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ABSTRACT

Convolutional neural networks memorize part of their training data, which is why
strategies such as data augmentation and drop-out are employed to mitigate over-
fitting. This paper considers the related question of “membership inference”,
where the goal is to determine if an image was used during training. We con-
sider membership tests over either ensembles of samples or individual samples.

First, we show how to detect if a dataset was used to train a model, and in particular
whether some validation images were used at train time. Then, we introduce a
new approach to infer membership when a few of the top layers are not available
or have been fine-tuned, and show that lower layers still carry information about
the training samples. To support our findings, we conduct large-scale experiments
on Imagenet and subsets of YFCC-100M with modern architectures such as VGG
and Resnet.

1 INTRODUCTION

The widespread adoption of convolutional neural networks (LeCun et al., 1990) (ConvNets) for
most recognition tasks, was triggered by the work of Krizhevsky et al. (2012) in image classification
and subsequent deep architectures (Simonyan & Zisserman, 2014; He et al., 2016). Several works
have analyzed these architectures from different perspectives. Zeiler & Fergus (2014) have proposed
DeconvNet to vizualize filter activations. Lenc & Vedaldi (2015) analyze their equivariance. Ma-
hendran & Vedaldi (2015) show how to invert them and synthetize images maximizing the response
of different classes. Ulyanov et al. (2018) analyze the image priors implicitly defined by ConvNets.

All these works increase our understanding of ConvNets, but the complex issue of overfitting
and its relationship to optimization are still not fully understood. Several strategies are routinely
used to avoid overfitting, such as `2-regularization through weight decay (Krogh & Hertz, 1991),
dropout (Srivastava et al., 2014), and importantly, data augmentation (Behpour et al., 2017; Dwibedi
et al., 2017; Paulin et al., 2014). Yet few works (Zhang et al., 2017; Yeom et al., 2018) have an-
alyzed the interplay of overfitting and memorization of training images in high-capacity classifica-
tion architectures. Specifically, we are not aware of such an analysis for a modern ConvNet such as
ResNet-101 learned on Imagenet.

In this paper, we consider the privacy issue of membership inference, i.e., we aim at determining
if a specific image or group of images was used to train a model. This question is important to
protect both the privacy and intellectual property associated with images. For ConvNets, the privacy
issue was recently considered by Yeom et al. (2018) for the small MNIST and CIFAR datasets. The
authors evidence the close relationship between overfitting and privacy of training images. This
is reminiscent of prior membership inference attacks, which employ the output of the classifier
associated with a particular example to determine whether it was used during training or not (Shokri
et al., 2017). This is related to Torralba & Efros (2011), who showed that a classifier can determine
with high accuracy if an image comes from a dataset or another by exploiting the bias inherent to
datasets. We discuss this relationship and show that we can detect whether a given network has
been trained on some of the validation images. This has a concrete application for machine-learning
benchmarks: scores are often reported on a validation set with public labels, allowing a malicious
or gawky competitor to artificially inflate the accuracy by training on validation images. Our test
detects if it is the case, even if only part of the validation set is leaked to the training set.
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Finally, we propose a new setting for membership inference that only considers intermediary layers
of a network, thus extending membership inference to transferred and fine-tuned networks, that
have become ubiquitous. Our membership inference does not require the last layer(s) of the original
ConvNet to perform the test. This is important because, in many contexts, image recognition systems
are built upon a trunk trained on a dataset and then fine-tuned for another task. Examples include
Mask-RCNN (He et al., 2017) and models used for fine-grained recognition (Hariharan & Girshick,
2017). In both cases there are not enough training samples to train a full network: only the last
layers of the networks are fine-tuned. In summary, our paper makes the following contributions:

• A simple statistical test to detect the “signature” of a dataset in a trained convnet, and to
detect if validation images where used to train the model (leakage).

• A membership inference test that detects if an image was used to train the trunk of a net-
work. To our knowledge, it is the first work on membership inference that attacks interme-
diate layers.

The paper is organized as follows. Section 2 reviews related work. Section 3 formally introduces the
problem. Section 4 considers the problem of determining if a particular dataset, e.g., the validation
set, was used during training. Section 5 focuses on detecting if a particular image has been used for
training without accessing the network’s output layer.

2 RELATED WORK & DATASETS

Our work is related to the topics of overfitting and memorization capabilities of neural network
architectures, which are able to perfectly discriminate random outputs in some cases (MacKay,
2002; Zhang et al., 2017). In the following, we distinguish explicit from implicit memorization (also
called “unintended memorization” (Carlini et al., 2018) in natural language processing systems).

