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Abstract

Deep embedding extraction has been extremely success-
ful in various applications, including face verification, clus-
tering and image retrieval. Broadly speaking, it involves
optimizing some variants of contrastive loss or triplet loss
in a way that similar images have similar embeddings, and
vice versa. While the formulations usually seem intuitive
and simple, in practice for successful training, it is crucial
to use various example-sampling heuristics to avoid bad lo-
cal optima and to accelerate convergence.

It is important to note that it is not just the loss function,
but also these heuristics together, that define the true ob-
jective function. While a great amount of (possibly sophis-
ticated) variants of loss function have been proposed, the
importance of these sampling/training procedures is largely
neglected, and a principled study is missing.

In this work, we study, propose and evaluate a class of
sampling/training procedures and loss functions, which are
stable to train in most settings. In addition, we show that us-
ing our strategies, even the simplest contrastive loss is suffi-
cient to achieve state-of-the-art results on multiple datasets
in multiple domains.

1. Introduction
Our main contributions are as follows:

1. We propose and evaluate a class of sampling/training
procedures and loss functions, which are stable to train
in most settings.

2. We study/compare/analyze various deep embedding
algorithms considering not just the loss functions but
also their training procedures in a unified framework.

3. Extensive experiments show that using the proposed
strategies, vanilla contrastive loss is sufficient to
achieve state-of-the-art results.

2. Related works
The idea of using neural networks to extract features

that respect certain relationships dates back to the 90s. [3]

first proposed a “Siamese Network” for signature verifica-
tion, and later similar ideas were used for face verification
and other applications [5, 9]. Broadly speaking, the center
idea is finding an embedding space such that similar ex-
amples have similar embeddings and vice versa. However,
given the limited computing power and their nature of non-
convexity, these approaches did not enjoy as much attention
as they do today.

Others seek to achieve similar goals with convex opti-
mization approaches [30, 20, 27, 6]. Among these, [20, 27]
propose to use relative relationship between examples,
which motivated later development of triplet losses.

In recent years, given the astonishing breakthroughs in
deep convolutional neural networks (CNNs) [15, 23, 10],
neural network-based metric learning regained popularity in
computer vision community. These methods give state-of-
the-art results in various areas, such as zoro-shot learning
[4], visual search [8, 1], face recognition/verification [19,
18], etc.

Among these the triplet loss is extremely successful. For
example, [19, 18] use triplet loss and achieved state-of-the-
art performance in face verification that outperforms hu-
mans. The success encourages abundant works striving im-
proving upon vanilla triplet losses. Some attempted to go
beyond triplets or pairs, and construct loss functions that
use more examples in one term. For example, [21] and [17]
proposed to use all negatives in a batch for each positive pair
(in contrast to one, as in triplet loss), at the cost of higher
computational complexity. Similarly, [11] proposed to use
quadruplets instead of triplets.

Some strive to improve hard negative mining. [32]
trained an ensemble of multiple models, each of which fo-
cuses on examples of certain “hard levels.” [11] designed a
new network module on top of the original model with an
additional “metric loss” in an attempt to learn a metric that
can be used to select better hard samples.

While they are highly successful in certain settings, in
practice triplet loss and their extensions are known to be
unstable in training. In this paper, we propose and evaluate
a class of sampling/training procedures and loss functions,
which are stable to train in most settings. We show that us-
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ing these guidlines, the simplest contrastive loss is sufficient
to outperform all other methods.

3. Background
3.1. Loss functions

Contrastive loss

`(contrast)(i, j) := yi,jD
2
i,j + (1− yi,j) [α−Di,j ]

2
+ , (1)

where Di,j := ‖f(xi)− f(xj)‖.

Triplet loss

`(triple)(a, p, n) :=
[
D2
a,p −D2

a,n + α
]
+

(2)

3.2. Traditional training procedures

From risk minimization perspective, one might aim at
optimizing ∑

t∈{all tuples}

`(·)(t) (3)

However, it is computationally infeasible to enumerate
throughO(n2) or evenO(n3) such tuples. In addition, most
of these tuples would induce small or zero losses, when the
network approaches a good solution. To accelerate conver-
gence while maintaining training stability, variants of hard
negative mining, batch construction methods are performed.

Hard negative mining One common such techniques is
to use only tuples that have non-zero loss. Some sample
uniformly from these violating examples [18], some sam-
ple the hardest violating examples [19], and some combine
the two [7]. For triplet loss training, the most popular prac-
tice is to not sample the hardest examples though [19, 18].
This in practice stabilizes training and tends to converge to
a better solution. However, in Section ??, we will show
that this would cause slower convergence is most impor-
tant/challenging examples are ignored.

Batch construction Various ways of constructing batches
are also proposed as people realize that randomly sampling
of tuples naively leads to inferior convergence and results.
For example, in [19] a batch is constructed such that each
class in batch have at least 40 images, and bach size is set
to be 1800.

4. A unified view
While not as pronounced, these techniques fundamen-

tally change the loss function.

