
CoNAS is described in Appendix A.5.

CIFAR100 SVHN F-MNIST Params Search
Architecture (%) (%) (%) (M) (GPU days)

SNAS# (Xie et al., 2018) 16.5 1.98 3.73 2.8 1.5
PNAS# (Liu et al., 2018a) 15.9 1.83 3.72 3.2 150
NASNet# (Zoph et al., 2018) 15.8 1.96 3.71 3.3 1800
DARTs# (Liu et al., 2018b) 15.8 1.85 3.68 3.4 1
AmoebaNet-A# (Real et al., 2019) 15.9 1.93 3.8 3.2 3150
ASAP# (Noy et al., 2019) 15.6 1.81 3.73 2.5 0.2

CoNAS (t=1) 15.9 1.44 4.11 2.3 0.4
This is the experimental result taken from Noy et al. (2019).

7

Under review as a conference paper at ICLR 2020

Table 3: Comparison of state-of-the-art NAS methods and hand-designed networks on PTB
(Lower perplexity is better). The results are grouped in following orders: manually designed
networks, published NAS algorithms, and our experimental results. The average test error of our
experiment used five random seeds. Table entries with ”-” indicates either the field is not applicable
or unknown.

Test Perplexity Params Search Cost
Architecture Valid Test (M) GPU days

Variational RHN (Zilly et al., 2017) 67.9 65.4 23 -
LSTM + DropConnect (Merity et al., 2018) 60.0 57.3 24 -
LSTM + Mos (Yang et al., 2018) 56.5 54.4 22 -

NAS (Zoph & Le, 2017) - 64.0 25 1e4
ENAS† (Pham et al., 2018) - 56.3 24 0.5
Random search† (Liu et al., 2018b) 61.8 59.4 23 2
DARTs (1st order)† (Liu et al., 2018b) 60.2 57.6 23 0.5
DARTs (2nd order)† (Liu et al., 2018b) 58.1 55.7 23 1
ASHA* (Li & Talwalkar, 2019) 58.6 56.4 23 -
RSWS* (Li & Talwalkar, 2019) 57.8 55.5 23 0.25

DARTs (2nd order)+ 60.7 58.0 23 1
RSWS#, + 60.6 57.9 23 0.25
CoNAS+ 59.1 56.8 23 0.25

We used the RSWS code with adjusting the search time equivalent to CoNAS.
† Used NVIDIA GTX 1080Ti GPU for training/searching.
* Used Tesla P100 GPU for training/searching.
+ Used NVIDIA Titan X GPU for training/searching.

Architecture Evaluation. The results for recurrent architectures are presented in Table 3. We
trained the final RNN model with the learned cell and the same hyperparameters in DARTs and
RSWS, except with minibatch size equals 128 (due to hardware constraints). We also included the
experimental results with RSWS methods allocating the equivalent search time with our methods to
make a fair comparison with CoNAS. Since the published NAS literature in Table 3 uses different
GPU hardware (e.g. DARTs and ENAS: NVIDIA GTX 1080Ti, RSWS: Tesla P100), a one-to-one
comparison of the search cost value listed in Table 3 is not applicable. Our experiments show that
CoNAS finds better performing architectures when compared with DARTs and RSWS; however, note
that these differ slightly from the published experimental results for DARTs and RSWS, which we
could not reproduce.

4.4 DISCUSSION

Noticeably, CoNAS achieves improved results on CIFAR-10 in both test error and search cost when
compared to the previous state-of-the-art algorithms: DARTs, RSWS, and ENAS. In addition, not
only CoNAS finds the cell with smallest parameter size and multiply-add operations than the other
NAS approaches, but also it obtains a better test error with 2.57%. Many previous NAS papers have
focused on the search strategy, while adopted the same search space to (Zoph et al., 2018) and (Liu
et al., 2018b). Our experimental results highlight the importance of both seeking new performance
strategies and the search space.