Explicit memorization. Neural network are capable of memorizing any random pattern. This
property was analyzed in MacKay (2002) for the single layer case. In MacKay’s setup, the sender
and receiver agree beforehand on a set of vectors (xi)ni=1 ∈ Rd. To transmit an arbitrary sequence of
binary labels y1, . . . , yn, the sender learns a single-layer neural network that predicts the yi from xi,
and sends its weights to the receiver. The receiver labels the points x1, . . . , xn with the transmitted
neural network to reconstruct the labels. The VC-dimension of this 1-layer model is d, so the model
can fit perfectly as long as n ≤ d. MacKay extends this bound by showing that the sender can, with
high probability, find a neural network fitting the output if n ≤ 2d, and that it is almost impossible to
fit the model for n > 2d. The estimated capacity of this neural network is thus 2 bits per parameter.

Determining the practical memorization capacity of ConvNets is not trivial. A few recent
works (Zhang et al., 2017; Yeom et al., 2018) evaluate how a network can fit random labels. Zhang
et al. (2017) replace true labels by random labels and show that popular ConvNets can perfectly
fit them in simple cases, such as small datasets (CIFAR10) or Imagenet without data augmenta-
tion. Krueger et al. (2017) extend their analysis and argue in particular that the effective capacity of
ConvNets depends on the dataset considered. In a privacy context, Yeom et al. (2018) exploit this
memorizing property to watermark networks. As a side note, random labeling and data augmenta-
tion have been used for the purpose of training a network without any annotated data (Dosovitskiy
et al., 2014; Bojanowski & Joulin, 2017). Our paper is also related to few works (Kraska et al.,
2017; Iscen et al., 2017) that learn indexes as an alternative to traditional structures such as Bloom
Filters or B-trees. In particular, Kraska et al. (2017) show that in some cases, neural nets outperform
cache-optimized B-tree on real-world data. These works exploiting explicit memorization of neu-
ral networks are reminiscent of works (Hopfield, 1982; Personnaz et al., 1986; Hinton et al., 1986;
Plate, 1995) on associative memories and, more generally, distributed representations.

Implicit memorization and privacy risk in learning systems. Ateniese et al. (2015) state: “it
is unsafe to release trained classifiers since valuable information about the training set can be
extracted from them”. The problem that we address in this paper, i.e., to determine whether an
image or dataset has been used for training, is related to the privacy implications of machine learning
systems. They were discussed in the context of support vector machines (Rubinstein et al., 2009;
Biggio et al., 2014). In the context of differential privacy (Dwork et al., 2006), recent works (Wang

2



Under review as a conference paper at ICLR 2019

et al., 2016; Bassily et al., 2016) suggest that guaranteeing privacy requires learning systems to
generalize well, i.e., to not overfit. Note that there are systems providing differential privacy but that
still leak information (Ateniese et al., 2015; Balu et al., 2014).

Membership Inference in images. A few recent works (Abadi et al., 2016; Hayes et al., 2017;
Shokri et al., 2017; Long et al., 2018) have addressed “membership inference” for images: determine
whether an image has been used for training or not. Yeom et al. (2018) discuss how privacy, that
can be broken by membership inference, is connected to overfitting. Long et al. (2018) observe that
some training images are more vulnerable than others and propose a strategy to identify them. Hayes
et al. (2017) analyze privacy issues arising in generative models. Most of these works were evaluated
on small datasets like CIFAR10, or larger datasets but without data augmentation. Our work aims
at being closer to realistic conditions. In the following, the analysis of a pre-trained network will be
called “attack” performed by an “attacker”.

Dataset bias and inference. Torralba & Efros (2011) evidence that a simple classifier can predict
with high accuracy which dataset an image comes from. Tommasi et al. (2017) show that this bias
still exists with ConvNets. In the next section of this paper, we re-visit this problem by proposing a
dataset inference method derived from an elementary membership inference test.

Datasets used in our study. We use will several public image collections throughout our paper.
Imnet1k refers to the subset of Imagenet (Deng et al., 2009; Russakovsky et al., 2015) used during
the ILSVRC-12 challenge. It consists of 1000 balanced classes, split in a training set (1.2M images)
and a validation set (50k images). We use the regular split between train and val and denote them
by Imnet1k-train and Imnet1k-val, respectively. Imnet22k refers to the full Imagenet dataset. It is
built in the same way as Imnet1k, but with 21783 unbalanced classes. Yfcc100M (Thomee et al.,
2016) contains 99.2M photos that have not been collected for image classification and thus are not
representing specific classes or visual concepts. Tiny images (Torralba et al., 2008) consists of 79M
low-resolution images. CIFAR10 is a subset of Tiny that has been labelled for image classification.
In our study, it is important that the dataset does not contain duplicate images or images that overlap
between the train and the test set. We have sanitized the datasets to avoid this problem using GIST
descriptors and similarity search, see Appendix B in the supplemental material for details.

3 MODEL

In this paper, we consider a set of samples (z1, . . . , zn) along with their set membership information,
which consists of binary labels (m1, . . . ,mn). Our goal is to assess set membership (m′1, . . . ,m

′
k)

for a set of k fresh samples (z′1, . . . , z
′
k). A sample z is either an image x or an image-label pair

(x, y). Note that we do not necessarily have samples zi for which mi = 0, i.e., we include the case
where only positive samples are given.