Corrected loss functions. The importance of these tech-
niques are evident in the following triplet-loss example. In
[19], [18], and [20], their techniques induce the following
three losses respectively:

`(triplet, semi-hard)(a, p) (4)

:= max
n:Da,n>Da,p,n∈Xn

(
D2
a,p −D2

a,n + α
)
+

(5)

(6)

`(triplet, random-violate)(a, p) (7)

:=
∑

n:Da,n∈[Da,p,Da,p+α],n∈Xn

(
D2
a,p −D2

a,n + α
)
+

(8)

(9)

`(triplet, random)(a, p, n) (10)

:=
(
D2
a,p −D2

a,n + α
)
+
, (11)

where (a, p, n)-tuples are uniformly sampled for
`(triplet, random), and Xn is some set of negative exam-
ples. We see they are fundamentally different optimization
objectives. These techniques are developed independently
without mutual comparison, and the pros and cons are not
clear.

Aggregated loss. In addition, tuples (a, p) are also sam-
pled by some sampling algorithm Pa,p. Thus the true ob-
jective of [19] could be formally written as optimizing on
the expectation over this sampling distribution, i.e.

EPa,p

[
`(triplet, semi-hard)(a, p)

]
(12)

D
(a, n)

L
o
s
s

Contrasted loss

(a) Contrastive loss.

D
(a, n)

L
o
s
s

Robust modified contrastive loss
Modified contrastive loss

(b) Modified contrastive loss.

Figure 1: Contrastive loss

5. Proposed strategies
We found that to achieve successful and fast training,

three principles are important: balanced sampling, stable
losses, and an aggressive yet stable hard-negative mining.

2
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D
(a, n)
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Semi-hard triplet loss
Triplet loss

(a) Triplet loss.

D
(a, n)

L
o
s
s

Robust modified triplet loss
Modified triplet loss

(b) Modified triplet loss.

Figure 2: Triplet loss

5.1. Balanced classes, batches and tuples.

A good strategy we found is to construct an objective
and batches that are as balanced as possible, at all of the
following three levels. First, we found that it is advan-
tageous to sample classes uniformly instead of sampling
tuples uniformly and consequently biasing towards large
classes. For example, in most contrastive-loss optimizing
algorithms, positive pairs are sampled uniformly across all
possible pairs. Roughly speaking, in this way the training
loss of a class c of size |c| is effectively weighted by a factor
of
(|c|
2

)
. Second, we found that training is more stable when

sampling the same amount of images per batch. [21] use
similar techniques. Formally,

ci ∼ U(C), i = 1, . . . , B/k (13)
zij ∼ U(Xci), j = 1, . . . , k (14)

(CY: strictly speaking, not exactly this. we sample without
replacement)

Third, sampling sampling one negative for each end of
a positive pair also helps stabilizing training, namely for
positive pair (i, j),

`(stable contrast)(i, j) (15)

:= (Di,j − β + α)+ +
(
β −Di,y?(i) + α

)
+

(16)

(17)

5.2. Modified contrastive/triplet loss.

Another source of instability of training is the mis-
matching scale of repelling gradients, which repels neg-
ative pairs, and attracting gradients, which attract positive
pairs. To see this, take triplet loss for example,

`(triple) :=
1

2

(
‖xa − xp‖2 − ‖xa − xn‖2 + α

)
+

∂`(triple)
/∂xa = xn − xp

∂`(triple)
/∂xp = xp − xa, and ∂`(triple)

/∂xn = xa − xn.

Note that the hard negatives (the ones close to anchor) have
small gradients (see Figure 2a), while the hard positives

have large gradients. This causes the training to draw all
examples close, and eventually converge to a bad saddle
point where all examples have the same embedding. It is
hard to escape from this point as at this point all three ex-
amples have gradient zero. Semi-hard negative mining was
proposed to address this issue by not sampling these harder
negatives, but we can simply modify the loss function to
overcome this problem, i.e.

`(`2triple) := (‖xa − xp‖ − ‖xa − xn‖+ α)+

∂`(`2triple)
/∂xa =

xa − xp
‖xa − xp‖

− xa − xn
‖xa − xn‖

∂`(`2triple)
/∂xp =

xp − xa
‖xp − xa‖

and ∂`(`2triple)
/∂xn =

xa − xn
‖xa − xn‖

Similar issues appear for contrastive loss when the pos-
itive pairs and negative pairs have mismatching scales of
gradients, and this causes instability of training. We thus
propose to use a modified contrastive loss

`(`2 contrast) := yi,j ‖xi, xj‖+ (1− yi,j) (α− ‖xi, xj‖)+ ,
(18)

as shown in 1b.