Finally, on PTB, our experiments show that CoNAS finds a better RNN architecture than RSWS,
DARTs using an equivalent or less search cost. However, the reported test perplexity of DARTs and
RSWS outperforms both valid and test perplexity of CoNAS.

5 PRIOR ART

We conclude by briefly reviewing the NAS literature and highlighting connections with CoNAS.

Neural Architecture Search. Early NAS approaches used RL-based controllers (Zoph et al., 2018),
evolutionary algorithms (Real et al., 2019), or sequential model-based optimization (SMBO) (Liu
et al., 2018a), and showed competitive performance with manually-designed architectures such as

8

Under review as a conference paper at ICLR 2020

deep ResNets (He et al., 2016) and DenseNets (Huang et al., 2017). However, these approaches
required substantial computational resources, running into thousands of GPU-days. Subsequent
NAS works have focused on boosting search speeds by proposing novel search strategies, such as
differentiable search technique via gradient-based optimization (Cai et al., 2019; Liu et al., 2018b;
Noy et al., 2019; Luo et al., 2018; Xie et al., 2018) and random search via sampling sub-networks
from a one-shot supernetwork (Bender et al., 2018; Li & Talwalkar, 2019). Other recent NAS
approaches include RL approaches via weight-sharing to boost speeds compare to vanilla RL (Pham
et al., 2018), network transformations (Cai et al., 2018; Elsken et al., 2019; Jaderberg et al., 2017;
Jin et al., 2018; Liu et al., 2017; Hu et al., 2019), and random exploration (Li et al., 2018; Li &
Talwalkar, 2019; Sciuto et al., 2019; Xie et al., 2019). To the best of our knowledge, no NAS method
yet reported has explored compressive sensing techniques.

Differentiable Neural Architecture Search (DARTs). Our CoNAS approach can be viewed as
a refinement to DARTs ((Liu et al., 2018b)) which performs bilevel optimization by relaxing the
(discrete) architecture search space to a differentiable search space via softmax operations. The
choice of alternative optimization on differentiable multi-objective formulation substantially speeds
up the search by orders of magnitude while achieving competitive performance compared to previous
works (Zoph & Le, 2017; Zoph et al., 2018; Real et al., 2019; Liu et al., 2018a).

One-Shot Neural Architecture Search. Bender et al. (2018) provide an extensive experimental
analysis on one-shot architecture search based on weight-sharing. Bender et al. (2018) statistically
showed the correlation between the one-shot model (supergraph) and stand-alone model (subgraph)
through the experiments. Li & Talwalkar (2019) proposes simplified training procedures without
stabilizing techniques (e.g., path dropout schedule on a direct acyclic graph (DAG) and ghost batch
normalization) from Bender et al. (2018). As the final performance of the discovered architecture
heavily relies on hyperparameter settings, Li & Talwalkar (2019) exactly accords hyperparameters and
data augmentation techniques to DARTs for their experiments. This combination of random search
via one-shot models with weight-sharing provides the best competitive baseline results reported in
the NAS literature. Our CoNAS approach improves upon these reported results.

Learning Sub-Networks. Stobbe & Krause (2012) propose learning sparse sub-networks from
a small number of random cuts; they also leverage ideas from compressive sensing and provide
theoretical upper bounds for successful recover. Our CoNAS approach is directly inspired from
their seminal work. However, we emphasize essential differences: while Stobbe & Krause (2012)
emphasize linear measurements, CoNAS takes a different perspective by focusing on measurements
that map sub-networks to performance, which are fundamentally nonlinear. Moreover, our theoretical
bounds use better Fourier-RIP bounds, and lead to improved results in terms of measurement
complexity.