We consider two cases: in the first case, we make the assumption that all elements z′i belong to
the same set, and thus m′1 = · · · = m′k. In the second case, there is no relation between the set
membership of different elements, and thus we infer set membership m′j independently for each z′j .
Membership inference methods for groups of images (the first case) are presented in Section 4 for
the case where we do not have labels y, and we both setups where we have positive and negative
samples, or only positives. Section 5 considers the case of individual images (second case), for
which we dispose of both the image and the label.

3.1 PARAMETRIC MODELS FOR MEMBERSHIP INFERENCE

We describe here the general framework of the membership inference methods used in Section 5,
and make the connection with explicit memorization. We assume that we are given a parametrized
function fθ which extracts features from images. It was typically trained as part of a classifier, such
as a neural network. Given image-label pairs ((x1, y1), . . . , (xn, yn)) and their binary set member-
ship (m1, . . . ,mn), we aim at learning a model dΛ that predicts membership mi from features of
the images fθ(xi) and the label yi. To optimize dΛ we solve the following optimization problem:
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Figure 1: In/out classification performance (train) on Tiny, for varying image subsets and num-
ber of images. The colors indicate the type of data augmentation: purple=none, green=flip,
cyan=flip+crop±1, orange=flip+crop±2. The vertical line shows the number of positive images
plim such that C(plim) is the number of parameters of the network.

min
Λ

1

n

n∑
i=1

`(dΛ(fθ(xi), yi),mi), (1)

where ` is the cross-entropy loss. The solution of this optimization relies on the difference between
the distribution of features from training and that of the held-out set. This task is difficult in general,
because set membership is decided independently of the content of the image, and thus mi is inde-
pendent from (xi, yi). However, the set membership mi is not independent of the features fθ(xi),
because mi has an influence on the parameters of the model θ.

3.2 EXPLICIT MEMORIZATION

If we omit the dependency in yi in the optimization problem 1, the problem relies on separating
images through their features fθ(xi). Thus a lower bound of this problem is:

min
θ

min
Λ

1

n

n∑
i=1

`(dΛ(fθ(xi)),mi). (2)

This corresponds to the case of explicit memorization: the model dΛ(fθ(·)) is trained to separate an
arbitrary set of images from the others: it approximates the set membership function and predicts
membership m from image x. Note that the what we call memorization in this context is different
than the memorization discussed in Zhang et al. (2017): we explicitly approximate the set member-
ship function, whereas Zhang et al. (2017) fit random labels to the data. This optimization problem
bears similarity with GANs, with two key differences: GANs perform a mini-max optimization, and
the discriminator is trained to separate generated samples from “true” samples from the distribution.

If we denote by p the number of positive samples (for which mi = 1) and N the total number of
images available, the quantity of information contained in such a set is:

C(p) = log2

(
N

p

)
≈ p log2

(
N

p

)
+

p

log(2)
, (3)

where the approximation holds for p � N . This allows us to perform experiments by varying the
number of positive samples p (and thus the quantity of information C(p)) and measuring whether it
is possible to fit a model.

We experimented with VGG-type architectures on TinyImages, and VGG-16 and Resnet-101 on
Imagenet, see Appendix C for details. Figure 1 shows the accuracy of a trained neural network as
a function of the number of samples. The vertical bar shows the number of positive samples plim

for which the quantity of information C(plim) is equal to the number of parameters of the network.
Observe the impact of data augmentation: models trained on data-augmented images perform less
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Figure 2: Left: Cumulative distribution of the maximum classification score for a sample of 5000
images taken from 4 datasets. Imnet1k-train served as the training set and therefore Imnet1k images
(both train and val) have higher confidence. Right: binary classification accuracy (%) of a sample
of m elements from the training set Imnet1k-train w.r.t. three other datasets: Imnet1k-val (solid),
Imnet22k (dashed) and Yfcc100M (lines). The architecture is indicated by the line color.

well than their counterpart trained on plain images. However, fitting a data-augmented model is
easier than fitting a correspondingly higher number of samples: for example, it is easier to fit p
positives with flips than 2p positives. Data augmentation affects membership inference models
similarly, see Section 5 for details. Experiments on Imagenet architectures show that such models
are able to perfectly fit a large number of samples (up to n = 105), even with data augmentation.

4 DATASET DETECTION AND LEAKAGE

In this section, we detect whether a group of samples or a dataset has been used to train a model.
This problem encompasses the particular case of dataset bias (Torralba & Efros, 2011) and is more
difficult, as we need to distinguish datasets even if they share the same statistics, acquisition pro-
cedure and labelling process. For instance, we want to be able to determine if images from the
validation set of Imnet1k were used at train time.