5.3. Hard negative mining with robust losses

To achieve stable training and avoid the vanishing gra-
dient problem mentioned in the previous subsection, in-
stead of mining the hardest negative examples, the common
practice is using the so called semi-hard negative mining
[19, 18]. These semi-hard negatives are the hardest in those
that are further away from anchor than the positive example
(so they are not really hard). This induces

`(triplet, semi-hard)(a, p) (19)

:= max
n:Da,n>Da,p,n∈Xn

(Da,p −Da,n + α)
2
+ , (20)

where Xn is some set of negative examples. [7] used a
different approach that initially train with random triplets,
and then hardest triplets afterwards. These techniques share
similar motivations to curriculum learning [2, 13].

Note however, these methods ignore challenging and
thus important examples and lead to slower convergence.
We here propose the following sampling distribution such
that it is stable to train yet still mines the hardest examples
so that it learns efficiently. (CY: our dD−1 argument doesn’t
hold for unit-sphere. )

`(robust hard contrast)(i, j) (21)

:= [Di,j − α]2+ + max
n:Di,n>β,n∈Xn

[α−Di,n]
2
+ (22)

where Xn is some set of negative examples.

3
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We also tried self-paced learning approaches [16] where
we start with the simplest examples only, and then decrease
the threshold later on to adopt harder and harder examples.
They achieve similarly good performance as our proposed
XX distribution, yet introduce one more parameter to con-
trol the pace of learning, so we did not pursue this direction.

6. Experiments
Our proposed method is very stable to train. In all of the

following experiments, we use the same model parameters
and sampling procedures for all datasets, and all of them
achieve very competitive results.

Training of contrastive loss follows [5], where half of
the training pairs are positive and half of them are randomly
sampled negatives.

6.1. Data sets
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Figure 3: Convergence

Verification:

• Labeled Faces in the Wild (LFW).

• Something else.

Image retrieval:

• CUB-200-2011.

• CARS196.

• Stanford Online Products.

Note that CASIA face dataset is known to contain many
incorrect labels1.

1 According to https://github.com/happynear/
FaceVerification, 27,703 images in CASIA dataset have in-
correct labels.
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Ours k=10

Ours k=15

Ours k=2

Triplet k=10

Triplet k=5

Triplet k=2

Figure 4: Triplet loss

Domain Dataset # classes # images

Faces
Train: CASIA [31] 10,575 494,414
Test: LFW [12] 5,749 13,233

Products Stanford Online Products [17] 22,634 120,053

Cars CARS196 [14] 196 16,185

Birds CUB200-2011 [28] 200 11,788

Table 1: Datasets

Loss Sampling Accuracy AUC 100% - EER

Triplet Semihard random
Triplet Semihard m = 2

Triplet Semihard m = 5
Triplet Semihard k=10
Triplet Semihard k=20
Ours random
Ours k=2
Ours k=5
Ours k=10
Ours k=20

Table 2: Ablation study on LFW.

6.2. Verification

6.3. Clustering

.

6.4. Image retrieval

6.5. Per-class thresholds

.

4
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β Accuracy AUC 100% - EER

β = 0.5

Fixed β = 1.0

β = 1.5

νβ = 1.0

Learned νβ = y

νβ = z

Table 3: Ablation study on LFW.

# training images Accuracy (%)

FaceNet [19] 200M 99.63
DeepFace [25] 4.4M 97.35
MultiBatch [24] 2.6M 98.20
VGG [18] 2.6M 99.13

WebFace [31] 494k 96.13
WebFace+PCA [31] 494k 96.30
WebFace+Joint Bayes [31] 494k 97.30
LightenedCNN [29] 494k 98.13
Npairs [21] 494k 98.33
Ours 494k

Table 4: LFW. For the purpose of comparing algorithms,
we only compare with results that were trained on the same
dataset as our model. A few other state-of-the-art results
were are listed for reference.

k 1 2 4 8 16 32

Original Images
Triplet Semihard [19, 22] 51.5 63.8 73.5 82.4 - -
LiftedStruct [17, 22] 53.0 65.7 76.0 84.3 - -
Npairs [21, 22] 53.9 66.8 77.8 86.4 - -
StructClustering [22] 58.1 70.6 80.3 87.8 - -
Ours 65.5 76.4 85.0 90.8 94.7 97.3

Cropped Images
PDDM Triple [11] 46.4 58.2 70.3 80.1 88.6 92.6
PDDM Quadruplet [11] 57.4 68.6 80.1 89.4 92.3 94.9
Ours 73.1 82.5 89.0 93.6 96.6 98.5

Table 5: CARS196

6.6. Convergence speed and ablation studies

.
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Figure 5: 5 classes with the smallest class-specific βs (left 5 columns), and 5 with the largest class-specific βs (right 5
columns). The former are clearly simpler in terms of colors, patterns, even activities, and backgrounds. TODO: add numbers.
(CY: probably group them into 2 subfigs?)

Figure 6: 5 classes with the smallest class-specific βs (left 5 columns), and 5 with the largest class-specific βs (right 5
columns). Note that for small-β cars are mostly pickup trucks, which have relatively simple colors and shapes, while the
large-β cars are diverse in shapes and colors (even wheel colors). The first and the third largest are convertibles.
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