Hyperparameter optimization. Building upon the approach of Stobbe & Krause (2012), Hazan
et al. (2017) develop a spectral approach called Harmonica for hyperparameter optimization (HPO)
by encoding hyperparameters as binary strings. CoNAS also follows the same path, albeit for NAS.
While NAS and HPO are sister meta-learning problems, we emphasize that our focus is exclusively
on NAS, while Hazan et al. (2017) exclusively focus on HPO.

Moreover, the techniques of Hazan et al. (2017) cannot be directly applied to the NAS problem.
We need to define our search space, encode our search problem in terms of Boolean variables,
and propose how to gather measurements. All these are new to our paper: in particular, CoNAS
proposes gathering measurements within tractable sampling time as described in Appendix A.1,
while Harmonica naively gathers the approximated measurements by training the model for each
randomly sampled hyperparameter choice. In Appendix A.1, we show that describes the sampling
times with the naive sampling method for 1,000 measurements takes approximately 174 GPU days,
whereas CoNAS only take 0.02 GPU days to gather 1,000 measurements. Finally, Harmonica requires
invocation of a baseline hyperparameter optimization method (such as random search, successive
halving (Jamieson & Talwalkar, 2016), or Hyperband (Li et al., 2017)), which CoNAS does not
require.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. Proc. Int. Conf. Machine Learning, 2018.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Applied
and computational harmonic analysis, 2009.

Jean Bourgain. An improved estimate in the restricted isometry problem. Geometric Aspects of
Functional Analysis: Israel Seminar (GAFA), pp. 65, 2014.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. Proc. Assoc. Adv. Art. Intell. (AAAI), 2018.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. Proc. Int. Conf. Learning Representations, 2019.

Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 2006.

Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing.
Comptes rendus mathematique, 346(9-10):589–592, 2008.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Trans. Inform. Theory, 2006.

Shengcao Cao, Xiaofang Wang, and Kris M Kitani. Learnable embedding space for efficient neural
architecture compression. Proc. Int. Conf. Learning Representations, 2019.

Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry of fourier
matrices and list decodability of random linear codes. SIAM Journal on Computing, 2013.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. IEEE Conf. Comp. Vision and Pattern Recog, 2019.

David L Donoho et al. Compressed sensing. IEEE Trans. Inform. Theory, 2006.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. Proc. Int. Conf. Learning Representations, 2019.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Bull. Am.
Math, 54:151–165, 2017.

Ishay Haviv and Oded Regev. The list-decoding size of fourier-sparse boolean functions. ACM
Transactions on Computation Theory (TOCT), 8(3):10, 2016.

Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices.
Geometric Aspects of Functional Analysis, pp. 163–179, 2017.

Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: a spectral approach.
arXiv preprint arXiv:1706.00764, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. IEEE Conf. Comp. Vision and Pattern Recog, 2016.

Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, and Debadeepta Dey.
Efficient forward architecture search. Adv. Neural Inf. Proc. Sys. (NeurIPS), 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. IEEE Conf. Comp. Vision and Pattern Recog, 2017.

10

Under review as a conference paper at ICLR 2020

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pp. 240–248, 2016.

Haifeng Jin, Qingquan Song, and Xia Hu. Efficient neural architecture search with network morphism.
arXiv preprint arXiv:1806.10282, 2018.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Adv. Neural Inf. Proc.
Sys. (NeurIPS), 2018.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv preprint arXiv:1902.07638, 2019.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. Massively parallel hyperparameter tuning. arXiv preprint arXiv:1810.05934,
2018.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. Euro. Conf.
Comp. Vision, 2018a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436,
2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. Proc.
Int. Conf. Machine Learning, 2018b.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Adv. Neural Inf. Proc. Sys. (NeurIPS), 2018.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. Proc. Int. Conf. Learning Representations, 2018.

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Itamar Friedman, Raja Giryes, and
Lihi Zelnik-Manor. Asap: Architecture search, anneal and prune. arXiv preprint arXiv:1904.04123,
2019.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. Proc. Int. Conf. Machine Learning, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. Proc. Assoc. Adv. Art. Intell. (AAAI), 2019.

Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian mea-
surements. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, 2008.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the
search phase of neural architecture search. arXiv preprint arXiv:1902.08142, 2019.

Peter Stobbe and Andreas Krause. Learning fourier sparse set functions. Proc. Int. Conf. Art. Intell.
Stat. (AISTATS), 2012.

11

Under review as a conference paper at ICLR 2020

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pp. 267–288, 1996.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. arXiv preprint arXiv:1904.01569, 2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization
for deep residual learning. Proc. Int. Conf. Learning Representations Workshop, 2018.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. Proc. Int. Conf. Learning Representations, 2018.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
Proc. Int. Conf. Learning Representations, 2018.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
highway networks. Proc. Int. Conf. Machine Learning, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. Proc. Int. Conf.
Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. IEEE Conf. Comp. Vision and Pattern Recog, 2018.

12

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 SUPPLEMENTARY BACKGROUND OF ONE-SHOT NEURAL ARCHITECTURE SEARCH

In this section, we explain the one-shot neural architecture search in more details regarding of three
directions introduced by Elsken et al. (2018).

Search Space. First, we start with the search space, defining the principles of constructing neural
architecture. As discussed before, simplifying the search space using human prior knowledge can
help search algorithms to find an optimal candidate faster. However, it may limit the algorithm to find
a novel architecture beyond our knowledge due to human bias. One-shot neural architecture search
methodology is not restrict to the specific search space (e.g. RSWS (Li & Talwalkar, 2019) uses the
equivalent search space to DARTs (Liu et al., 2018b)).

Search Strategy Next, we have a search strategy which is considered as a methodology to find
the best neural architecture. In the last two years, different methodologies for search space such as
reinforcement learning, evolutionary algorithms, SMBO, Bayesian optimization, bilevel optimization,
and randomness are introduced in NAS literature. For instance, one-shot architecture uses random
search as a search strategy.

Performance Estimation Strategy. One-shot NAS aims to reduce the computational cost for the
searching with the surrogate model to estimate the sub-networks performance. The conventional
performance estimating methods require the massive computational resources as each model need
to be trained and evaluated separately. In particular, assume that our goal is to construct a CNN by
using a proxy architecture through randomly selected cell samples by concatenating eight layers
with 16 initial channels (This is the same proxy model setup in DARTs). Then, we measure the
validation loss from 50 epochs trained model where each epoch takes five minutes of training. As a
result, the total sampling time to collect 1,000 randomly sampled of the architecture performance
(which is the same number of measurements as our experiment using CoNAS with t = 1) equals to
5 · 50 · 1000 · 1

60 ·
1
24 ≈ 174 days.

Instead, one-shot NAS trains the super-network with weight-sharing by randomly sample a sub-
network and only update the weights corresponding to the sampled network for each minibatch.
Bender et al. (2018) demonstrates the correlation between the performance of one-shot model and the
stand-alone architectures. Moreover, Li & Talwalkar (2019) provides the experimental results that
the random search with weight-sharing is a competitive baseline even outperforming ENAS (Pham
et al., 2018).

A.2 PRIOR WORKS ON RECOVERY CONDITIONS ON COMPRESSIVE SENSING

There has been significant research during the last decade in proving upper bounds on the number
of rows of bounded orthonormal dictionaries (matrix A) for which A is guaranteed to satisfy the
restricted isometry property with high probability. One of the first BOS results was established
by Candes & Tao (2006), where the authors proved an upper bound scales as O(sd6 log6 n) for a
subsampled Fourier matrix. While this result is seminal, it is only optimal up to some polylog factors.
In fact, the authors in chapter 12 of Foucart & Rauhut (2017) have shown a necessary condition
(lower bound) on the number of rows of BOS which scales asO(sd log n). In an attempt to achieve to
this lower bound, the result in Candes & Tao (2006) was further improved by Rudelson & Vershynin
(2008) to O(sd log2 s log(sd log n) log n). Motivated by this result, Cheraghchi et al. (2013) has
even reduced the gap further by proving an upper bound on the number of rows as O(sd log3 s log n).
The best known available upper bound on the number of rows appears to be O(sd2 log s log2 n);
however with worse dependency on the constant δ, i.e., δ−4 (please see Bourgain (2014)). To the
best of our knowledge, the best known result with mild dependency on δ (i.e., δ−2) is due to Haviv &
Regev (2017), and is given by O(sd log2 s log n). We have used this result for proving Theorem 3.2.