We conduct our attacks using the maximal activation of the softmax layer (aka. the confidence of the
model) as the features fθ. This quantity is related to the probability of the correct class, especially
in the case where the classifier is perfectly accurate, in which the two quantities are equal. It was
shown by Yeom et al. (2018) in the context of membership inference of individual images that the
probability of the correct class (or the loss, up to a − log operator) is as good as the output of the
model (the whole softmax) in determining if an image was seen by the model.

The cumulative distribution of the confidence for a model trained on Imnet1k-train is shown in
Figure 2: most samples coming from the source Imnet1k-train have a very high confidence, while the
distribution of the source Imnet1k-val is more balanced and unrelated sources (Yfcc100M, Imnet22k)
tend to have a more uniform distribution.

Attack scenarios. We consider two attack scenarios on the model fθ. In the first scenario, we
have known samples with m ∈ {0, 1}, and we guess the value of membership m for a set of fresh
samples x′1, . . . , x

′
k. We compare the performance of the attack discriminating Imnet1k-train and

Imnet1k-val to easier attacks discriminating more different sources (Imnet22k, Yfcc100M) in this
scenario. In the second scenario, we only have samples for which m = 1 (samples from the test set
of Imnet1k), and we analyze whether elements from the validation set follow the same distribution.
If they do not, it means that some of the elements of the validation set have been used to train the
model (we refer to this as leakage).

We compare confidence distributions using the Kolmogorov-Smirnov (K-S) distance. Given two
cumulative distributions F and G, the K-S distance is dKS(F,G) = supx |F (x) − G(x)|. We use
the K-S distance to determine if two distributions are similar.
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Table 1: Kolmogorov-Smirnov tests on Imnet1k validation and test sets for various levels of leakage.
The K-S test provides a level of significance (p-value) rather than a yes/no answer. Lower values
indicate high confidence that the validation and test sets distributions are different, hinting that
leakage has occurred. If only 1 image per class of the validation set has leaked, we cannot conclude
from this test that there has been leakage. Conversely, when 10 images or more have leaked, we can
conclude with high significance that leakage has occurred.

Nb. of Images
# per class leaked Resnet-18 VGG-16

1 0.888 0.494
2 0.228 0.107
5 0.068 0.014
10 < 10−4 < 10−4

20 < 10−4 < 10−4

4.1 CONFIDENCE AS A SIGNATURE OF A DATASET

In this section, we denote by S0 (resp. S1) the set of samples for which m = 0 (resp. m = 1),
and we assume that all samples {x′1, . . . , x′k} come from either source S0 or S1. The attacker uses
the following decision rule: compute the K-S distance between x′1, . . . , x

′
k and S0 (resp. S1), and

assign the samples to the closest source.

Results and observations. The results are reported in Figure 2. We can distinguish Imnet1k-train
from Yfcc100M with very few (10-20) samples. More interestingly, the same number of samples
allow us to separate Imnet22k from Imnet1k-train, and with 500 images we can distinguish Imnet1k-
train from Imnet1k-val. This shows that, even with a relatively low number of images, an attacker
can determine that a given image collection was used for training. The figure also shows that the
test is easier for networks with a higher capacity, that tend to overfit more.

4.2 DETECTING LEAKAGE

We now assume that we are given a model for which we suspect that part of the validation set was
used for training. For a number of datasets (e.g., Imagenet, Pascal VOC), the labels of the validation
set are publicly available, and models are often compared using validation accuracy. A malicious
person could train a model using the training set and part of the validation set, and then report
validation accuracy to artificially inflate the performance of the model.

The attack we propose is a two-sample K-S test to determine if leakage has occurred or not. We
assume that no sample from the test set has leaked (labels are not public in most cases). The null
hypothesis of our test is that the validation and test sets have the same distribution. We compute the
K-S distance between the validation and test sets, and reject the null hypothesis if this distance is
high. The distance threshold t is set such that the null hypothesis is incorrectly rejected with a low
probability α, corresponding to the p-value. For large samples, Smirnov’s estimate of the threshold
corresponding to a p-value of α is (Feller, 1949):

t = c(α)

√
n+m

nm
where c(α) =

√
−1

2
log
(α
2

)
. (4)

We ran experiments on Imagenet using Resnet-18 and VGG-16, with s ∈ {1, 2, 5, 10, 20} images
per class of the validation set in addition to the training set to fit the model. Table 1 reports the
p-value of the different tests. We can see that when 10 images per class are leaked, the K-S test
predicts that leakage has happened with a very high significance. When 5 images per class or less
are used, we cannot reject the null hypothesis and thus cannot claim that leakage has happened.
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5 IMPLICIT MEMORIZATION & MEMBERSHIP INFERENCE

This section tackles the more difficult problem of membership inference in trained models. From a
trained model and an image the attacker has to determine whether the image was used to train the
model. In our new setting, upper layers are not available (due to e.g. finetuning on a downstream
task). We provide baselines for VGG16 and Resnet and extend the traditional attacks to our setup.

The literature (Abadi et al., 2017) distinguishes two cases types of membership inference: (1) all
layers are available (all-layers), (2) only the final output of the network is available (final-output).
There is currently no attack that performs substantially better in all-layers than in final-output. This
seems counter-intuitive but we confirmed it in preliminary experiments. Our new setup, partial-
layers, is adapted to transfer learning: only a certain number of bottom layers are available for attack,
the remaining layers were destroyed by retraining on an unrelated task. This task is more difficult
than all-layers since it has less parameters available, and thus more difficult than final-output.

5.1 EVALUATION PROTOCOL AND BASELINES

We assume that there are three disjoint sources of data: a public set, a private set, and an evaluation
set. A model is trained on the private set. The attacker has access to the lower layers of this model
and to the public set. After the attack is carried out, the evaluation is run on images from the private
and evaluation sets. Note that the public set can be used in a number of different ways by the
attacker: in our method, it will be used to retrain the missing layers.

We divide Imnet1k equally into two splits (each with half of the images per class). We hold out 50
images per class in the first split to form the evaluation set, and form the private set with the rest of
this split. The second split is used as the public dataset. We conduct the membership inference test
by comparing the prediction of the attack model on the private set and on the evaluation set. For this
purpose, we consider the two baseline methods.

Bayes rule. A simplistic membership inference attack is to predict that an image comes from the
training set if its class is predicted correctly, and from a held-out set otherwise. We note ptrain (resp.
ptest) the classification accuracy on the training (resp. held-out) set, and assume a balanced prior
on membership. According to Bayes’ rule, the accuracy of the heuristic is (see Appendix A in the
supplementary material for the derivation):

pbayes = 1/2 + (ptrain − ptest)/2. (5)
Since ptrain ≥ ptest this heuristic is better than random guessing (accuracy 1/2) and the improvement
is proportional to the overfitting gap ptrain − ptest.

Maximum Accuracy Threshold (MAT). Yeom et al. (2018) propose an attack on the loss value:
a sample is deemed part of the training set if its loss is below a threshold τ . If Ftrain (resp. Fheldout)
is the cdf of the loss on the train (resp. held out), the accuracy of the MAT is:

pthreshold = max
τ

1/2 + 1/2 (Ftrain(τ)− Fheldout(τ)) (6)

As Ftrain(τ) ≥ Fheldout(τ), this heuristic is also better than random guessing. In practice, τ is
estimated with samples or simulated by training models with known train/heldout split.

5.2 MEMBERSHIP INFERENCE WITH A TRUNCATED NETWORK

In this section, we provide a simple method to attack networks in the partial-layers setting. We use
the available public data to retrain the missing layers, and apply either the Bayes attack, as if there
was no fine-tuning at all. On this retrained layers, we found the MAT attack performed almost the
same as the Bayes attack, but the latter is simpler as it does not require to fit a parameter. We found
this method to be more accurate than another variant that we designed with shadow models (Shokri
et al., 2017), as detailed in the supplemental material (Appendix E).

5.3 EXPERIMENTS ON LARGE CONVNETS

Classification models. We experiment with the popular VGG-16 (Simonyan & Zisserman, 2014)
and Resnet-101 (He et al., 2016) architectures. The private model is learned in 90 epochs, with an
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Table 2: Accuracy of membership in-
ference attacks on the softmax layer of
the models (final-output). Data aug-
mentation reduces the gap between the
training accuracy and the held-out accu-
racy, thus decreasing the accuracy of the
Bayes attack and the MAT attack.

Model Augmentation Bayes baseline MAT

Resnet101 None 76.3 90.4
Flip, Crop ±5 69.5 77.4
Flip, Crop 65.4 68.0

VGG16 None 77.4 90.8
Flip, Crop ±5 71.3 79.5
Flip, Crop 63.8 64.3

Table 3: Accuracy of membership
inference attacks on intermediate lay-
ers of Resnet-101 and VGG-16 mod-
els (partial-layers). Last block corre-
sponds to the first fully connected layer
for VGG-16 and to the 4-th stage of
Resnet-101.

Augmentation Truncate Resnet-101 VGG-16

None Softmax 73.4 74.8
Last block 53.1 51.7

Flip, Crop±5 Softmax 65.7 67.3
Last block 53.1 52.2

Flip, Crop Softmax 60.8 58.5
Last block 52.9 53.2

initial learning rate of 0.01, divided by 10 every 30 epochs. Parameter optimization is conducted
with stochastic gradient descent with a momentum of 0.9, a weight decay of 10−4, and a batch size
of 256. To assess the effect of data augmentation, we train different networks with varying data
augmentation: flip+crop±5, flip+crop, flip+crop+resize, or none.

Attack models. We evaluate both the Bayes and MAT methods to estimate the performance on
final-output. The results are shown in Table 2. As we can see, it is possible to guess with a very high
accuracy if a given image was used to train a model when there is no data augmentation. Stronger
data augmentation reduces the accuracy of the attacks, that still remain above 64%.