A.3 CONAS ALGORITHM

In this section, we provide the pseudocode of CoNAS explained in the Section 3 from the main paper.

13

Under review as a conference paper at ICLR 2020

Algorithm 1 CONAS

1: Inputs: Number of one-shot measurements m, stage t, sparsity s, lasso parameter, λ, Bernoulli
p

Stage 1 – Training the One-Shot Model

2: procedure MODEL TRAINING
3: while not converged do
4: Randomly sample a sub-architecture encoded binary vector α according to Bernoulli(p)
5: Update weights wα by descending ∇wαLtrain(wα)
6: end while
7: end procedure

Stage 2 – Search Strategy

8: procedure ONE-SHOT MODEL APPROXIMATION VIA COMPRESSIVE SENSING
9: for k ∈ {1, . . . , t} do

10: Collect y = (f(α1), f(α2), . . . , f(αm))>.
11: Solve

x∗ = argmin
x

‖y −Ax‖22 + λ‖x‖1

12: Let x∗1, x
∗
2, . . . , x

∗
s be the s absolutely largest coefficients of x∗. Construct

g(α) =

s∑
i=1

x∗iχi(α)

13: Compute minimizer z = argminα g(α) and let J the set of indices of z.
14: f = fJ|z
15: end for
16: Construct the cell by activating the edge where zi = 1 where i ∈ [n].
17: end procedure

A.4 ARCHITECTURE FOUND FROM CONAS FOR IMAGE CLASSIFICATION TASK

c_{k-2}

2

avg_pool_3x3
3skip_connect

c_{k-1}

0sep_conv_5x5

1
sep_conv_3x3

skip_connect c_{k}

max_pool_3x3

(a) Normal Cell

c_{k-2}

0

sep_conv_5x5 1

avg_pool_3x3

3

skip_connectc_{k-1}

avg_pool_3x3

sep_conv_5x5

avg_pool_3x3

c_{k}2skip_connect

sep_conv_5x5
skip_connect

(b) Reduce Cell

Figure 3: Convolution Cell found from CoNAS. The reduce cell found from CoNAS have a missing
connection between ck−1 and intermediate nodes which is a valid architecture in our search space.

A.5 TRAINING DETAILS ON OTHER DATASETS

CIFAR-100 This dataset is extended version of CIFAR-10 with 100 classes containing 600 images
each. Similar to CIFAR-10, CIFAR100 consists of 60,000 color images which splits into 50,000
training images and 10,000 test images. Following the existing works (Liu et al., 2018b), we train
the architecture with 20 stacked cells equivalent to CIFAR-10 setting. We train the architecture for

14

Under review as a conference paper at ICLR 2020

600 epochs with cosine annealing learning rate where the initial value is 0.025. We use a batch size
96, SGD optimizer with nestrov-momentum of 0.9, and auxiliary tower with weights 0.4. For the
regularization technique, we include path dropout with probability 0.2, cutout regularizer with length
16, and AutoAugment (Cubuk et al., 2019) for CIFAR-100. Except AutoAugment, the training setup
is identical to DARTs for CIFAR-10.