The results of our attack in the more challenging partial-layers setting are shown in Table 3. We
can see that even without the last layers, it is possible to infer training set membership of an image.
The attack performance depends on two factors: the layer at which the attack is conducted, and the
data augmentation used to train the original network. As expected, it is more difficult to attack a
network that has been trained with more data augmentation, or that has only lower layers available.
More importantly, these experiments show that intermediate layers still carry out information about
the images used for training the model.

6 CONCLUSION

We have investigated the memorization capabilities of neural networks from different perspectives.
Our experiments show that state-of-the-art networks can remember a large number of images and
distinguish them from unseen images. We have analyzed networks specifically trained to remember
a set of images and the factors influencing their memorizing and convergence capabilities. It is pos-
sible to determine whether an image set was used at training time, even with full data augmentation.
On the contrary, the accuracy of determining if a single image was used is low when considering
full data augmentation on a large training set such as Imagenet. This implies that data augmentation
is an effective privacy-preserving method. Our last contribution is a method that detects training
images better than chance even with no access to the last layers, under limited data augmentation.

Final remark: The curious reader may have noticed that our title echoes the one of a previous
user study (Dhamija et al., 2000), in which the authors discussed the feasibility of authenticating
humans by their capabilities to recognize a set of images.
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Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn Song. The secret sharer:
Measuring unintended neural network memorization & extracting secrets. arXiv preprint
arXiv:1802.08232, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255, 2009.
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APPENDIX A PROBABILISTIC DERIVATIONS

A.1 BAYES ATTACK

Let C denote the event that the prediction of the neural network is correct and S the random variable
that indicates whether the sample comes from the training set. We therefore have:

P(C = 1|S = 1) = ptrain, P(C = 1|S = 0) = ptest (7)
P(S = 1) =P(S = 0) = 1/2. (8)

The accuracy of Bayes attack is:

P(C = S) = P(C = 1 | S = 1)P(S = 1) (9)
+ P(C = 0 | S = 0)P(S = 0) (10)

=
1

2
(ptrain + 1− ptest). (11)

A.2 EQUIVALENCE BETWEEN KOLMOGOROV-SMIRNOV AND THRESHOLD ATTACKS

If we consider the particular case of a subset of m = 1 image, we show in this section that the
decision boundary induced by the K-S distance is the same as the MAT described in Section 5.1. Yet
there are two significant differences between the K-S attack and the MAT: we consider confidence
instead of the loss value, and the optimal threshold is computed differently. Our attacks with the K-S
distance can therefore be seen as a generalization of the membership inference proposed by Yeom
et al. (2018).

We assume that we have two cumulative distributions F and G such that ∀x, F (x) ≥ G(x). We
want to show that the K-S rule is equivalent to a threshold rule. Denoting by δx the Dirac distribution
centered on x, we have:

dKS(δx, F ) ≤ dKS(δx, G) (12)

⇐⇒ 1

2
− |F (x)− 1

2
| ≤ 1

2
− |G(x)− 1

2
| (13)

⇐⇒ |G(x)− 1

2
| ≤ |F (x)− 1

2
|. (14)

The two following cases are easy:

G(x) ≤ F (x) ≤ 1/2⇒ dKS(δx, F ) ≤ dKS(δx, G), (15)
F (x) ≥ G(x) ≥ 1/2⇒ dKS(δx, F ) ≥ dKS(δx, G). (16)

For the last case, the set I for which G(x) ≤ 1/2 ≤ F (x) is an interval. On this interval, |F (x) −
1/2| − |G(x)− 1/2| = F (x) +G(x)− 1. F +G is increasing, and thus there exists a threshold τ
such that for x ∈ I:

x ≤ τ ⇐⇒ dKS(δx, F ) ≤ dKS(δx, G). (17)

With Equations 15 and 16, Equation 17 extends to all x.

APPENDIX B DE-DUPLICATING THE DATASETS

In this section, we describe the de-duplication processing applied to the datasets used in explicit
memorization experiments. This process ensures that near-duplicate images do not get assigned
different labels, and thus makes learning and evaluation more reliable.

B.1 DESCRIPTION AND MATCHING OF DUPLICATES

We compare images using GIST (Oliva & Torralba, 2006), a simple hand-crafted descriptor that was
shown to perform well on moderate image transformations (Douze et al., 2009). We compute the

12



Under review as a conference paper at ICLR 2019

��

���

����

�����

������

�������

������

������

�� ���� ���� ���� ���� ����

�
�
�
�
�

��������������������������������������

Figure 3: Histogram of distances of the images of Imnet22k to their nearest neighbor.
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Figure 4: Tiny nets.

approximate k-nearest neighbor graph on each dataset using Faiss (Johnson et al., 2017). Figure 3
shows the histogram of distances for the images of Imnet22k to their nearest neighbor: the bin around
[0, 10−2] contains more images than the following bin [10−2, 2.10−2], which is due to duplicates in
the dataset.

Images that are bit-wise exact are unambiguous duplicates – in fact they are often already removed
beforehand from the datasets because they are easy to detect by computing a hash value on the con-
tent. Beyond this extreme case, the notion of “duplicate” is ambiguous: images that are re-encoded,
resized, slightly cropped should be considered duplicates, but the case of larger transformations is
less obvious (e.g., photos of the same painting, consecutive frames of a video).

B.2 IDENTIFICATION OF CONNECTED COMPONENTS

We set a conservative arbitrary threshold of 0.001 to detect duplicate images, and remove the edges
of the k-nn graph that are above this threshold. We compute the connected components, and keep a
single image per connected component.

For Imnet22k, the largest connected components are error images returned by image banks like
Flickr for missing entries. This is an artifact of how the dataset was downloaded. The largest non-
trivial cluster from Imnet22k is the image of a flower in Figure 5, that appears in 72 different synsets.
There seems to be some disagreement on the species of this flower, along with plain bad annotations.

B.3 STATISTICS

Table 4 shows some statistics on the duplicates identified by our simple approach. Imnet22k has
10.4 % duplicate images. In addition to these duplicates, we removed 930,757 images that overlap
with Imnet1k, which means that Imnet1k is not a subset of Imnet22k in this paper. Within Imnet1k,
we found 1 % duplicates, which seems small enough not to remove them. For Tiny, we found 9.5 %
duplicates and removed them, leaving the dataset with 71, 726, 550 unique images.

Table 4: Duplicate statistics for the datasets we use.

Dataset # images # groups
Imnet22k 14,197,087 12,720,164
Imnet1k-train 1,281,167 1,267,936
Tiny 79,302,017 71,726,550
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n11610437 bishop pine, bishop’s pine, Pinus muricata
n11619455 western larch, western tamarack, Oregon larch, Larix oc-

cidentalis
n11621281 amabilis fir, white fir, Pacific silver fir, red silver fir,

Christmas tree, Abies amabilis
n11626826 red spruce, eastern spruce, yellow spruce, Picea rubens
n11710827 cucumber tree, Magnolia acuminata
n11721642 lesser spearwort, Ranunculus flammula
n11722342 western buttercup, Ranunculus occidentalis
n11722621 cursed crowfoot, celery-leaved buttercup, Ranunculus

sceleratus
n11753562 buffalo clover, Trifolium reflexum, Trifolium

stoloniferum
n11840476 desert four o’clock, Colorado four o’clock, maravilla,

Mirabilis multiflora
n11874081 yellow rocket, rockcress, rocket cress, Barbarea vulgaris,

Sisymbrium barbarea
n11882426 crinkleroot, crinkle-root, crinkle root, pepper root, tooth-

wort, Cardamine diphylla, Dentaria diphylla
n11887750 western wall flower, Erysimum asperum, Cheiranthus as-

perus, Erysimum arkansanum
n11889205 tansy-leaved rocket, Hugueninia tanacetifolia, Sisym-

brium tanacetifolia
... ...

Figure 5: Image that appears in the largest number of duplicate versions in Imnet22k (72), with a
few of the corresponding synsets.

APPENDIX C TINYNET ARCHITECTURES

In this section, we explicitly train neural networks to memorize a given subset of images, so that it
can decide whether an image is in its memory or not at test time. We design a model dΛ(dθ(·)) that
distinguishes a set of in images from out images, where images unseen during training are out.

We repurpose the classification layer of standard models to output a binary label, depending on
whether the image must be remembered or not. Our architecture plays an equivalent role to the
discriminator in Generative Adversarial Networks (GAN): it needs to discriminate between positive
and negative images. In our case, negative images are a large pool of images instead of the generated
images in GANs. Zhang et al. (2017) show that ConvNets are able to overfit almost any random
labelling of their input data, but in their experiment, the output for unseen images is undefined.

C.1 EMPIRICAL ANALYSIS ON TINY IMAGES

TinyNet. We design a family of ConvNets with 4 convolutional layers and 2 fully-connected layers
that take 32x32 images as input and output a binary classification. There are 3 versions: TinyNet-1,
(90k parameters), TinyNet-2 (300k parameters) and TinyNet-3 (2M parameters). Most parameters
of these models are in the first fully connected layer, as in VGG (cf. Appendix C).

Experimental setup. We use a subset of N = 15M images from Tiny for these experiments. We
randomly sample n images as positive examples, and treat the rest as negatives. At each epoch,
we feed a random sample of negatives of the same size as the number of positives to the network.
The reported accuracy is measured on a balanced set of positives and negatives. We consider four
types of data augmentation: “none”, “flip” (random horizontal mirroring), “flip+crop±1” (a random
translation in {−1, 0,+1}2), “flip+crop±2”.