Street View House Numbers (SVHN) SVHN is a digit recognition dataset of house numbers
obtained from Google Street View images. SVHN consists of 73,257 train digit images, 26,032 test
digit images, and additional 531,131 images. We used both train and extra (total 604,388) images
for the training the architecture. Due to the large dataset, we train the architecture for 160 epochs
(equivalent to) and other hyperparameter setup is equivalent to CIFAR-100.

Fashion-MNIST Fashion-MNIST concists of grayscale 60,000 train image set and 10,000 test
image set with the size 28× 28 associated with 10 classes of labels. Training hyperparameter setup
of the final architecture is equivalent to CIFAR-10 without AutoAugment (Cubuk et al., 2019).

A.6 STABILITY ON LASSO PARAMETERS

We check our algorithm’s stability on lasso parameter by observing the solution given exact same
measurements. Denote α∗λ=l as the architecture encoded output from CoNAS given λ = l. We
compare the hamming distance and the test error between α∗λ=1 and other λ values (λ = 0.5, 2, 5, 10).
The average support of the solution from one sparse recovery is 15 out of the 140 length. The
average hamming distance between two randomly generated binary strings with supp(α∗) = 15 from
100, 000 samples was 27.58± 1.82. Our experiment shows a stable performance under various lasso
parameters with small hamming distances regards to various λ. Also we measure the average test
error with 150 training epochs on different λ values as shown in Table 4. For the baseline comparison,
we compare CoNAS solutions with the randomly chosen architecture with 15 operations.

Table 4: Lasso Parameter Stability Experiment.

Criteria λ = 0.5 λ = 2.0 λ = 5.0 λ = 10.0 Random

Hamming Distance 0 0 8 12 29
Test Error (%) 3.74± 0.07 3.74± 0.07 3.51± 0.06 3.62± 0.04 4.43± 0.08
Param (M) 2.3 2.3 2.6 2.6 2.7
Multiply-Add (M) 386 386 455 449 444

15

Under review as a conference paper at ICLR 2020

A.7 EFFECT OF MULTIPLE STAGES SAMPLING

We illustrate an experiment which shows that the CoNAS with multiple stages can successively
discover important edges, and eventually find a architecture with smaller loss/perplexity. Suppose we
sample 1,000 measurements and computed the mean and the standard deviation of the validation loss
from CIFAR-10 (perplexity from PTB) for each stage. As we can see in Figure 4, the larger number
of stages, the smaller loss/perplexity. While the multiple stage sampling finds more operation edges
in the cell (equivalent to finding larger sub-graph), it may increase the architecture size (in terms of
parameters and multiply-addition operation) as shown in Table 1.

(a) CIFAR-10 (b) Penn Treebank

Figure 4: The one-shot architecture validation loss/perplexity vs stage iterations of (a) CIFAR-10 and (b) PTB.
The line plot and shaded region correspond to the average and standard deviation of measurements respectively.

A.8 EFFECT OF INCREASING OPERATION EDGES IN THE CELL.

We provide more experiments on training results of randomly wired cells which have a similar number
of edges to the cell found by CoNAS (t=4). We randomly sampled the architecture code α with
Binomial(140, 1/4) for each digit being 1 that the expected number of total edges in normal cell
and reduce cell is 35. We randomly selected three architectures as shown in Appendix A.9.5 and
trained with the same settings to the section 4.1. Table 5 shows that choosing a larger number of
randomly chosen edges is not sufficient to improve the model’s performance.

Table 5: Randomly Wired Model Performance on CIFAR-10. (Lower test error is better) Trained
with auxiliary towers and cutout augmentation for 600 epochs (equivalent training setup to CIFAR-10
from DARTs.

Method Number of Edges Size (M) Test Error

Randomly Wired Model (1) 31 5.2 3.45%
Randomly Wired Model (2) 35 4.5 2.89%
Randomly Wired Model (3) 32 3.1 3.52%

16

Under review as a conference paper at ICLR 2020

A.9 ARCHITECTURE FOUND FROM OUR EXPERIMENT

A.9.1 COMPRESSIVE SENSING-BASED NEURAL ARCHITECTURE SEARCH (CONAS) FOR
CNN WITH FOUR STAGES OF SPARSE RECOVERY

c_{k-2}

0

skip_connect

sep_conv_5x5 2

sep_conv_5x5

c_{k-1}

skip_connect
1

sep_conv_3x3 3

avg_pool_3x3

sep_conv_3x3

skip_connect

sep_conv_5x5

max_pool_3x3

c_{k}
max_pool_3x3

sep_conv_5x5

skip_connect

sep_conv_5x5

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0

avg_pool_3x3

skip_connect

1

max_pool_3x3

skip_connect
2

avg_pool_3x3
skip_connect

3

max_pool_3x3

avg_pool_3x3

c_{k-1}
max_pool_3x3

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

skip_connect

sep_conv_5x5

skip_connect

skip_connect

skip_connect

sep_conv_3x3

sep_conv_5x5

c_{k}
max_pool_3x3

sep_conv_3x3
skip_connect

(b) Reduce Cell

Figure 5: Convolution Cell found from CoNAS (t=4)

A.9.2 COMPRESSIVE SENSING-BASED NEURAL ARCHITECTURE SEARCH (CONAS) FOR
RNN

x_{t}
0

h_{t-1}

1

tanh

relu

identity 2
identity

8

identity

relu

identity

7sigmoid

h_{t}3relu
5relu

relu

4relu

6identity

sigmoid
identity

identity tanh

Figure 6: Recurrent Cell found from CoNAS

17

Under review as a conference paper at ICLR 2020

A.9.3 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH (DARTS) FOR CNN

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

2
skip_connect

3skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}
sep_conv_3x3

(a) Normal Cell

c_{k-2} 0avg_pool_3x3

c_{k-1}

max_pool_3x3
1

avg_pool_3x3

skip_connect 2

skip_connect

3skip_connect
c_{k}

skip_connect

skip_connect

(b) Reduce Cell

Figure 7: Convolutional Cell found from DARTs with the original setting in Liu et al. (2018b).

18

Under review as a conference paper at ICLR 2020

A.9.4 CONAS SOLUTIONS WITH DIFFERENT LASSO PARAMETERS

c_{k-2}

2

avg_pool_3x3
3skip_connect

c_{k-1}

0sep_conv_5x5

1
sep_conv_3x3

skip_connect

sep_conv_5x5

c_{k}

max_pool_3x3

(a) Normal Cell with λ = 5

c_{k-2} 0sep_conv_5x5

1

avg_pool_3x3

3skip_connect

c_{k-1}

2
avg_pool_3x3

sep_conv_3x3

avg_pool_3x3

sep_conv_5x5

avg_pool_3x3

c_{k}

skip_connect

(b) Reduce Cell with λ = 5

Figure 8: CoNAS cell with λ = 5 corresponding to Table 4.

c_{k-2}

2
avg_pool_3x3

3skip_connect

c_{k-1}

0sep_conv_5x5
1

max_pool_3x3

sep_conv_3x3

skip_connect

sep_conv_5x5 c_{k}max_pool_3x3

(a) Normal Cell with λ = 10

c_{k-2} 0sep_conv_5x5

1avg_pool_3x3

3
skip_connect

c_{k-1}

avg_pool_3x3

skip_connect

c_{k}
2sep_conv_5x5

(b) Reduce Cell with λ = 10

Figure 9: CoNAS cell with λ = 10 corresponding to Table 4.