Discussion. Figure 1 shows the accuracy of the model as a function of the number of positive
images for all TinyNets. Instead of a sharp drop between the over-capacity and the under-capacity
regimes, we observe a smooth drop as the number of positives increases. Empirically, this transition
phase happens when the number of samples reaches the theoretical capacity of the network.

As expected, data augmentation reduces the memorization capacity of the network. For example, the
accuracy of a network trained on n images with flips is lower-bounded by the capacity of the same
network trained on 2n images with no data augmentation. This lower bound is not tight, thanks to
the generalization capability of the ConvNet, which captures the patterns common to an image and
its symmetric. This generalization capability is obvious for stronger augmentations: for example
with “flip+crop±1” TinyNet-2 can identify 10k images with 90% accuracy, vs. 20k images without
data augmentation, while this requires to treat 18 augmented versions of each image similarly.
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Figure 6: Accuracy over iterations of the in/out training on Yfcc100M for different networks and
amount of data augmentation (indicated by color: purple= none, green = flip, cyan = flip+crop±5).

C.2 EXPERIMENTS WITH LARGE-SCALE ARCHITECTURES

In this section, we extend the explicit memorization experiments to VGG-16, ResNet-18, and
ResNet-101 networks with images coming from Yfcc100M. The capacity of these networks is much
larger than in the tiny setting: Resnet-18 has 11.7M parameters and VGG-16 has 140M.

We set an initial learning rate of 10−2 and divide it by 10 when the training accuracy gets over 60%,
and again at 90%. We run experiments using either the center crop, or two data augmentations (flip,
flip+crop±5). Figure 6 shows convergence plots for several settings. Note, the x-axis is in epochs,
that are 10× slower for n =100k images than n =10k images. The longest experiment took 4
days on 4 GPUs . VGG-16 and ResNet-101 converge at approximately the same number of epochs,
irrespective of n. Data augmentation increases the number of epochs required to converge, eg. for
the ResNets, flip up to twice more epochs to be trained. VGG is a shallower and higher capacity
network; in general it converges faster and it handles crops better than the ResNet variants.

The outcome of our analysis is that explicit memorization of a large amount of images is possible,
albeit more difficult with data augmentation. In real use cases, the number of images that can be
stored explicitly with perfect accuracy is practically much lower than the number of network param-
eters. This set of experiments provides an approximate upper-bound for the problem of membership
inference: if a given model cannot perfectly remember a set of images when trained to do so, it will
likely not be able to remember all the images of the training set when trained for classification.

The architectures includes from 3 convolutional layers for TinyNet1 to 4 for TinyNet2 and TinyNet3.
The first convolutional layer is 5x5. Each convolutional layer is followed by a Rectifier Linear Unit
activation. The fully connected layer of TinyNet3 is larger than TinyNet2.

APPENDIX D FILTERS

The filters of the first convolutional layer are easy to visualize and contain interesting information on
how the SGD optimized to the very first filter that is applied on the image pixels (Krizhevsky et al.,
2012; Bojanowski & Joulin, 2017; Paulin et al., 2017). Figure 7 shows the filters obtained after
training a Resnet-18. The filters for 10k images are very noisy compared to the smooth Gabor filters
produced by supervised classifiers. This is probably due to the large capacity of the network, that is
able to quickly overfit the data and does not need to update the filter weights beyond their random
initialization. With more images, the filters become more uniform, exhibiting some specialization.
Interestingly, for n=100k with crop augmentation the filters have a clear uniform color. This is
required for the output to be less sensitive to translations of up to 2 pixels.
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n=100k, no augmentation n=100k, flip n=100k, flip+crop±2

Figure 7: Filters of the first convolutional layer (7x7, 64 filters) obtained when learning to explicitly
memorize if an image was used for training or not.

Table 5: Accuracy of membership in-
ference attacks before the softmax layer
of the models (partial-layers), using
shadow models.

Model Augmentation Attack accuracy

Resnet101 None 60.6
Flip, Crop ±5 61.4
Flip, Crop 58.2

VGG16 None 73.8
Flip, Crop ±5 65.8
Flip, Crop 55.2

APPENDIX E SHADOW MODELS

We evaluated the performance of shadow models on the partial-layers setting. The setting is the
following: we train 20 networks on the public dataset, each time holding out a different subset of
images. For each network, we can thus compare the activations of train and held-out images. These
activations are not directly comparable between two different networks, because internal activations
of a ReLU network have invariances (such as permutation of the neurons or positive rescaling). To
circumvent this issue, we learn a regression model that maps activations between two networks, and
thus align activations of all the networks to the activations of the network under attack using the `2
loss. We then learn an attack model that predicts from the aligned activations whether the image was
seen by the network at train time.

The results are shown in Table 5. While performing better than random guessing, shadow models
underperform the attack methods shown in Table 3. We believe that this is due to the complex
processing involved in training shadow models on intermediate activations (notably the regression
model), whereas the attacks of Section 5 are more straightforward to train.
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