19

Under review as a conference paper at ICLR 2020

A.9.5 RANDOMLY WIRED CNN ARCHITECTURES

c_{k-2}

0

sep_conv_5x5 1

sep_conv_3x3

c_{k-1} sep_conv_3x3

sep_conv_5x5

2

sep_conv_3x3

skip_connect

skip_connect

sep_conv_3x3

3

avg_pool_3x3

c_{k}

sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_5x5

avg_pool_3x3

(a) Normal Cell

c_{k-2} 0

avg_pool_3x3

sep_conv_3x3
sep_conv_5x5

1

avg_pool_3x3
3

sep_conv_3x3

c_{k-1} avg_pool_3x3

2
avg_pool_3x3

sep_conv_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

c_{k}
avg_pool_3x3

skip_connect
skip_connect

skip_connect

(b) Reduce Cell

Figure 10: Randomly wired cell corresponding to the first row result to Table 5.

20

Under review as a conference paper at ICLR 2020

c_{k-2}

0
avg_pool_3x3

skip_connect

sep_conv_5x5

3

sep_conv_3x3

c_{k-1}

sep_conv_5x5

1

avg_pool_3x3

skip_connect

sep_conv_5x5

skip_connect

avg_pool_3x3

skip_connect

2
max_pool_3x3

sep_conv_3x3

avg_pool_3x3

c_{k}avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

(a) Normal Cell

c_{k-2}

0
skip_connect

sep_conv_5x5

1

avg_pool_3x3

2

avg_pool_3x3

skip_connect

3

sep_conv_5x5

c_{k-1}

sep_conv_3x3

max_pool_3x3

sep_conv_3x3

sep_conv_5x5

skip_connect

sep_conv_5x5

skip_connect

skip_connect
skip_connect

max_pool_3x3

c_{k}

max_pool_3x3

sep_conv_5x5

skip_connect

max_pool_3x3

avg_pool_3x3

sep_conv_3x3

(b) Reduce Cell

Figure 11: Randomly wired cell corresponding to the second row result to Table 5.

21

Under review as a conference paper at ICLR 2020

c_{k-2} 0sep_conv_3x3

2
sep_conv_5x5

3

sep_conv_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

sep_conv_5x5

1avg_pool_3x3

c_{k}

max_pool_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

avg_pool_3x3

skip_connect

(a) Normal Cell

c_{k-2}

1
avg_pool_3x3

2

skip_connect

sep_conv_5x5

3sep_conv_3x3

sep_conv_5x5

c_{k-1}

0max_pool_3x3

skip_connect

max_pool_3x3

max_pool_3x3

max_pool_3x3

max_pool_3x3

max_pool_3x3

avg_pool_3x3

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_5x5

sep_conv_3x3

(b) Reduce Cell

Figure 12: Randomly wired cell corresponding to the third row result to Table 5.

22

Under review as a conference paper at ICLR 2020

A.9.6 RANDOM SEARCH WITH WEIGHT-SHARING (RSWS) FOR RNN

x_{t}
0

h_{t-1}

1relu

2
tanh

7
tanh

3
tanh

5sigmoid h_{t}

4sigmoid

6relu

8tanh

Figure 13: Recurrent cell found from RSWS allocating equal amount of search time to CoNAS

23

	Introduction
	Background
	Proposed Algorithm: CoNAS
	Experiments and Results
	CIFAR-10
	Transfer to other datasets
	Penn Treebank
	Discussion

	Prior art
	Appendix
	Supplementary Background of One-Shot Neural Architecture Search
	Prior Works on Recovery Conditions on Compressive Sensing
	CoNAS Algorithm
	Architecture found from CoNAS for Image Classification Task
	Training Details on other Datasets
	Stability on Lasso Parameters
	Effect of Multiple Stages Sampling
	Effect of Increasing Operation Edges in the Cell.
	Architecture Found from Our Experiment
	Compressive sensing-based Neural Architecture Search (CoNAS) for CNN with four stages of sparse recovery
	Compressive sensing-based Neural Architecture Search (CoNAS) for RNN
	Differentiable Neural Architecture Search (DARTs) for CNN
	CoNAS solutions with different Lasso parameters
	Randomly Wired CNN Architectures
	Random Search with Weight-Sharing (RSWS) for RNN

